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Abstract. Intrinsic images such as albedo and shading are valuable for
later stages of visual processing. Previous methods for extracting albedo
and shading use either single images or images together with depth data.
Instead, we define intrinsic video estimation as the problem of extracting
temporally coherent albedo and shading from video alone. Our approach
exploits the assumption that albedo is constant over time while shading
changes slowly. Optical flow aids in the accurate estimation of intrinsic
video by providing temporal continuity as well as putative surface bound-
aries. Additionally, we find that the estimated albedo sequence can be
used to improve optical flow accuracy in sequences with changing illumi-
nation. The approach makes only weak assumptions about the scene and
we show that it substantially outperforms existing single-frame intrinsic
image methods. We evaluate this quantitatively on synthetic sequences
as well on challenging natural sequences with complex geometry, motion,
and illumination.
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1 Introduction

Albedo and shading are fundamental view-centric features of the visual world
that are closely related to physical properties of surfaces and light [5]. Many com-
puter vision algorithms work directly with pixel values, which are a combination
of albedo and shading. These same algorithms, whether image/video segmenta-
tion, flow estimation, object detection, or 3D shape reconstruction, may work
significantly better if applied to more physical quantities. Consequently we seek
to decompose images into their intrinsic albedo and shading components. This
problem has been studied since the 1970’s but previous work focuses on individ-
ual images. Here we extend these methods to video sequences and show that, by
exploiting temporal constraints on albedo and shading, our method outperforms
single-frame methods.

While today “intrinsic images” are typically taken to mean shading and
albedo, the original meaning of Barrow and Tenenbaum [5] includes additional
“images” related to object shape, such as surface normals, depth, and occluding
contours. By using sequences of images, rather than static images, we extract
a richer set of intrinsic images that include: albedo, shading, optical flow, oc-
clusion regions, and motion boundaries. Our formulation provides an integrated
framework for modeling video sequences in terms of such intrinsic images.
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Fig. 1. Intrinsic Video. Top: two frames from a synthetic sequence with camera
motion and illumination change. Bottom: pixel, albedo, and shading values for marked
locations in 8 consecutive frames. Pixel values and shading change over time, while
albedo is constant.

For a Lambertian surface, albedo and shading are mixed and encoded in
observed pixel values according to

it(x) = at(x)× st(x), (1)

where i is the known image, a and s are unknown albedo and shading variables,
respectively, x is pixel location, and t is time. Since there are two unknowns and
one observation, the recovery (factorization) of albedo and shading is ill-posed
at a single pixel. To recover the intrinsic images from a single image, there have
been several proposals for priors on albedo and shading that show promising
results [4, 12]. Previous work, however, has typically not considered videos of
general scenes, non-rigid motions, and changing illumination. Our experiments
with single-frame methods show that they do not produce temporally coherent
results when applied independently to video frames.

If we know the optical flow of the scene, then we actually have additional
constraints on the albedo and shading. If a surface is changing orientation with
respect to the illumination, then the image values change, but the albedo does
not. Thus, correspondence in time can provide additional constraints that make
solving for the albedo well posed. We define intrinsic video as the factoriza-
tion of video into sequences of albedo, shading, motion, occlusion, and motion
boundaries.

Consider the synthetic image sequence in Fig. 1, containing camera motion
and changing illumination. Given optical flow, the change in albedo and shad-
ing over time can be physically motivated. First, albedo is a unique value for
each material that determines surface color, and its value is constant as long
as the material stays unchanged. Second, shading is generated from physical
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interaction between surface geometry and incoming light. It is reasonable to as-
sume that a camera, or objects in the scene, move or transform smoothly while
the lighting condition changes only a little within a short time interval. Then,
each scene point will exhibit constant albedo but smoothly (and slowly) varying
shading over the video sequence. We use these insights to formulate new priors
for intrinsic video estimation. Of course, these assumptions are sometimes vio-
lated (e.g., by cast shadows) and we address this below using a robust statistical
formulation.

Note also that if pixel values change over time, they violate the assumption of
brightness constancy often used in the computation of optical flow [15]. This can
cause optical flow algorithms to fail unless they are made robust to such changes
[7]. Since albedo is constant, however, we show that it can be used to more
accurately estimate optical flow (cf. [10]). We thus suggest that intrinsic video
provides a framework for combining optical flow and intrinsic image estimation
in a mutually beneficial way.

