
DEPTH, HUMAN POSE, AND CAMERA POSE
JAMIE SHOTTON



Kinect Adventures

• Depth sensing camera

• Tracks 20 body joints in real time

• Recognises your face and voice





top view

side view

depth image
(camera view)

What the Kinect Sees



Structured light

x

y
z

baseline

imaging
plane

optic centre
of camera

optic centre
of IR laser

object at
depth d1

object at
depth d2



Depth Makes Vision That Little Bit Easier

RGB

 Only works well lit

 Background clutter

 Scale unknown

 Color and texture variation

DEPTH

 Works in low light

 Background removal easier

 Calibrated depth readings

 Uniform texture





Joint work with Shahram Izadi, Richard Newcombe, David Kim, Otmar Hilliges, David Molyneaux, Pushmeet 

Kohli, Steve Hodges, Andrew Davison, Andrew Fitzgibbon.       SIGGRAPH, UIST and ISMAR 2011.
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ROADMAP

THEVITRUVIAN MANIFOLD

[CVPR 2012]

SCENE COORDINATE REGRESSION

[CVPR 2013]



THE VITRUVIAN MANIFOLD

Jonathan Taylor Jamie Shotton Toby Sharp Andrew Fitzgibbon

CVPR 2012



Human Pose Estimation

In this work:

• Single frame at a time (no tracking)

• Kinect depth image as input (background removed)

Given some image input, recover the 3D human pose:

Joint positions and angles



Why is Pose Estimation Hard?



A Few Approaches

Regress directly to pose?
e.g. [Gavrila ’00] [Agarwal & Triggs ’04]

Per-Pixel Body Part Classification
[Shotton et al. ‘11]

Per-Pixel Joint Offset Regression
[Girshick et al. ‘11]

Detect and assemble parts?
e.g. [Felzenszwalb & Huttenlocher ’00] [Ramanan & Forsyth ’03] [Sigal et al. ’04]

Detect parts?
e.g. [Bourdev & Malik ‘09] [Plagemann et al. ‘10] [Kalogerakis et al. ‘10] 



body joint hypotheses

front view side view top view

input depth image body parts

BPC Clustering

Background: Learning Body Parts for Kinect

[Shotton et al. CVPR 2011]



Synthetic Training Data

Train invariance to:

Record mocap
100,000s of poses

Retarget to varied body shapes

Render (depth, body parts) pairs 

[Vicon]



Depth Image Features

• Depth comparisons

– very fast to compute

input
depth
image

x
Δ

x
Δ

x
Δ
x

Δ

x

Δ

x

Δ

f(x; v) = 𝑑 x − 𝑑(x+ Δ)

offset depth

image coordinate

offset depth

feature
response

Background pixels
d = large constant

scales inversely with depth

Δ =
𝐯

𝑑 x



Decision tree classification

image window
centred at x

no

no yes

yes

P(c)P(c)

f(x; v1) > θ1

f(x; v2) > θ2

no yes

P(c)P(c)

f(x; v3) > θ3



Training Decision Trees

Sn =   x

f(x; vn) > θn

no yes

c

Pr(c)

body part c

Pn(c)

c

Pl(c)

Take (v, θ) that maximises
information gain:

n

l r

Goal: drive entropy
at leaf nodes
to zero

reduce
entropy

[Breiman et al. 84]

for all 
pixels

Δ𝐸 = −
𝑆l
𝑆𝑛
𝐸(Sl) −
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𝑆𝑛
𝐸(Sr)



Decision Forests Book

• Theory – Tutorial & Reference

• Practice – Invited Chapters

• Software and Exercises

• Tricks of the Trade



input depth inferred body parts

no tracking or smoothing



body joint hypotheses

front view side view top view

input depth image body parts

BPC Clustering



front view top viewside view

input depth inferred body parts

inferred joint position hypotheses
no tracking or smoothing



Single frame at a time –> robust

Large training corpus -> invariant

Fast, parallel implementation

Skeleton does not explain the depth data
Limited ability to cope with hard poses

Body Part Recognition in Kinect

http://2.bp.blogspot.com/_NcSxbK86vWU/TBuoPqPOmEI/AAAAAAAAAuQ/H9WU3IAnbVg/s1600/kinect_001.png


Explain the data directly with a mesh model
[Ballan et al. ‘08] [Baak et al. ‘11]

• GOOD: Full skeleton
• GOOD: Kinematic constraints enforced from the outset
• GOOD: Able to cope with occlusion and cropping
• BAD: Many local minima
• BAD: Highly sensitive to initial guess
• BAD: Potentially slow

