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1 Gaussian Process Posteriors

Equations (10), (12), (18) and (19) in the main paper are Gaussian process posterior distributions over the curve
¢ arising from observations of various combinations of derivatives of c. These forms arise from the following
general result.! Consider a Gaussian process prior distribution

p(e) = GP(c; k) (1)
over the function ¢, and observations y with the likelihood
p(yle, A) = N(y; Ac, A), (2)

with a linear operator A. This includes the special cases of the selection operator A = §(x — ;) which selects
function values Ac = [ 6(z - z;)c(x)dz = ¢(z;), and the special case of derivative operators 976(x — z;) which
give Ac = [ 8,6(x - x;)c(x)dx = ¢ (;). Then the posterior over any linear map Be of the curve ¢ (including
B =§(xz—-x;), giving Be =c(x;)) is

p(Bc|y, A) = GP(Bc; Bu+ BEAT(AKA™ + A) ™' (y - Ap), BEB - BEAT(AKA™ + A) ' AEBT). (3)

And the marginal probability for y is

p(y14) = [ plyle, Apl(e) de = N (y; Ap, ARAT + A) (4)

The classic example is that of the marginal posterior at ¢(x,) arising from noisy observations at [¢(z1),...,c(zn)].
This is the case of B=d§(x-z,) and A =[6(x -x1),...,d(z —2zxn)]", which gives

B = p(.) (5)

Ap=[p(z1), ... p(zn)]" (6)

BEAT - Uf 5(a—x*)k(a,b)é(b—xi)dadb] = k(e 21), . k(e 2n)] (7)

i=1,...,N

(k:(:cl,xl) k(xl,xN))

AkAT = : :
]f(fL’N,fEl) k(xNaxN)

and so on. All the Gaussian forms in the paper are special cases with various combinations of A and B.

'"Equation A.6 in C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006
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2 Covariance Functions

The models in the paper assume a squared-exponential (aka. radial basis function, Gaussian) covariance function

between values of the function f:R—RY, of the form

(t-t)*
2)2

cov(fi(t), f;(t)) = Vijexp (— ) = Vikuw

(9)

The calculations require the covariance between various combinations of derivatives of the function. For clear

notation, we’ll use the operator 0 := 9/0t, and the abbreviation 8y := (t —t')/\?

”w t—t' : ,
COV(fi(t), fj(t )) szjktt’a-r z] )\2 ktt’ sz'j(stt’ktt’ = _COV(fi(t)a fj(t ))
YN 1 (t-t'\?
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4 2 . .
cov(fxt),f;(t'))=mjktt,aTaT:vij((’f;j) ;)k Vi (9% = 55 ) b = —cov (i), (1)
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e Q-1 bt [{t-t 1
cov(fi(t), f;(t)) = VijOku 0T 0" = ()\2 VY (( 2 ) _v))ktt'z ( So + /\25tt')ktt' (13)

cov(f (1), J5(1")) = Vis0dked™0" =V, (5”,— R 4)ktt,

(14)

Of course, all those derivatives retain the Kronecker structure of the original kernel, because 9(V ® k) = V ® 0k.

3 Inferring Hyperparameters

Perhaps the most widely used way to learn hyperparameters for Gaussian process models it type-II maximum
likelihood estimation, also known as evidence maximisation: The marginal probability for the observations y
is p(y|A) = [ p(y|e)p(e|N) de = N (y; jir, 00krr(X)00 + A). Using the shorthand G := (00krr(X)9d + A), its

logarithm is
~2logp(y|A) = (y - jir) "G~ (y - jir) +log |G| + N log 2

To optimise this expression with respect to the length scale A\, we use

SN ) iy O oy i) wn(e )
From Equation (14), and using
D Guw Ok _, 83
FICEPY axz
we find
ij 2
aacj\t;’ =Vij [( 5tt' )\4 6tt’ ) ki + 00k 0707 6“,]

¢ 7 39 6
= VzJ ( ) )\2 5?:&' 2)\4 5t2t' 26 ) ktt’

It is also easy to evaluate the second derivative, giving

9 logp(y|\) 110G 0G oG ,,0G .,
-9 =9y — -
(a)\g)g (y MT) G 8)\2G 8)\2G (y MT) tr|:8>\2G 8)\2G ]
iy P i) vu|o OO
(8)\2)2 (0 )\2)2
0*Gyl, 18 520G,
where 0t - ”( S5 5“/— B+ )ktt S

This allows constructing a Newton-Raphson optimisation scheme for the length scale of the algorithm.

(15)
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