Specifically, our intrinsic video method uses optical flow to establish a tempo-
ral constancy term for albedo and a temporal smoothness term for shading. Our
spatial priors on albedo are similar to those suggested in [4]; these encourage the
estimated albedo to be sparse and uniformly smooth. We develop a non-local
spatial prior on shading that encourages spatial smoothness of the estimated
shading based on a median of local and non-local pixel neighbors. Optical flow
also provides us with information about the structure of the scene that we can
use to improve intrinsic image estimation from video. In estimating shading, we
use geometric information available in the flow, such as motion boundaries and
occlusion, to enhance the quality of the estimated shading images. The full so-
lution uses the Classic+NL flow algorithm [26] as a foundation and extends it
for intrinsic video estimation.

We show results on synthetic and real sequences with complex motions and
illumination change. Previous datasets for static intrinsic image evaluation are
not appropriate so we develop a new synthetic dataset that we make publicly
available. Both quantitatively on synthetic sequences, and qualitatively on real
sequences, we substantially outperform single-frame methods on the estimation
of albedo and shading.

2 Previous Work

A classic approach to constrain albedo and shading estimation from a single
image is based on the Retinex theory [19], which says that albedo edges tend
to be stronger than shading edges. Its usefulness was first proved in [16]. The
performance of Retinex-based algorithms depends on correct labeling of albedo
and shading edges. Learning-based approaches automatically determine this la-
beling [6, 28], or directly predict shading edges [27]. Grosse et al. [13] conduct
a quantitative analysis using their ground truth dataset and find that Retinex-
based approaches perform well (in 2009). The dataset, however, contains static
images of single segmented objects.
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Recent Retinex-based algorithms add more constraints on albedo or shading.
Bousseau et al. [8] require a small number of user-labeled albedo and shading
pixels. In [25] and [24], non-local texture cues or a local continuity assumption on
albedo are used, respectively. Gehler et al. [12] develop a probabilistic model and
add a new global sparsity prior on albedo that models natural image statistics.

Intrinsic images are related to the physics of image formation. Barron and
Malik [2, 3] exploit the physics by explicitly modeling the shape and lighting
that generate shading. Their shape priors, however, cannot model a whole scene
involving multiple objects and surface discontinuities. This limits their scope to
single objects, pre-segmented from the single image. Their extension in [4] jointly
estimates several depths and lights given depth constraints and estimated depths
(e.g. from a range scanner). In [11], shading estimation is constrained by rely-
ing on surface points reconstructed from given depth. Current depth sensors are
still noisy, however, and for archival images and videos, no explicit depth infor-
mation exists. Scene structure, however, is implicit in an RGB video sequence
and we show that the optical flow already contains enough approximate geomet-
ric information to estimate albedo and shading in scenes with multiple objects.
In particular, optical flow allows us to extract occlusion regions and putative
surface boundaries. We exploit these in estimating piecewise-smooth shading.

Lee et al. [20] extract intrinsic images from an RGB-D video. Their tempo-
ral constraints are mainly built upon pixel correspondences obtained from 3D
coordinates reconstructed with depth. Laffont et al. [17, 18] used a collection
of photographs that capture the same scene from different views under varying
illumination. These methods also need pixel correspondences including their nor-
mals across the photographs, which are obtained by applying multi-view stereo;
this assumes a rigid scene. Our approach uses optical flow instead, thus making
no strong assumption about the scene structure. By not assuming a rigid scene,
our intrinsic video method can deal with non-rigid and independently moving
objects. In addition, optical flow is useful for imposing image-based temporal
constraints, since it provides dense pixel correspondences at the image level.
Weiss [29] and Hauagge et al. [14] estimate a single albedo image from a series
of images of the same scene captured under significantly varying lighting con-
ditions. These methods do not work if anything in the scene moves or if there
is camera motion; each pixel in the image series should represent a single point
and contain as much light variation as possible.

