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Computer Vision, Graphics, and Pattern Recognition Group
Universität Mannheim
68131 Mannheim
Germany

Bodo Rosenhahn
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany

Hans-Peter Seidel
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany

Acknowledgements

This research is partially funded by the Max-Planck Center for Visual Com-
puting and Communication. We thank Uwe Kersting for providing the walk-
ing sequence.



Abstract

Interacting and annealing are two powerful strategies that are applied in dif-
ferent areas of stochastic modelling and data analysis. Interacting particle
systems approximate a distribution of interest by a finite number of parti-
cles where the particles interact between the time steps. In computer vision,
they are commonly known as particle filters. Simulated annealing, on the
other hand, is a global optimization method derived from statistical mechan-
ics. A recent heuristic approach to fuse these two techniques for motion
capturing has become known as annealed particle filter. In order to analyze
these techniques, we rigorously derive in this paper two algorithms with an-
nealing properties based on the mathematical theory of interacting particle
systems. Convergence results and sufficient parameter restrictions enable us
to point out limitations of the annealed particle filter. Moreover, we evaluate
the impact of the parameters on the performance in various experiments,
including the tracking of articulated bodies from noisy measurements. Our
results provide a general guidance on suitable parameter choices for different
applications.
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1 Introduction

1.1 Motivation

Figure 1.1: Filtering problem. Left: Observations (crosses) of an unknown
signal (solid line). Right: Estimation error of the signal by a generic particle
filter (GPF ) and an annealed particle filter (APF ). The root mean square
errors are given by the horizontal lines. The GPF (solid line) outperforms
the APF (dash-dot line).

Many real-world applications require the estimation of an unknown state
of a system from given observations at each time step. An example from
signal processing is shown on the left in Fig. 1.1 where the solid line represents
the true signal and the crosses represent the measurements. The classical
filtering problem consists in estimating the unknown signal from the observed
measurements under some assumptions on the signal and on the observations.
In computer vision the observations are usually image sequences captured by
one or more cameras, and the discrete time steps are given by the frame rate
of the cameras. In human motion capturing for example, one estimates the
state parameters such as joint angles and position of the human body in a
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given image sequence. The estimated state is displayed by a mesh model of
the body as depicted in Fig. 1.2.

Figure 1.2: Motion capturing. Left: Estimate by a GPF with 2750 particles.
Right: Estimate by an APF with 250 particles. The APF outperforms the
GPF .

During the last years, particle filters have become very popular for solving
these problems. Reasons for their popularity include that they are easy to
implement and they do not assume that the signal and observations can be
well approximated by linear or Gaussian models like other filters [18, 16, 17,
1]. For an overview and numerous applications we refer the interested reader
to [8].

While the mathematical fundamentals including convergence results have
been developed further by Pierre del Moral in [24, 28, 25], a number of im-
proved particle filters [8] have been proposed. A heuristically justified mod-
ification, the annealed particle filter (APF ), was introduced for articulated
body motion tracking by Jonathan Deutscher et al. [6]. They demonstrated
superior performance in experiments but, in view of the mathematical the-
ory, did not gain further insight into bounds of the quality of estimates or
restrictions necessary for the stability of the algorithm. As a result, it is
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not clear if the convergence results as stated in the survey [3] are valid for
the APF . Such results, however, would be helpful for further improvements,
simplifying the parameter choice in applications, and for comparisons with
alternative approaches.

Further motivation to relate the design of particle filters to the available
mathematical theory is provided by two representative experimental results:
While the APF outperforms a basic particle filter (defined in Section 2.2) in
the domain of motion tracking as illustrated in Fig. 1.2, the APF falls short
of the particle filter for a filtering problem as shown in Fig. 1.1.

1.2 Related Work

Particle filters [8] are recursive Bayesian filters that are based on Monte Carlo
simulations [13]. They provide a convenient approach to approximate the
distribution of interest. This technique is known as bootstrap filtering [12],
condensation [15], Monte Carlo filters [21], survival of the fittest [19], and
interacting particle approximations [25], depending on the area of research.