A few approaches



𝑅l_arm(𝜃)

• Mesh is attached to a hierarchical skeleton

• Each limb 𝑙 has a transformation matrix 𝑇𝑙 𝜃
relating its local coordinate system to the world:

• 𝑅global(𝜃) encodes a global scaling, translation and rotation

• 𝑅𝑙(𝜃) encodes a rotation and fixed translation relative to its parent

• 13 parameterized joints          using quaternions to represent unconstrained rotations

• This gives 𝜃 a total of 1 + 3 + 4 + 4 ∗ 13 = 60 degrees of freedom

𝑅global(𝜃)
𝑇root 𝜃 = 𝑅global(𝜃)

𝑇𝑙 𝜃 = 𝑇parent 𝑙 𝜃 𝑅𝑙(𝜃)

Human Skeleton Model



Linear Blend Skinning

𝑀 𝑢; 𝜃 =  

𝑘=1

𝐾

𝛼𝑘𝑇𝑙𝑘 𝜃 𝑇𝑙𝑘
−1 𝜃0 𝑝

Each vertex 𝑢

• has position 𝑝 in base pose 𝜃0
• is attached to K limbs 𝑙𝑘 𝑘=1

𝐾 with weights 𝛼𝑘 𝑘=1
𝐾

In a new pose 𝜃, the skinned position 𝑢 of is:

Mesh in base pose 𝜃0

position in limb lk’s
coordinate system

position in world coordinate system



min
𝜃
min
𝑢1…𝑢𝑛
 

𝑖

𝑑(𝑥𝑖 , 𝑀 𝑢𝑖; 𝜃 )

Test Time Model Fitting
• Assume each observation 𝑥𝑖 is generated by a point on our model 𝑢𝑖

𝑥𝑖 = 𝑀 𝑢𝑖; 𝜃

What pose is
the model in?

Observed 3D Point Predicted 3D Point• Optimize:

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔
𝑀𝑜𝑑𝑒𝑙 𝑃𝑜𝑖𝑛𝑡𝑠: 𝑢1, … 𝑢𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑖𝑛𝑡𝑠: 𝑥1, … , 𝑥𝑛

𝑥𝑖

Note: simplified energy - more details to come



Optimizing

• Alternating between pose 𝜃 and correspondences 𝑢1, … 𝑢𝑛
Articulated Iterative Closest Point (ICP)

• Traditionally, start from initial 𝜃

• manual initialization

• track from previous frame

• Could we instead infer initial correspondences 𝑢1, … 𝑢𝑛 discriminatively?

• And, do we even need to iterate?

min
𝜃
min
𝑢1…𝑢𝑛
 

𝑖

𝑑(𝑥𝑖 , 𝑀 𝑢𝑖; 𝜃 )



One-Shot Pose Estimation: An Early Result

Can we achieve a good result without iterating 
between pose 𝜃 and correspondences 𝑢1, … 𝑢n?

ground truth
correspondences

test
depth image

convergence
visualization



Texture is mapped across body shapes and poses

From Body Parts to Dense Correspondences

increasing number of parts

classification                            regression

The “Vitruvian Manifold”Body Parts



The “Vitruvian Manifold” Embedding in 3D

v = 1

v = -1

u = -1 u = 1

w = -1 [L. Da Vinci, 1487]

w = 1

Geodesic surface distances 
approximated by Euclidean distance



Overview

inferred dense 
correspondences

test
images

regression forest

…
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Discriminative Model: Predicting Correspondences

input
images

inferred dense 
correspondences

regression forest

…

training
images



Learning the Correspondences

• How to learn the mapping from depth pixels to correspondences?
𝑥𝑖

• Render synthetic training set:

render
characters

mocap

• Train regression forest



mean shift

mode detection

Each pixel-correspondence pair 
descends to a leaf in the tree

Learning a Regression Model 
at the Leaf Nodes



Inferring Correspondences



infer correspondences 𝑈

optimize parameters

min
𝜃
𝐸(𝜃, 𝑈)



Full Energy

• Term Evis approximates hidden surface removal and uses robust error

• Gaussian prior term Eprior

• Self-intersection prior term Eint approximates interior volume

𝐸 𝜃, 𝑈 =𝜆vis𝐸vis 𝜃, 𝑈 + 𝜆prior𝐸prior 𝜃 + 𝜆int𝐸int 𝜃

Energy is robust to noisy correspondences

• Correspondences far from their image points are “ignored”

• Correspondences facing away from the camera are “ignored”
• avoids model getting stuck in front of the image pixels

𝜌(𝑒)