Like us, Ye et al. [30] extract coherent intrinsic images from an RGB video.
They use optical flow to propagate an initial albedo decomposition of the first
frame over the video sequence. In contrast, our model comes from physical prop-
erties of visible surfaces under motion and illumination variation. We optimize
a full objective function containing both shading and albedo that integrates
priors on each, including the spatial albedo priors from [4], new temporal pri-
ors on albedo and shading in Section 3.2, and new spatial shading priors that
approximate object boundaries in Section 3.3. Using optical flow, the approach
integrates information throughout all frames in the video and extracts additional
intrinsic images related to occlusions and motion boundaries.
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3 Formulation

Given a sequence of images, {It}, we extract the intrinsic video sequence, {At, St},
of albedo and shading images at each time instant t. Unless otherwise specified,
and without loss of generality, all images are in the log domain. We recover the
intrinsic video sequence by minimizing this objective function

argmin
{At,St}

E({At, St} | {It}, {ut}) =∑
t

fD(At, St|It) + fTA
(At+1, At|ut) + fTS

(St+1, St|ut) + fA(At) + fS(St), (2)

where ut is the optical flow between input images It and It+1. This flow is
pre-computed from the input video using Classic+NL [26]. We assume that the
estimated flow establishes reasonably accurate pixel correspondences robust to
some illumination variation in the video.

The data term, fD(·), enforces similarity between the input and reconstructed
images (Section 3.1). The temporal coherence terms, fTA

(·) and fTS
(·), are pixel-

wise temporal constraints on albedo and shading, respectively (Section 3.2); the
formulation of these is one of our key novelties and goes beyond previous work.
The spatial terms, fS(·) and fA(·), are priors, based on the statistics of shading
and albedo, that constrain the solution (Section 3.3 and 3.4). Our spatial shading
prior exploits optical flow in a novel way. Note that we assume the illuminant
is white and thus shading is a grayscale image that has the same effect in each
RGB channel. While the images are RGB, we often drop the index over RGB
for clarity. Each term is described in detail below.

3.1 Image similarity

The Lambertian equation (1), in the log domain, defines the data term. It mea-
sures similarity between each input log-image and the reconstructed log-image:

fD(At, St) = λD
∑

c∈{R,G,B}

∑
x

ρD

(
wlum
t (x)(It(x, c)−At(x, c)− St(x))

)
, (3)

where x is pixel location, c is color channel, wlum(x) = lum(i(x))+ε, lum(i) takes
the luminance from the input intensity image i, and ε = 0.001. This weight has
been proven to be useful in [11] to prevent disproportionally strong contributions
of dark pixels. The function ρD(·) penalizes differences between the observed and
predicted log-images. To deal with violations of our assumptions, we use a robust
Charbonnier function ρCharb(x) =

√
x2 + ε2 (a differentiable variant of the L1

penalty [9]; ε = 0.001). The weight λD = 10 in all experiments.

3.2 Temporal constraints

Inspired by Barrow and Tenenbaum [5], we formulate the intrinsic video prob-
lem to exploit physical properties of albedo and shading on the visible surfaces
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Fig. 2. Five types of intrinsic images. The occlusion map wocc
ut

(Section 3.2) and the
boundary map wbnd

ut
(Section 3.3) are detected from optical flow. (a) Ground truth flow.

(b) wocc
ut

detected from (a). (c) wbnd
ut

detected from (a). (d) Ground truth albedo. (e)
Ground truth shading. (f) Estimated flow. (g) wocc

ut
detected from (f). (h) wbnd

ut
detected

from (f). (i) Albedo estimated using (f)-(h). (j) Shading estimated using (f)-(h).

under motion and illumination variation. Specifically, we assume that albedo is
typically constant over time while shading information changes slowly. Exploit-
ing these assumptions requires that we know the correspondence of pixels over
time. This is given by the optical flow, {ut}, over the sequence.

Temporal albedo constancy is defined as

fTA
(At, At+1) = λTA

∑
c∈{R,G,B}

∑
x

wocc
ut

(x) · ρTA

(
At+1(x + ut(x), c)−At(x, c)

)
, (4)

where At+1(x + ut(x)) represents the albedo warped by the optical flow and
wocc

ut
is a weight map computed from the optical flow that is 0 if the pixel is

occluded and 1 otherwise. This weight map is a type of intrinsic image that
disables temporal coherence of albedo at occlusion boundaries; see Fig. 2 (g).