Convergence results have been established by Pierre Del Moral using dis-
crete Feynman-Kac models [25]. These Feynman-Kac modelling techniques
are powerful tools that can be applied in various domains of research. In
the present paper, we restrict ourselves to two models with annealing prop-
erties that are related to the annealed particle filter [7]. The first model uses
a principle similar to simulated annealing [20] which is a Markov process
based method for optimization. The second model is inspired by annealed
importance sampling [30]. It is an importance sampling method [13] that
uses a sequence of densities for interpolation between a proposal density and
the density of a complex target distribution.

1.3 Outline and Contribution

We begin with the fundamentals of particle filters and discuss convergence
results under various assumptions as well as their impact on applications,
particularly on motion capturing. Section 3 reveals the coherence between
Feynman-Kac models and the annealed particle filter and explains the results
shown in Figs. 1.1 and 1.2.

Specifically, the flows of the Feynman-Kac distributions and a particle ap-
proximation of these flows by the interacting annealing algorithm are given in
Section 3.1. We state convergence properties of the algorithm in Section 3.2.
While Section 3.3 presents an interacting version of simulated annealing that
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converges to the regions of global minima, an interacting version of annealed
importance sampling is derived in Section 3.4. We validate the conclusions
from the theory and assess their impact on applications in Section 4 using
a tracking and a filtering example, respectively. The results provide infor-
mation for suitable parameter settings for motion capturing and show the
robustness in the presence of noise. We conclude with a discussion and indi-
cate further work in Section 5.
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2 Particle Filter

In this section, we introduce a basic particle filter for solving a filtering
problem as described in [8, Ch. 2] and [4]. Furthermore, we discuss its
mathematical properties and explain the poor performance in the human
motion capturing experiment, see Fig. 1.2.

2.1 Notations

Let (E, τ) be a topological space, and let B(E) denote its Borel σ-algebra.
B(E), Cb(E) and P(E) denote the set of bounded measurable functions,
bounded continuous functions and probability measures, respectively. δx

is the Dirac measure concentrated in x ∈ E, and ‖ · ‖∞ is the supremum
norm. Let f ∈ B(E), µ ∈ P(E), and let K be a Markov kernel on E. We
write 〈µ, f〉 =

∫

E
f(x) µ(dx), 〈K, f〉(x) =

∫

E
f(y) K(x, dy) for x ∈ E and

〈µ, K〉(B) =
∫

E
K(x, B) µ(dx) for B ∈ B(E). The Dobrushin contraction

coefficient [10] is defined by

β(K) := sup
x1,x2∈E

sup
B∈B(E)

|K(x1, B)−K(x2, B)| .

Note that β(K) ∈ [0, 1], and β(K1K2) ≤ β(K1) β(K2). A family of transition
kernels (Kt)t∈N0 is said to satisfy the Feller property [32] if 〈Kt, f〉 ∈ Cb(E)
for all t and f ∈ Cb(E).

2.2 Definition

Let X = (Xt)t∈N0 be an R
d-valued Markov process, called signal process,

with a family of transition kernels (Kt)t∈N0 satisfying the Feller property and
initial distribution η0. Let Y = (Yt)t∈N0 be an R

m-valued stochastic process,
called observation process, defined as

Yt = ht(Xt) + Wt for t > 0, Y0 = 0,
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where for each t ∈ N, ht : R
d → R

m is a continuous function, (Wt, t ∈ N) are
independent m-dimensional random vectors and their distributions possess
densities gt ∈ Cb(R

m), t ∈ N. The filtering problem consists in computing
the conditional distribution

ηt(B) := P (Xt ∈ B | Yt, . . . , Y0) , (2.2.1)

for all B ∈ B(Rd) or, alternatively, 〈ηt, ϕ〉 = E [ϕ(Xt) | Yt, . . . , Y0] for all
ϕ ∈ B(Rd).

