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fa) XBOX 360

 Depth sensing camera
)l * Tracks 20 body joints in real time
* Recognises your face and voice

Kinect Adventures
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Trial of "touchless" gaming technology in
surgery

By Adam Brimelow
Health Correspondent, BBC News

Doctors in London are trialling "touchless"
technology, often used in TV games, to help
them carry out delicate keyhole surgery.

The system allows them to manipulate images
with their voice and hand-gestures rather than
using a keyboard and mouse

Surgeons say it gives them more control and

avoids disruption - .
The technology could be a valuable aid to sugery

Home us World Politics Business Sports Entertainment Health Tech

Child with autism connects
with Kinect

When Kyle's father got Xbox's motion control system, he had no idea it would be a breakthrough
for his boy

Print | Font: (AA + =

John Yan reviews games for a site called Gaming Nexus, so despite his initial lack of
enthusiasm in the Xbox 360 Kinect motion controller, he knew he'd have to buy one

when they came out. After all, it wouldn't be fair to dump all the Kinect reviews on

Andrea Fossati
Juergen Gall

Helmut Grabner
Xiaofeng Ren

Kurt Konolige Editors

Consumer
Depth Cameras

for Computer Vision

Research Topics and Applications

A Springer




What the Kinect Sees

top view

7
e

depth image
(camera view)

side view



Structured light

object at
depth d,

object at
depth d,

imaging
plane

optic centre
of IR laser

optic centre
of camera

baseline



Depth Makes Vision That Little Bit Easier

RGB

X

Only works well lit

Background clutter

Scale unknown

Color and texture variation

DEPTH

Works in low light

Background removal easier

Calibrated depth readings

Uniform texture







KINECT

Joint work with Shahram Izadi, Richard Newcombe, David Kim, Otmar Hilliges, David Molyneaux, Pushmeet
Kohli, Steve Hodges,Andrew Davison,Andrew Fitzgibbon. SIGGRAPH, UIST and ISMAR 201 1.



KINECTFusion

Camera drift



ROADMAP

THE VITRUVIAN MANIFOLD SCENE COORDINATE REGRESSION
[CVPR 2012] [CVPR 2013]



THE VITRUVIAN MANIFOLD

" [
Jonathan Taylor Jamie Shotton Toby Sharp Andrew Fitzgibbon

CVPR 2012



Human Pose Estimation

Given some image input, recover the 3D human pose:

Joint positions and angles

In this work:
* Single frame at a time (no tracking)
* Kinect depth image as input (background removed)
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A Few Approaches

Regress directly to pose?
e.g. [Gavrila’00] [Agarwal & Triggs '04]

Detect and assemble parts?
e.g. [Felzenszwalb & Huttenlocher '00] [Ramanan & Forsyth 03] [Sigal et al. '04]

Detect parts?
e.g. [Bourdev & Malik ‘09] [Plagemann et al. ‘10] [Kalogerakis et al. ‘10]

Per-Pixel Body Part Classification Per-Pixel Joint Offset Regression
[Shotton et al. ‘11] [Girshick et al. ‘11]




Background: Learning Body Parts for Kinect

body joint hypotheses

input depth image body parts

\ o g\ =

[Shotton et al. CVPR 2011]

front view

side view

top view
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Synthetic Training Data

Record mocap
100,000s of poses

DN

J

Retarget to varied body shapes

Render (depth body parts) pairs

ﬂﬁ‘ 5 i ‘T““

Train invariance to:

O M b [Ty




Depth Image Features

 Depth comparisons
— very fast to compute

offset depth offset depth

A A

feature fix; v) =d(x) — ;l(x + AS

response o
image coordinate

_V
T d()

W—/
scales inversely with depth

A

Background pixels
d = large constant




Decision tree classification

image window
centred at x

f(x; vy) > 0,

f(x; v3) > 0;

R LN T |



Training Decision Trees [Breiman et al. 84]

‘ _ for all
Ful©) [“""" o {x} pixels
body part ¢ fix;v,)>0,
no es

P.(0)|

*
*
*
*
*
*

C

Pi(0)] I |

c
'0
’0

Take (v, 0) that maximises

information gain: Goal: drive entropy
S| S| at leaf nodes
AE = == EG) =51 EGr) to zero
N |Sn|
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P e Decision Forests Book
Decision Forests for  Theory — Tutorial & Reference
Computer Vision * Practice — Invited Chapters
and Medical Image * Software and Exercises