The choice of penalty function, ρTA
, is critical. Although a pixel At(x) and

a warped pixel At+1(x + ut(x)) should have the same values theoretically, they
are in practice similar but not strictly equal due to aliasing and finite image
sampling. Also any errors in the optical flow could lead to errors in albedo
because the pixels do not correspond to the same physical location in the scene.
Consequently we adopt the smooth but robust Tukey function:

ρTA
(x) = ρTukey(x) =

{ 1
3 if x < −α or x > α

x2

α2 − x4

α4 + x6

3α6 otherwise,
(5)

where α = 5. This function is robust to various outliers caused by sampling,
brightness variation, complex motion, occlusion and noise; it is also differentiable.

Optical flow is by nature undetermined in an image region occluded in the
next image. The occlusion map wocc

ut
is useful to prevent minor image artifacts
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where the flow is not defined. We detect occlusions by using the difference of in-
put images and the divergence of the optical flow. We threshold this and exclude
pixels moving outside the image boundaries:

wocc
ut

(x) =

{
1, if o(x) ≥ 0.5 and x + u(x) stays inside the image
0, otherwise,

(6)

where

o(x) = exp

(
−

(iLabt (x)− iLabt+1(x + u))2

2σ2
e

−
d2ut

(x)

2σ2
d

)
, (7)

σd = 0.3, σe = 20, and iLab is the input image in the Lab space. dut is one-
sided divergence computed from the flow ut. A similar detection heuristic is
used in [23, 26] for disabling the spatial regularization of optical flow and works
well in our experiments.

Temporal shading similarity is defined as

fTS
(St, St+1) = λTS

∑
x

wocc
ut

(x) · ρTS

(
St+1(x + ut(x))− St(x)

)
, (8)

where the same Tukey function is used as ρTS
. We also tried a quadratic function,

but Tukey performed better. Here, we set λTS
much smaller than λTA

(λTA
= 10

and λTS
= 1) so that the shading term has less impact than the albedo term.

3.3 Spatial shading prior

Our spatial priors on shading encourage local and non-local smoothness of the
estimated shading image. One of our key contributions is to exploit optical flow
information in this spatial smoothness prior, resulting in a method that does
not require object segmentation or depth data. A similar idea is used to define
priors on optical flow in the Classic+NL method [26] and a slightly modified
formulation works well for enforcing shading smoothness. Note that optical flow
and shading information have some things in common. Both lack the high fre-
quency structure of image texture. Flow and shading are both related to surfaces
and change smoothly on smooth surfaces. They also are discontinuous at surface
boundaries. These similarities may explain why a spatial smoothness model for
flow works well for shading. Our shading term is

fS(St) = λSs

∑
x

∑
y∈N3(x)

ρS(St(x)− St(y))

+λSm

∑
x

wbnd
ut

(x) ·
∑

y∈Nnl(x)

wnl
ut

(x,y) |St(x)− St(y)| , (9)

where ρS is the Charbonnier as above. The weight map wbnd
ut

is another type of
intrinsic image computed from optical flow as shown in Fig. 2 (h); the value is 1
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(a) (b)

Fig. 3. Examples on the non-local weights defined in Eq. (10). (a) Weights computed
from ground truth flow. (b) Weights computed from estimated flow. In each of (a) and
(b), small boxes in the middle visualize 15 × 15 weights corresponding to the regions
marked on the left image, and the right image shows motion boundaries detected
from optical flow, visualized as 1 − wbnd

ut
. Note that the weight function stops spatial

propagation around the motion boundaries.

if the pixel is near a motion boundary and 0 otherwise. For this we use a simple
Sobel filter applied to ut and dilate the result to obtain the weight map wbnd

ut
.

N3 means a 3×3 window around each pixel to encourage local smoothness, while
Nnl is a non-local window of 15×15 pixels. Minimizing the non-local term, with
the L1 penalty, corresponds to computing a weighted median in the region Nnl

[21]. Note that we only take the weighted median near the motion boundaries by
using wbnd

ut
. While the non-local term improves results at boundaries, applying

it everywhere in the image produces over smoothing away from boundaries.