𝑒 = 0

𝑐𝑠(𝜃0) 𝑐𝑡(𝜃0)







“Easy” Metric: Average Joint Accuracy
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Comparison
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[Shotton et al. '11] (top hypothesis)

[Girshick et al. 11] (top hypothesis)

[Shotton et al. '11] (best of top 5)

[Girshick et al. '11] (best of top 5)

Require an oracle

Achievable algorithms

Results on 5000 synthetic images

Vitruvian Manifold



Sequence Result

Each frame fit independently: no temporal information used





• Easily extended to Q views where each view has

– 𝑛𝑞 correspondences per view

– viewing matrix 𝑃𝑞 to register the scene

• Can also extend to 2D silhouette views

– let data points 𝑥𝑖𝑘 be 2D image coordinates

– let 𝑃𝑞 include a projection to 2D

– minimize re-projection error

Generalization to Multiple 3D/2D Views

min
𝜃
 

𝑞=1

𝑄

 

𝑖

𝑛𝑞

𝑑(𝑥𝑖𝑞 , 𝑃𝑞𝑀 𝑢𝑖𝑞; 𝜃 )
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Silhouette Experiment



Vitruvian Manifold: Summary

• Predict per-pixel image-to-model correspondences

– train invariance to body shape, size, and pose

• “One-shot” pose estimation

– fast, accurate

– auto-initializes using correspondences



SCENE COORDINATE REGRESSION FORESTS

FOR CAMERA RELOCALIZATION IN RGB-D IMAGES

JAMIE SHOTTON BEN GLOCKER CHRISTOPHER ZACH SHAHRAM IZADI ANTONIO CRIMINISI ANDREW FITZGIBBON

[CVPR 2013]



Know this

Observe this

Where is this?

6D camera pose, 𝐻
(camera to scene transformation)

Single RGB-D frame

A world scene



APPLICATIONS

 Lost or kidnapped robots

 Improving KinectFusion

 Augmented reality



TYPICAL APPROACHES TO CAMERA LOCALIZATION

 Tracking – alignment relative to previous frame  e.g. [Besl & MacKay ‘92]

 Key point detection → local descriptors → matching → geometric verification

e.g. [Holzer et al. ‘12], [Winder & Brown ‘07], [Lepetit & Fua ‘06], [Irschara et al. ‘09]

 Whole key-frame matching e.g. [Klein & Murray 2008] [Gee & Mayol-Cuevas 2012]

 Epitomic location recognition [Ni et al. 2009]
approximate

precise



PROBLEMS IN REAL WORLD CAMERA LOCALIZATION

 The real world is less exciting than vision researchers might like

 sparse interest points can fail

 The real world is big



?

!



KEY IDEA: SCENE COORDINATE REGRESSION

Scene coordinate XYZ



RGB color space



KEY IDEA: SCENE COORDINATE REGRESSION

 Let each pixel predict direct correspondence

to 3D point in scene coordinates:

A
B C

Input RGB Input Depth Desired Correspondences

A

B

C Scene coordinate XYZ  RGB color space

3D model from KinectFusion

(only used for visualization)



SCENE COORDINATE REGRESSION

 Offline approach to relocalization

 observe a scene

 train a regression forest

 revisit the scene

 Aim for really precise localization

 e.g. suitable for AR overlays

 from a single frame

 without an explicit 3D model

p

ℳ𝑙1 𝐩

[Bunny: Stanford]



SCENE COORDINATE REGRESSION (SCORE) FORESTS

RGB

Depth

…

tree 1
p

ℳ𝑙1 𝐩

p
tree T

ℳ𝑙𝑇 𝐩

Depth & RGB

features

SCoRe Forest

𝛿1
𝐷(𝐩)

𝛿2
𝐷(𝐩)

Leaf Predictions ℳ𝑙 ⊂ ℝ
3

𝐩

Forest Predictions ℳ 𝐩 = 

𝑡

ℳ𝑙𝑡(𝐩)



TRAINING A SCORE FOREST

 RGB-D frames with known camera poses 𝐻

 Generate 3D pixel labels automatically:

𝐦 = 𝐻𝐱

Training Data

RGB Depth

𝐱
Labels

𝐦

Learning (standard)

 Greedily train tree

 Reduction in spatial variance objective:

 Regression, not classification

 Mean shift to summarize distribution

at leaf 𝑙 into small set ℳ𝒍 ⊂ ℝ
3



ROBUST CAMERA POSE OPTIMIZATION

pixel index

camera pose

robust

error function

correspondences

predicted

by forest

at pixel 𝑖

Energy Function Optimization

 Preemptive RANSAC

[Nistér ICCV 2003]