Analysis * Tricks of the Trade

@ Springer




input depth inferred body parts

no tracking or smoothing



input depth image

body parts

body joint hypotheses

front view

side view

top view



input depth inferred body parts

front view side view
inferred joint position hypotheses

top view

no tracking or smoothing



Body Part Recognition in Kinect

KINECT

i Skeleton does not explain the depth data
= LU/ * Limited ability to cope with hard poses



http://2.bp.blogspot.com/_NcSxbK86vWU/TBuoPqPOmEI/AAAAAAAAAuQ/H9WU3IAnbVg/s1600/kinect_001.png

A few approaches

Explain the data directly with a mesh model
[Ballan et al. ‘08] [Baak et al. ‘11]

* GOOD: Full skeleton

* GOOD: Kinematic constraints enforced from the outset
* GOOD: Able to cope with occlusion and cropping

* BAD: Many local minima

e BAD:  Highly sensitive to initial guess

* BAD: Potentially slow




Human Skeleton Model v Rl_arm(g?

Mesh is attached to a hierarchical skeleton

Each limb [ has a transformation matrix T;(6)
relating its local coordinate system to the world:

Rglobal(g)
Troot(e) = Rglobal(g)

Ty (9) — Iparent(l) (Q)Rl (9)

Rg10ba1 (0) encodes a global scaling, translation and rotation
R;(0) encodes a rotation and fixed translation relative to its parent
13 parameterized joints @ using quaternions to represent unconstrained rotations

This gives @ atotalof 1 + 3+ 4 + 4 * 13 = 60 degrees of freedom



Linear Blend Skinning

Each vertex u J

* has position p in base pose 0,
* is attached to K limbs {I;,}X_, with weights {a; }K_;

In a new pose 6, the skinned position 1 of is:

K

M(u;0) = Z a,Ty, (H)lel(eo)p Mesh in base pose 6,
N J

k=1 g
position in limb /s
coordinate system

\ J
Y

position in world coordinate system




Test Time Model Fitting

* Assume each observation x; is generated by a point on our model u;

Corresponding

Observed Points: x4, ..., Xy, Model Points: uy, ... uy,

X Ve )

\/ x; = M(uy; ?)

What pose is
the model in?

° Optlmlze Observedi Point Predicted 3D Point
mgn min d(x;, M(u;; 0))

ul ...un
l

Note: simplified energy - more details to come



Optimizing min min Zd(xi,M(ui;H))
6 Uq...Un .
L

* Alternating between pose ¢/ and correspondences 14, ... 1,
» Articulated Iterative Closest Point (ICP)

* Traditionally, start from initial ¢
* manual initialization
* track from previous frame

* Could we instead infer initial correspondences 1.4, ... 1,, discriminatively?
e And, do we even need to iterate?



One-Shot Pose Estimation: An Early Result

Can we achieve a good result without iterating
between pose ¢ and correspondences 1.4, ... U, ?

/

test ground truth convergence
depth image correspondences visualization



From Body Parts to Dense Correspondences

increasing number of parts

~

4—-’ Pm

classification regression

Body Parts The “Vitruvian Manifold”

i 5

Texture is mapped across body shapes and poses




The “Vitruvian Manifold” Embedding in 3D

u=-1 u=1

v=1

v=-1 —

Geodesic surface distances
approximated by Euclidean distance

n——

-1 [L. Da Vinci, 1487]
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regression forest

Overview

inferred dense
correspondences

» ‘ »

» »

energy
function

optimization of
model parameters 6

final optimized
poses

R 4
1

»

|
.

front right top



Discriminative Model: Predicting Correspondences

5 |

regression forest

» ks »

Mm i
-: ?ﬁf

training
images

—
> —a.

input inferred dense
images correspondences



Learning the Correspondences

* How to learn the mapping from depth pixels to correspondences?