The spatially-varying weight wnl
ut

encodes information about motion bound-
aries, which serves as a proxy for surface boundaries. It is defined as follows:

wnl
ut

(x,y) = exp

(
−|x− y|2

2σ2
s

)
· surfut(x,y), (10)

where x is the center of a non-local (15×15) window, y is a pixel in the neighbor-
hood of x, and σs = 7. A binary function surfut depends on the flow field, ut, and
helps the weight function stop spatial propagation around motion boundaries. It
returns 1 at y if y and x stay within the same object region but 0 otherwise: we
segment the non-local region into two pieces using the motion boundary inside,
and assign 1’s to the piece that includes x and 0’s to the other. The non-local
weights are illustrated in Fig. 3.

The two weights in Eq. (9) play an important role in preventing over smooth-
ing at motion boundaries (and hence at object boundaries). Note that the weight
function used for flow estimation in [26] uses occlusion and color boundaries. For
shading, color boundaries are irrelevant and hence we use only motion bound-
aries. Note that there is no flow for the last frame in the sequence and there we
use only the local term; this works well thanks to the information propagated
from the previous frames. Other approaches could be used for smoothing with
discontinuities; for example, bilateral filtering [22]. In contrast, our approach
makes the intrinsic images for occlusions and boundaries explicit.
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3.4 Spatial albedo prior

To model the spatial variation of albedo we adopt the two relevant spatial priors
suggested in [2, 4]:

fA(At) = (11)

λAs

∑
x

∑
y∈N5(x)

[
− log

40∑
m=1

αm · N (At(x)−At(y); 0, σmΣ)

]

−λAp
log

 1

N2
√

4π · σ2
p

N∑
x

N∑
y

exp

(
−‖W(At(x)−At(y))‖22

4σ2
p

) , (12)

where At(x) defines an RGB vector at pixel x, αm is a mixture constant for
each multivariate Gaussian N (·) whose covariance matrix Σ is scaled by σm, W
is a whitening transform matrix to nullify dependency between color channels,
σp is a standard deviation, N is the number of pixels. The first term shares the
concept that underlies Retinex algorithms and encourages small spatial variation
of the estimated albedo image based on a multivariate Gaussian scale mixture.
The second term models global sparsity of albedo values as proposed in [12]. We
use the distribution parameters for these priors learned in [4].

4 Optimization

Traditional approaches optimize for either albedo or shading by assuming that
the Lambertian equation (1) is strictly satisfied. However, this assumption does
not always hold in practice and thus the solution may be biased to either albedo
or shading. Instead, we use the Lambertian equation as a soft constraint (Eq.
(3) in Section 3.1) and solve for both variables concurrently. The concurrent op-
timization is challenging, but our temporal coherence terms effectively constrain
the problem. To minimize our objective function, Eq. (2), we adopt a coarse to
fine pyramid-based approach and incremental update scheme similar in spirit to
the flow estimation method in [26]. Note that the objective function is defined
over the entire sequence (not individual frames).

Our new spatial shading prior (Eq. (9) in Section 3.3) is difficult to directly
optimize because of the non-local energy term. Instead, an auxiliary “coupling”
variable S̃t is introduced to assist minimization of the non-local median energy:

f ′S(St, S̃t) = λSs
gl(St) + λSm

gnl(S̃t) + λScpl

∑
x

wbnd
ut

(x)
∥∥∥St(x)− S̃t(x)

∥∥∥2 , (13)

where gl and gnl are the local and non-local terms in Eq. (9), respectively. The
quadratic term above encourages the estimated St and S̃t to be the same. We
found that λScpl

= 10 works well in our shading estimation problem, with λSs = 2

and λSm
= 10000. We alternate between minimizing St and S̃t as in [26]. More

details are given in the supplementary material.
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5 Experiments

We evaluate our intrinsic video estimation using three synthetic and three real
sequences that illustrate different types of the motion and illumination variation.
Due to limited space, we only show the first two frames of two sequences. Our
supplementary material1 includes data generation details and full results, in
addition to the optical flow, occlusion and boundary intrinsic images, which are
omitted here due to space. The computation time linearly increases with the
number of frames (2.2h for 8 frames on average). We use 7 to 9 frame sequences
here and, while shorter sequences can be used, we find that the quality improves
with more frames because information propagates over all frames.

We compare our results with a baseline color-Retinex algorithm in [13] (CRET)
and a more advanced Retinex-based method in [12] (GS). Note that both are
single-image methods. Existing non-Retinex-based single-image methods only
work with additional depth data [4, 11] or segmentation of each object [2, 3].
Our method deals with a general scene with multiple objects without depth in-
formation while making no assumption of rigidity. We obtained CRET results by
using the color-Retinex term in the implementation of GS. Our intrinsic video
method is denoted “IV”. The optical flow used by our method is computed from
the input video using Classic+NL [26] .