Algorithm 1 Generic Particle Filter

Requires: number of particles n, η0, (Kt)t∈N0 , (gt)t∈N, (ht)t∈N, and observa-
tions (yt)t∈N

1. Initialization

• Sample x
(i)
0 from η0 ∀i

2. Prediction

• Sample x̄
(i)
t+1 from Kt(x

(i)
t , ·) ∀i

3. Updating

• Set π
(i)
t+1 ← gt+1(yt+1 − ht+1(x̄

(i)
t+1)) ∀i

• Set π
(i)
t+1 ←

π
(i)
t+1

Pn
j=1 π

(j)
t+1

∀i

4. Resampling

• Set x
(i)
t+1 ← x̄

(j)
t+1 with probability π

(j)
t+1 ∀i and go to step 2

The generic particle filter (GPF ) is a commonly used particle filter for
the solution of the filtering problem, which provides a basis for further devel-
opments and modifications for other applications. The algorithm consists of
the four steps “Initialization”, “Prediction”, “Updating” and “Resampling”.
During the initialization, we sample n times from the initial distribution η0.
By saying that we sample x(i) from a distribution µ, we mean that we sim-
ulate n independent random samples, also named particles, according to µ.
Hence, the n random variables (X

(i)
0 ) are independent and identically dis-

tributed (i.i.d.) according to η0. Afterwards, the values of the particles are
predicted for the next time step according to the dynamics of the signal pro-
cess. During the “Updating” step, each predicted particle is weighted by the
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likelihood function gt(yt − ht(·)), which is determined by the observation yt.
The “Resampling” step can be regarded as a special case of a “Selection” step.
The particles are selected in accordance with the weight function gt. This
step gives birth to some particles at the expense of light particles which die.
For the particle filter also other “Resampling” steps than the one described
in Algorithm 1 have been employed, e.g., branching procedures [4, 5, 8]. A
detailed discussion can be found in [25, Ch. 11.8]. The particle system is also
called interacting particle system [24] since the particles are (obviously) not
independent after resampling.

Resampling:

Prediction:

Updating:

particle

weighted particle

likelihood

Figure 2.1: Operation of the generic particle filter.

For the case of a one-dimensional signal process, the operation of the
algorithm is illustrated in Fig. 2.1, where the grey circles represent the un-
weighted particles after the “Prediction” step and the black circles represent
the weighted particles after the “Updating” step. While the horizontal po-
sitions of the particles indicate their values in the state space of the signal
process, the diameters of the black circles indicate the particle weights, that
is the larger the diameter the greater the weight. As illustrated, the par-
ticles with large weight generate more offsprings than particles with lower
weight during the “Resampling” step. In order to discuss the mathematical
properties of the algorithm, we use the following notions (cf. also [22]).

Definition 2.2.1. A weighted particle is a pair (x, π) where x ∈ R
d and π ∈

[0, 1]. A weighted particle set S is a sequence of finite sets of random variables
whose values are weighted particles: the nth member of the sequence is
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a set of n random variables S(n) = {(X (1), Π(1)), . . . , (X (n), Π(n))}, where
∑n

i=1 Π
(n)
i = 1.

It is clear that every weighted particle set determines a sequence of ran-
dom probability measures by

n
∑

i=1

Π(i)δX(i) for n ∈ N.

The idea now is to approximate the conditional distribution ηt (2.2.1) by
the distribution of an appropriate weighted particle set. We note that each
step of the generic particle filter defines a particle set and consequently a
random probability measure:

η̂n
t :=

1

n

n
∑

i=1

δ
X̄

(i)
t

; η̄n
t :=

n
∑

i=1

Π
(i)
t δ

X̄
(i)
t

; ηn
t :=

1

n

n
∑

i=1

δ
X

(i)
t

.

With this notation, the algorithm is illustrated by the three separate steps

ηn
t

Prediction−−−−−−−−→ η̂n
t+1

Updating−−−−−−−−→ η̄n
t+1

Resampling−−−−−−−−→ ηn
t+1. (2.2.2)

2.3 Convergence

The proof of the following convergence result can be found in [3].