* Train regression forest



..s"‘w : -
Each pixel-correspondence pair
n descends to a leaf in the tree
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Learning a Regression Model
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< mean shift
2 o mode detection
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Inferring Correspondences
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optimize parameters

mgn E6,U)



Full Energy

E(Q» U) = AViSEViS (9: U) + ApriorEprior(‘g) + AintEint(H)

p(e)
* Term E,. approximates hidden surface removal and uses robust error \r

* Gaussian prior term E ; ih E]L\ Jj\ Kb
{ & \& ©

e Self-intersection prior term E. . approximates interior volume

nt (000 © (b0

Energy is robust to noisy correspondences
* Correspondences far from their image points are “ignored”

* Correspondences facing away from the camera are “ignored”
* avoids model getting stuck in front of the image pixels



Depth Image Model Convergence View
Front

XX
Predicted Inferred Skeleton and
Correspondences Ground Truth Joints



Depth Image

Predicted
Correspondences

Model Convergence View
Side

Inferred Skeleton and
Ground Truth Joints

Top



“Easy” Metric: Average Joint Accuracy

100%

90% /
80%

N A4
60%

w | ]/
[/ /

Joints average accuracy

/
40%
30% ' / /

(% joints within distance D)

——Qur algorithm

o | ]/
w1/

—=Given GT U
W —Qptimal ¢
0% T T T 1
0 0.05 0.1 0.15

Results on 5000 synthetic images

D: max allowed distance to GT (m)

0.2



100%
Hard Metric: . Y
“Perfect” Frame Accuracy 20% /

70% /

60%

50% /

40% /

30% / /

20% l / ——Qur algorithm
—=@Given GT U

- / / / —Optimal g

0% - , | |

0 0.05 0.1 0.15 0.2 0.25 0.3
D: max allowed distance to GT (m)

)

\

Worst-case accuracy
(% frames with all joints within dist. D)

Results on 5000
synthetic images

AR

D: 0.09m 0.11m 0.17m

0.45m



Comparison

70% - === \/itruvian Manifold

= [Shotton et al. '11] (top hypothesis)

60% - —
° - [Girshick et al. 11] (top hypothesis)

Q
"
2
T
£ !
= |
5 3 . ««+s<[Shotton et al. '11] (best of top 5) !
8 ﬂ 50%) T I
® E | eeees [Girshick et al. '11] (best of top 5) '
o O /
wn = |
8 E 40% |
b .
g £ Require an oracle
= 2 30%
]
£
S 20% } Achievable algorithms
®
10%
0% . .
0 0.05 0.1 0.15 0.2 0.25 0.3

D: max allowed distance to GT (m)

Results on 5000 synthetic images



Sequence Result

Depth Image Predicted Correspondences

Each frame fit independently: no temporal information used

M ] -
| |

Front Side Top
Inferred Skeleton



Depth Image Predicted Correspondences

»

.‘ -
AY q
» 'I

Note that the algorithm fits the character with strongest signal in each frame.

Q7

Front Side Top
Inferred Skeleton



Generalization to Multiple 3D/2D Views

* Easily extended to Q views where each view has
— n, correspondences per view

— viewing matrix P, to register the scene

* Can also extend to 2D silhouette views
— let data points x;;, be 2D image coordinates

— let F, include a projection to 2D

— minimize re-projection error }

Q Ng %
: d iqr P.M i 1 0 _*I __
mé}nqz:;zi: (xig, Py (uq ) Fl‘ ri ltei



Worst case accuracy
(% frames with all joints within dist. D)

o
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w
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©
[N

Silhouette Experiment

-7 silhouette views

—3 silhouette views

-5 silhouette views
-=-1 depth view

==-2 depth views

-=-5 depth views

- e

-
-
——

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
D: max allowed distance to GT (m)



Vitruvian Manifold: Summary

* Predict per-pixel image-to-model correspondences

— train invariance to body shape, size, and pose

* “One-shot” pose estimation

— fast, accurate

— auto-initializes using correspondences

|
5
:
. f
.
f i
Y



SCENE COORDINATE REGRESSION FORESTS
FOR CAMERA RELOCALIZATION IN RGB-D IMAGES

JAMIE SHOTTON  BEN GLOCKER ~ CHRISTOPHER ZACH SHAHRAM IZADI  ANTONIO CRIMINISI  ANDREW FITZGIBBON
[CVPR 2013]




Know this

Observe this

Input RGB

Where is this?