5.1 Synthetic examples

Figures 4 and 5 show two synthetic examples with different types of motion and
illumination variation. For each sequence we have ground truth values of albedo,
shading, optical flow and occlusion. The CRET and GS methods are applied to
each frame of the video independently.

As shown in (g)-(r) of the figures, both of CRET and GS put too much high-
frequency albedo information into the shading image, and the albedo changes
significantly from frame to frame. In contrast, our albedo image retains textural
details and the shading is piecewise smooth, mostly obeying object boundaries.
Our recovered albedo is consistent over time. One way to see this is by com-
puting the optical flow using the recovered albedo sequences from each method;
this is shown in (c)-(f) of the figures. We applied Classic+NL (using brightness
instead of texture decomposition), to each reconstructed albedo sequence and
the original images. This provides a measure of how temporally coherent the
albedo is; an albedo sequence with better temporal coherence will produce flow
images that look closer to the ground truth flow (uGT).

Quantitative analysis. In Fig. 6 (left), we measure the local mean squared
error (LMSE) [13] of the reconstructed albedo and shading images; this is a
standard error measure for evaluating intrinsic images. We calculate the LMSE
at each frame and average this over all frames, and then average this over all

1 http://ps.is.tuebingen.mpg.de/project/Intrinsic_Video
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(a) i1 (b) i2 (c) IV (d) CRET (e) GS (f) Original

(g) a1 (h) a2

(m) s1 (n) s1

(i) a1 (j) a2

(o) s1 (p) s2

(k) a1 (l) a2

(q) s1 (r) s2

IV CRET GS

GT:

(s) aGT
1 (t) aGT

2 (u) sGT
1 (v) sGT

2 (w) uGT

Fig. 4. Synthetic example in which a camera is freely moving and illumination varies
significantly over time. (a),(b) Two frames from the sequence. (c)-(e) Flow from the
albedo estimated from our method (IV), CRET and GS. (f) Flow from the original
images. (g)-(l) Albedo from IV, CRET and GS. (m)-(r) Shading from IV, CRET and
GS. (s)-(w) Ground truth albedo, shading and flow.

three synthetic examples. We ran IV with both the computed optical flow as
well as ground truth flow to evaluate the effect of flow errors on the solution.

Our reconstructed intrinsic images have smaller errors than the GS method:
13.3% with estimated flow and 14.5% with ground truth flow. Note that while
ground truth flow improves results slightly, the estimate flow works well. We
also disabled the temporal terms (IV w/o flow) to evaluate the importance of
motion. In this case we do not use the temporal terms or the motion-based spatial
smoothness weighting. More details are given in the supplemental material.

In Fig. 6 (right), we introduce a new temporal incoherence measure that as-
sesses how consistent the reconstructed albedo is over time. Optical flow methods
typically assume brightness constancy, which is violated if the illumination is in-
consistent over time. Since violations of constancy increase errors in optical flow,
the optical flow error provides a measure of how constant an albedo sequence
is in time. We compute EPE (averaged end-point-error) [1] of the estimated
flow (using estimated albedo sequences) compared with the ground truth flow
and then average this over the three synthetic examples. Our albedo sequence
is significantly more coherent (lower EPE) than the albedo estimated by previ-
ous methods. In addition, note that the flow computed from our albedo is more
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(a) i1 (b) i2 (c) IV (d) CRET (e) GS (f) Original

(g) a1 (h) a2

(m) s1 (n) s1

(i) a1 (j) a2

(o) s1 (p) s2

(k) a1 (l) a2

(q) s1 (r) s2

IV CRET GS

GT:

(s) aGT
1 (t) aGT

2 (u) sGT
1 (v) sGT

2 (w) uGT

Fig. 5. Synthetic example in which all objects in the scene are moving while the camera
translates. Illumination does not change much in this case. (a),(b) Two frames from
the sequence. (c)-(e) Flow from the albedo estimated from our method (IV), CRET
and GS. (f) Flow from the original images. (g)-(l) Albedo from IV, CRET and GS.
(m)-(r) Shading from IV, CRET and GS. (s)-(w) Ground truth albedo, shading and
flow.

accurate than the flow computed from the original images. The illumination
changes in the original images violate brightness constancy. This result suggests
that intrinsic video may be useful to improve optical flow estimation.