Theorem 2.3.1. For all t ∈ N0, there exists ct independent of n such that

E
[

(〈ηn
t , ϕ〉 − 〈ηt, ϕ〉)2] ≤ ct

‖ϕ‖2
∞

n
∀ϕ ∈ B(Rd). (2.3.1)

Inequality (2.3.1) shows that the rate of convergence of the mean square
error is of order 1/n. However, ct depends on t and, without any additional
assumption, ct actually increases over time. This is not very satisfactory in
applications as this implies that one needs an increasingly larger number of
particles as time t increases to ensure a given precision. We will state below
a recent convergence result (Theorem 2.3.5) which is uniform in time under
additional assumptions on the filtering problem. The idea of preventing an
increasing error is to ensure that any error is forgotten fast enough. For
this purpose, we define a so-called mixing condition in accordance with [11]
and [27].
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Definition 2.3.2. A kernel on E is called mixing if there exists a constant
0 < ε ≤ 1 and a measure µ on E such that

εµ(B) ≤ K(x, B) ≤ 1

ε
µ(B) ∀x ∈ E, B ∈ B(E). (2.3.2)

This strong assumption means that the measure K(x, ·) depends only
“weakly” on x. It can typically only be established when E ⊂ R

d is a
bounded subset — which, however, is the case in many applications. We
give two examples where the kernels are not mixing.

Example 2.3.3. Let E = {a, b} and K(x, B) := δx(B). Assume that K is
mixing. From inequality (2.3.2) we get the following contradiction

K(a, {b}) = δa({b}) = 0 ⇒ µ({b}) = 0,

K(b, {b}) = δb({b}) = 1 ⇒ µ({b}) > 0.

Example 2.3.4. Let E = R and

K(x, B) :=
1√
2π

∫

B

exp

(−(x− y)2

2

)

dy.

Suppose there exists an ε > 0 and a measure µ such that the inequality
(2.3.2) is satisfied. Note that for all x ∈ R and all intervals I = [a, b], a < b,
we have K(x, I) > 0. Our assumption entails that µ(I) > 0. But then
εµ(I) < K(x, I) cannot hold for all x ∈ R, since K(x, I)→ 0 as |x| → +∞.

Le Gland and Oudjane [11] showed the uniform convergence of the generic
particle filter (Theorem 2.3.5) by using the mixing condition for the family
of random kernels (Rt)t∈N0 defined by

Rt(x, B) :=

∫

B

gt+1(Yt+1 − ht+1(y)) Kt(x, dy).

Theorem 2.3.5. If the family of random kernels (Rt)t∈N0 is mixing with
εt ≥ ε > 0, then there exists a constant c(ε) independent of n such that

E
[

(〈ηn
t , ϕ〉 − 〈ηt, ϕ〉)2

]

≤ c(ε)
‖ϕ‖2∞

n
∀t ∈ N0, ϕ ∈ B(Rd).

This means that as long as the mixing condition (2.3.2) is satisfied there
exists an upper bound of the error that is independent of the time param-
eter. Hence, the number of particles, that ensures a given precision in an
application, does not increase over time. An example that demonstrates the
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impact of the condition is given in Section 4.2. The mixing condition can
furthermore be relaxed such that the density dK(x, ·)/dµ is not µ-almost
surely greater than or equal to ε > 0 but may vanish on a part of the state
space, as shown in [2].

It is important to note that the results above are only valid when the
signal and the observation process are known and satisfy the assumptions
stated at the beginning. Since this is rarely the case for applications, good
approximations are needed. In applications like motion capture, it is very
difficult to model the noise of the observation process in an appropriate way
whereas a weight function gt, which measures the “quality” of a particle based
on some image features, can be easily designed such that the maximum is
attained for the true value of the signal. In this case particle filters perform
poorly as we will show in Section 4 and as illustrated in Fig. 1.2.
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3 Interaction and Annealing