A world scene

fa) XBOX 360

Input depth

Single RGB-D frame

6D camera pose, H
(camera to scene transformation)




APPLICATIONS

= | ost or kidnapped robots

" [mproving KinectFusion

= Augmented reality




TYPICAL APPROACHES TO CAMERA LOCALIZATION

= Tracking — alignment relative to previous frame e.g. [Besl & MacKay ‘92]

= Key point detection — local descriptors — matching — geometric verification
e.g. [Holzer et al.’1 2], [Winder & Brown ‘07], [Lepetit & Fua ‘06], [Irschara et al.‘09]

precise

" Whole key-frame matching e.g. [Klein & Murray 2008] [Gee & Mayol-Cuevas 2012]

approximate
= Epitomic location recognition [Ni et al. 2009]



PROBLEMS IN REALWORLD CAMERA LOCALIZATION

= The real world is less exciting than vision researchers might like

> sparse interest points can fail

= The real world is big



KEY IDEA: SCENE COORDINATE REGRESSION

Scene coordinate XYZ
&

RGB color space




KEY IDEA: SCENE COORDINATE REGRESSION

= | et each pixel predict direct correspondence
to 3D point in scene coordinates:

Scene coordinate XYZ <> RGB color space

i 3D model from KinectFusion
Input RGB  Input Depth Desired Correspondences (only used for visualization)



SCENE COORDINATE REGRESSION

= Offline approach to relocalization P

® observe a scene

" train a regression forest

® revisit the scene

= Aim for really precise localization
= e.g. suitable for AR overlays
= from a single frame

= without an explicit 3D model

[Bunny: Stanford]



SCENE COORDINATE REGRESSION (SCORE) FORESTS

SCoRe Forest

Depth & RGB

tree | P
features

e = 0 (et g) -2 (4 5 )
G - (o) 1o

Leaf Predictions  M; c R3

Forest Predictions M (p) = U Mlt(p)
t



TRAINING A SCORE FOREST

Training Data Learning (standard)
= RGB-D frames with known camera poses H = Greedily train tree
= Generate 3D pixel labels automatically: = Reduction in spatial variance objective:
m = Hx
S4(0
Asn0=vs) - Y Puly s

de{L,R} [Snl

. 1 _
with V(S):E Z m — m||3

(p,m)eS

= Regression, not classification

Mean shift to summarize distribution
at leaf [ into small set M; ¢ R3

{m}



ROBUST CAMERA POSE OPTIMIZATION

Energy Function

E(H)=Zp<

1€l

min

mec M

_Hm—Hx?:Hz)

Optimization
= Preemptive RANSAC
[Nister ICCV 2003]

= With pose refinement
[Chum et al. DAGM 2003]

= efficient updates to means & covariances
used by Kabsch SVD

= Only a small subset of pixels used



INLYING FOREST PREDICTIONS

.

Ground truth  Inferred

Test images Inliers for six hypotheses Camera pose



PREEMPTIVE RANSAC OPTIMIZATION




THE 7SCENES DATASET

RedKitchen
Spatial # Frames

Scene Extent Train  Test
Chess 3m® 4k 2k
Fire 4m3 2k 2k
Heads 2m?3 1k 1k
Office 5.5m3 6k 4k
Pumpkin 6m° 4k 2k
RedKitchen 6m> 7K 5k
Stairs 5m3 2k 1k

Dataset available from authors




BASELINES FOR COMPARISON

Sparse Key-Points (RGB only) Tiny-Image Key-Frames (RGB & Depth)

= ORB matching = Downsample to 40x30 pixels
[Rublee et al. ICCV 201 []

= FAST detector

= Blur

®= Normalized Euclidean distance

= Rotation aware BRIEF descriptor
= Brute-force search
= Hashing for matching
" |nterpolation of 100 closest poses
= Geometric verification

= RANSAC & perspective 3 point [Klein & Murray ECCV 2008]

[Gee & Mayol-Cuevas BMVC 2012]

= Final refinement given inliers



QUANTITATIVE COMPARISON

Metric:

Proportion of test frames with < 0.05m translational error and < 5° angular error

Results:

Baselines Our Results

Scene || Tiny-image RGB-D  Sparse RGB | Depth DA-RGB DA-RGB + D
Chess 0.0% 70.7% 82.7% 92.6 % 91.5%
Fire 0.5% 49.9% 44.7% 82.9% 74.7%
Heads 0.0% 67.6 % 27.0% 49.4% 46.8%
Office 0.0% 36.6% 65.5% 74.9% 79.1%
Pumpkin 0.0% 21.3% 58.6% 73.7 % 72.7%
RedKitchen 0.0% 29.8% 61.3% 71.8% 72.9 %
Stairs 0.0% 9.2% 12.2% 27.8% 24.4%

Choice of different image features



QUALITATIVE COMPARISON

ground truth  DA-RGB SCoRe forest  sparse baseline




ground truth  DA-RGB SCoRe forest  sparse baseline




TRACKVISUALIZATION VIDEOS

ground truth
DA-RGB SCoRe forest

RGB sparse baseline

single frame at a time — no tracking



AR VISUALIZATION

RGB input depth input rendering of model
+ AR overlay + AR overlay from inferred pose

[Bunny: Stanford]

single frame at a time — no tracking



SIMPLE ROBUST TRACKING

= Add a single extra hypothesis to optimization: the result from previous frame

Our Results Frame-to-Frame

Scene || Depth DA-RGB DA-RGB+D Tracking
Chess || 82.7% 92.6 % 91.5% 95.5%
Fire || 44.7% 82.9% 74.7% 86.2%
Heads || 27.0% 49.4% 46.8% 50.7%
Office || 65.5% 74.9% 79.1% 86.8%
Pumpkin || 58.6% 73.7% 72.7% 76.1%
RedKitchen || 61.3% 71.8% 72.9 % 82.4%
Stairs 12.2% 27.8% 24.4% 39.2%

Single frame




AR VISUALIZATION WITH TRACKING

RGB input depth input rendering of model
+ AR overlay + AR overlay from inferred pose

[Bunny: Stanford]

simple robust frame-to-frame tracking enabled



Proportion of frames correct

MODEL-BASED REFINEMENT

" Model-based refinement [Besl & McKay PAMI 1992]

= requires 3D model of scene
® run rigid ICP from our inferred pose between observed image and model

100% Baseline: Tiny-Image Depth

80% W Baseline: Tiny-Image RGB
60% B Baseline: Tiny-Image RGB-D
40% Baseline: Sparse RGB
20% II | W Ours: Depth

0% B Ours: DA-RGB

Chess Fire Heads Office Pumpkin RedKitchen  Stairs B Ours: DA-RGB + D



AR VISUALIZATION WITH TRACKING AND REFINEMENT

RGB input depth input rendering of model
+ AR overlay + AR overlay from inferred pose

[Bunny: Stanford]

simple robust frame-to-frame tracking and ICP-based model refinement enabled



RGB input depth input rendering of model
+ AR overlay + AR overlay from inferred pose

Fire Scene

SCoRe Forest
(single frame at a time)

SCoRe Forest
+

simple robust
frame-to-frame tracking

SCoRe Forest
+

simple robust

frame-to-frame tracking
+

ICP refinement to 3D model

[Bunny: Stanford]




RGB input depth input rendering of model
+ AR overlay | + AR overlay from inferred pose

Pumpkin Scene o«

“ o

SCoRe Forest
(single frame at a time)

SCoRe Forest
+

simple robust
frame-to-frame tracking

SCoRe Forest
+

simple robust

frame-to-frame tracking
+

ICP refinement to 3D model

[Bunny, Armadillo: Stanford]




SCENE RECOGNITION

® Train one SCoRe Forest per scene

Heads
Office
Pumpkin
RedKitchen

Chess
Fire
Stairs

= Test frame against all scenes

®41s8Y1100.0%

Fire| 2.0%
= Scene with lowest energy wins Heads

Office

0.5% 4.0%

= Single frame only Pumpkin

RedKitchen| 28% 1.2% 3.6%
Stairs 10.0%




SCENE COORDINATE REGRESSION - SUMMARY

= Scene coordinate regression forests
" provide a single-step alternative to detection/description/matching pipeline
= can be applied at any valid pixel, not just at interest points

= allow accurate relocalization without explicit 3D model

= Tracking-by-detection is approaching temporal tracking accuracy



WRAP UP

® Depth cameras are having huge impact

= Decision forests + big data

Unifying principal:

Per-pixel regression and per-image model fitting
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