5.2 Real examples

Figures 7 and 8 show two of our real examples. We captured real videos by se-
rially taking photographs with a flashlight or static lighting. The real sequences
involve different types of motion and illumination variation, corresponding to
those in the synthetic examples. The results are consistent with those on syn-
thetic sequences. As shown in (g)-(r) of the figures, our method significantly
outperforms the previous methods. The shading from previous methods carries
a lot of albedo information, but our shading sequence has few albedo details and
well captures the overall shape of the scene with clean boundaries. The previous
methods sometimes almost completely miss the shape of the scene in their shad-
ing images and the albedo is overall inconsistent between frames. While there
is no ground true flow for this sequence, our reconstructed albedo produces less
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Fig. 6. Quantitative analysis. Left: LMSEs of the estimated albedo and shading. Our
method produces lower errors than CRET and GS. IV uses estimated flow for the tem-
poral coherence terms. IV performs better than without using the temporal terms (IV
w/o flow), and works even better using ground truth flow (IV w/ GT flow). Right:
EPE (our temporal incoherence measure) of the ground truth albedo sequence (base-
line), the albedo sequence estimated by IV (ours), the albedo sequence estimated by
GS, the albedo sequence estimated by CRET, and the original video. Our albedo shows
better coherence than that from CRET and GS. We measured EPE with and without
masking ground truth occlusion areas.

noisy flow fields, suggesting that our albedo has better temporal coherence than
the others as illustrated in (c)-(f) of the figures.

6 Conclusions and Future Work

We have introduced the idea of intrinsic video and an algorithm for extracting it
automatically from video alone. Experiments with real and synthetic sequences
demonstrate that our method generates accurate and temporally coherent albedo
and shading, even from videos with non-rigid motion and illumination change.
Key to our formulation is the assumption that albedo is mostly constant over
time, while shading changes slowly. Optical flow provides the correspondence
across time that we exploit to enforce novel temporal constraints on albedo and
shading. Our experiments show that these temporal constraints significantly
improve albedo and shading estimation. In addition to providing temporal con-
tinuity, optical flow gives us information about occlusion and putative surface
boundaries; these intrinsic images are important for estimating accurate albedo
and spatially coherent shading that is not blurred between objects. As a result
of incorporating optical flow, our method works for general scenes, with multiple
objects, without need of additional depth data or object segmentation.

According to our incoherence measure, intrinsic video may be useful for op-
tical flow estimation because the resulting albedo sequences obey brightness
constancy. Beyond our current work, we believe that integration of the intrinsic
video and optical flow problems may produce better results for both. This work
provides a new direction for research on both problems. As future work, we will
explore the simultaneous estimation of both intrinsic video and optical flow.
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(a) i1 (b) i2 (c) IV (d) CRET (e) GS (f) Original

(g) a1 (h) a2
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(o) s1 (p) s2

(k) a1 (l) a2

(q) s1 (r) s2

IV CRET GS

Fig. 7. Real example in which the input video captures a static outdoor scene with a
freely moving camera. A flashlight on top of the camera was used to vary illumination
over time fairly drastically. (a),(b) Two frames from the sequence. (c)-(e) Flow from
the albedo estimated from our method (IV), CRET and GS. (f) Flow from the original
images. (g)-(l) Albedo from IV, CRET and GS. (m)-(r) Shading from IV, CRET and
GS.

1

(a) i1 (b) i2 (c) IV (d) CRET (e) GS (f) Original

(g) a1 (h) a2

(m) s1 (n) s1

(i) a1 (j) a2

(o) s1 (p) s2

(k) a1 (l) a2

(q) s1 (r) s2

IV CRET GS

Fig. 8. Real example in which all objects continuously move but the background stays
still. The camera and light sources are fixed. (a),(b) Two frames from the sequence.
(c)-(e) Flow from the albedo estimated from our method (IV), CRET and GS. (f) Flow
from the original images. (g)-(l) Albedo from IV, CRET and GS. (m)-(r) Shading from
IV, CRET and GS.
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