
Probabilistic Solutions to Differential Equations
and their Application to Riemannian Statistics

— Supplementary Material —

Philipp Hennig Søren Hauberg
Max Planck Institute for Intelligent Systems, Spemannstraße 38, 72076 Tübingen, Germany

[philipp.hennig|soren.hauberg]@tue.mpg.de

1 Gaussian Process Posteriors

Equations (10), (12), (18) and (19) in the main paper are Gaussian process posterior distributions over the curve
c arising from observations of various combinations of derivatives of c. These forms arise from the following
general result.1 Consider a Gaussian process prior distribution

p(c) = GP(c;µ, k) (1)

over the function c, and observations y with the likelihood

p(y ∣ c,A) = N (y;Ac,Λ), (2)

with a linear operator A. This includes the special cases of the selection operator A = δ(x − xi) which selects
function values Ac = ∫ δ(x − xi)c(x)dx = c(xi), and the special case of derivative operators ∂nx δ(x − xi) which
give Ac = ∫ ∂xδ(x − xi)c(x)dx = c(n)(xi). Then the posterior over any linear map Bc of the curve c (including
B = δ(x − xj), giving Bc = c(xj)) is

p(Bc ∣ y,A) = GP(Bc;Bµ +BkA⊺(AkA⊺ +Λ)−1(y −Aµ),BkB −BkA⊺(AkA⊺ +Λ)−1AkB⊺). (3)

And the marginal probability for y is

p(y ∣A) = ∫ p(y ∣ c,A)p(c)dc = N (y;Aµ,AkA⊺ +Λ) (4)

The classic example is that of the marginal posterior at c(x∗) arising from noisy observations at [c(x1), . . . , c(xN)]⊺.
This is the case of B = δ(x − x∗) and A = [δ(x − x1), . . . , δ(x − xN)]⊺, which gives

Bµ = µ(x∗) (5)

Aµ = [µ(x1), . . . µ(xN)]⊺ (6)

BkA⊺ = [∬ δ(a − x∗)k(a, b)δ(b − xi)dadb]
i=1,...,N

= [k(x∗, x1), . . . k(x∗, xN)] (7)

AkA⊺ =
⎛
⎜
⎝

k(x1, x1) ⋯ k(x1, xN)
⋮ ⋱ ⋮

k(xN , x1) ⋯ k(xN , xN)

⎞
⎟
⎠

(8)

and so on. All the Gaussian forms in the paper are special cases with various combinations of A and B.

1Equation A.6 in C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006



Probabilistic Solutions to ODEs, Application to Riemannian Statistics — Supplements

2 Covariance Functions

The models in the paper assume a squared-exponential (aka. radial basis function, Gaussian) covariance function
between values of the function f ∶ R_RN , of the form

cov(fi(t), fj(t′)) = Vij exp(−(t − t′)2
2λ2

) =∶ Vijktt′ (9)

The calculations require the covariance between various combinations of derivatives of the function. For clear
notation, we’ll use the operator ∂ ∶= ∂/∂t, and the abbreviation δtt′ ∶= (t − t′)/λ2

cov(fi(t), ḟj(t′)) = Vijktt′∂⊺ = Vij
t − t′
λ2

ktt′ = Vijδtt′ktt′ = − cov(ḟi(t), fj(t′)) (10)

cov(ḟi(t), ḟj(t′)) = Vij∂ktt′∂⊺ = Vij
⎛
⎝

1

λ2
− ( t − t

′

λ2
)
2⎞
⎠
ktt′ = Vij (

1

λ2
− δ2tt′)ktt′ (11)

cov(fi(t), f̈j(t′)) = Vijktt′∂⊺∂⊺ = Vij
⎛
⎝
( t − t

′

λ2
)
2

− 1

λ2
⎞
⎠
ktt′ = Vij (δ2tt′ −

1

λ2
)ktt′ = − cov(ḟi(t), ḟj(t′)) (12)

cov(ḟi(t), f̈j(t′)) = Vij∂ktt′∂⊺∂⊺ = Vij
⎛
⎝

2

λ2
t − t′
λ2

− t − t
′

λ2
⎛
⎝
( t − t

′

λ2
)
2

− 1

λ2
⎞
⎠
⎞
⎠
ktt′ = Vij (−δ3tt′ +

3

λ2
δtt′)ktt′ (13)

cov(f̈i(t), f̈j(t′)) = Vij∂∂ktt′∂⊺∂⊺ = Vij (δ4tt′ −
6

λ2
δ2tt′ +

3

λ4
)ktt′ (14)

Of course, all those derivatives retain the Kronecker structure of the original kernel, because ∂(V ⊗ k) = V ⊗ ∂k.

3 Inferring Hyperparameters

Perhaps the most widely used way to learn hyperparameters for Gaussian process models it type-II maximum
likelihood estimation, also known as evidence maximisation: The marginal probability for the observations y
is p(y ∣λ) = ∫ p(y ∣ c)p(c ∣λ) dc = N (y; µ̈T , ∂∂kTT (λ)∂∂ + Λ). Using the shorthand G ∶= (∂∂kTT (λ)∂∂ + Λ), its
logarithm is

−2 log p(y ∣λ) = (y − µ̈T )⊺G−1(y − µ̈T ) + log ∣G∣ +N log 2π (15)

To optimise this expression with respect to the length scale λ, we use

−2
∂ log p(y ∣λ)

∂λ2
= −(y − µ̈T )⊺G−1 ∂G

∂λ2
G−1(y − µ̈T ) + tr(G−1 ∂G

∂λ2
). (16)

From Equation (14), and using
∂δtt′

∂λ2
= −δtt′

λ2
∂ktt′

∂λ2
= ktt′

δ2tt′

2
(17)

we find

∂Gij
tt′

∂λ2
= Vij [(−

4

λ2
δ4tt′ +

18

λ4
δ2tt′ +

6

λ6
)ktt′ + ∂∂ktt′∂⊺∂⊺

δ2tt′

2
] (18)

= Vij (
δ6

2
− 7

λ2
δ4tt′ +

39

2λ4
δ2tt′ +

6

λ6
)ktt′ (19)

It is also easy to evaluate the second derivative, giving

−2
∂2 log p(y ∣λ)

(∂λ2)2 = 2(y − µ̈T )⊺G−1 ∂G

∂λ2
G−1 ∂G

∂λ2
G−1(y − µ̈T ) − tr [ ∂G

∂λ2
G−1 ∂G

∂λ2
G−1] (20)

− (y − µ̈T )⊺G−1 ∂2G

(∂λ2)2G
−1(y − µ̈T ) + tr [G−1 ∂2G

(∂λ2)2 ] (21)

where
∂2Gij

tt′

(∂λ2)2 = Vij (−
3

λ2
δ6tt′ +

35

λ4
δ4tt′ −

78

λ6
δ2tt′ +

18

λ8
)ktt′ +

δ2

2

∂Gij
tt′

∂λ2
(22)

This allows constructing a Newton-Raphson optimisation scheme for the length scale of the algorithm.


	Gaussian Process Posteriors
	Covariance Functions
	Inferring Hyperparameters