 With pose refinement

[Chum et al. DAGM 2003]

 efficient updates to means & covariances
used by Kabsch SVD

 Only a small subset of pixels used



INLYING FOREST PREDICTIONS

Ground truth     Inferred

Test images Inliers for six hypotheses

𝐻1

𝐻2

𝐻3

𝐻4

𝐻5

𝐻6

Camera pose



PREEMPTIVE RANSAC OPTIMIZATION



THE 7SCENES DATASET

Heads

Pumpkin

RedKitchen

Stairs

Dataset available from authors



BASELINES FOR COMPARISON

 ORB matching

[Rublee et al. ICCV 2011]

 FAST detector

 Rotation aware BRIEF descriptor

 Hashing for matching

 Geometric verification

 RANSAC & perspective 3 point

 Final refinement given inliers

Sparse Key-Points (RGB only) Tiny-Image Key-Frames (RGB & Depth)

 Downsample to 40x30 pixels

 Blur

 Normalized Euclidean distance

 Brute-force search

 Interpolation of 100 closest poses

[Klein & Murray ECCV 2008]

[Gee & Mayol-Cuevas BMVC 2012]



QUANTITATIVE COMPARISON

Choice of different image features

Proportion of test frames with < 0.05m translational error and < 5○ angular error

Metric:

Results:



QUALITATIVE COMPARISON

ground truth DA-RGB SCoRe forest sparse baseline closest training pose



QUALITATIVE COMPARISON

ground truth DA-RGB SCoRe forest sparse baseline closest training pose



TRACK VISUALIZATION VIDEOS

ground truth

DA-RGB SCoRe forest

RGB sparse baseline

single frame at a time – no tracking



AR VISUALIZATION

RGB input

+ AR overlay

depth input

+ AR overlay

rendering of model

from inferred pose

single frame at a time – no tracking

[Bunny: Stanford]



SIMPLE ROBUST TRACKING

 Add a single extra hypothesis to optimization: the result from previous frame

Single frame



AR VISUALIZATION WITH TRACKING

RGB input

+ AR overlay

depth input

+ AR overlay

rendering of model

from inferred pose

simple robust frame-to-frame tracking enabled

[Bunny: Stanford]



MODEL-BASED REFINEMENT

 Model-based refinement

 requires 3D model of scene

 run rigid ICP from our inferred pose between observed image and model
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Baseline: Sparse RGB

Ours: Depth

Ours: DA-RGB

Ours: DA-RGB + D

[Besl & McKay PAMI 1992]



AR VISUALIZATION WITH TRACKING AND REFINEMENT

RGB input

+ AR overlay

depth input

+ AR overlay

rendering of model

from inferred pose

simple robust frame-to-frame tracking and ICP-based model refinement enabled

[Bunny: Stanford]



Fire Scene

SCoRe Forest

(single frame at a time)

SCoRe Forest

+

simple robust

frame-to-frame tracking

SCoRe Forest

+

simple robust

frame-to-frame tracking

+

ICP refinement to 3D model

RGB input

+ AR overlay

depth input

+ AR overlay

rendering of model

from inferred pose

[B
u
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y:

 S
ta
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fo

rd
]



Pumpkin Scene

RGB input

+ AR overlay

depth input

+ AR overlay

rendering of model

from inferred pose

SCoRe Forest

(single frame at a time)

SCoRe Forest

+

simple robust

frame-to-frame tracking

SCoRe Forest

+

simple robust

frame-to-frame tracking

+

ICP refinement to 3D model [B
u
n
n
y,
 A

rm
ad

ill
o
: S

ta
n
fo

rd
]



SCENE RECOGNITION
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Chess 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Fire 2.0% 98.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Heads 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

Office 0.0% 0.5% 4.0% 95.5% 0.0% 0.0% 0.0%

Pumpkin 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

RedKitchen 2.8% 1.2% 3.6% 0.0% 0.0% 92.4% 0.0%

Stairs 0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 90.0%

 Train one SCoRe Forest per scene

 Test frame against all scenes

 Scene with lowest energy wins

 Single frame only



SCENE COORDINATE REGRESSION - SUMMARY

 Scene coordinate regression forests

 provide a single-step alternative to detection/description/matching pipeline

 can be applied at any valid pixel, not just at interest points

 allow accurate relocalization without explicit 3D model

 Tracking-by-detection is approaching temporal tracking accuracy



Unifying principal:

Per-pixel regression and per-image model fitting

 Depth cameras are having huge impact

 Decision forests + big data

WRAP UP



Thank you!
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