Before we go into detail, we sketch the idea of annealing. As seen in the
top left image of Fig. 3.1, it may happen that the predicted particles differ
significantly from the “true” state resulting in a poor estimate for the signal.
This could be caused by a rare event in the context of the filtering problem
or by a fast movement of the observed object in the context of tracking. In
order to obtain a better estimate in this situation, the idea is to move the
particles towards the global maximum of the weight function. One approach
is to repeat the procedure, that means to let the particles undergo diffusion,
to attribute weights to the particles, and to resample several times before the
next time step. However as seen on the left hand side of Fig. 3.1, the particles
might get stuck near a local maximum. To avoid this misbehavior, the parti-
cles are previously weighted by smoothed versions of the weighting function,
where the influence of the local maxima is reduced first but increases grad-
ually. This approach helps to overcome the problem with the local maxima,
as depicted on the right hand side of Fig. 3.1. In the following sections, we
discuss Feynman-Kac models with annealing properties and reveal relations
to the annealed particle filter [7] that also relies on this annealing effect.

3.1 Feynman-Kac Model

Let (Xt)t∈N0 be an E-valued Markov process with family of transition kernels
(Kt)t∈N0 and initial distribution η0. We denote by Pη0 the distribution of the
Markov process, i.e., for t ∈ N0,

Pη0 (d(x0, x1, . . . , xt)) = Kt−1(xt−1, dxt) . . .K0(x0, dx1) η0(dx0),

and by E [·]η0
the expectation with respect to Pη0 . Moreover, let (gt)t∈N0 be

a family of nonnegative, bounded measurable functions such that

E

[

t
∏

s=0

gs (Xs)

]

η0

> 0 ∀t ∈ N0.

12



Figure 3.1: Left: Without an annealing effect, the particles get stuck in
the local maximum. Right: The annealing effect ensures that the particles
escape from the local maximum.
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Definition 3.1.1. The sequence of distributions (ηt)t∈N0 on E defined for
any ϕ ∈ B(E) as

〈ηt, ϕ〉 :=
〈γt, ϕ〉
〈γt, 1〉

, 〈γt, ϕ〉 := E

[

ϕ (Xt)
t−1
∏

s=0

gs (Xs)

]

η0

∀t ∈ N0,

(3.1.1)
is called the Feynman-Kac model associated with the pair (gt, Kt).

Example 3.1.2. The functions (gt)t∈N0 are often chosen as unnormalized
Boltzmann-Gibbs measures gt(x) = exp(−βt Vt(x)). Equation (3.1.1) then
becomes

〈γt, ϕ〉 := E

[

ϕ (Xt) exp

(

−
t−1
∑

s=0

βs V (Xs)

)]

η0

.

It is straightforward to check that the Feynman-Kac model as defined
above satisfies the recursion relation

ηt+1 = 〈Ψt(ηt), Kt〉, (3.1.2)

where the Boltzmann-Gibbs transformation Ψt is defined by

Ψt (ηt) (dxt) :=
1

〈ηt, gt〉
gt(xt) ηt(dxt). (3.1.3)

The particle approximation of the flow (3.1.2) depends on a chosen family of
Markov transition kernels (Kt,ηt

)t∈N0 satisfying the compatibility condition

〈Ψt (ηt) , Kt〉 = 〈ηt, Kt,ηt
〉.

The family (Kt,ηt
)t∈N0 of kernels is not uniquely determined by these condi-

tions. For example, we can choose, as in [25, Ch. 2.5.3],

Kt,ηt
= St,ηt

Kt, (3.1.4)

where

St,ηt
(xt, dyt) = εt gt(xt) δxt

(dyt) + (1− εt gt(xt)) Ψt (ηt) (dyt), (3.1.5)

with εt ≥ 0 and εt ‖gt‖∞ ≤ 1. It is interesting to remark that the parameters
εt are allowed to depend on the current distribution ηt.

Example 3.1.3. We continue Example 3.1.2. The selection kernel becomes

St,ηt
(xt, dyt) = εt exp (−βt Vt(xt)) δxt

(dyt)+(1− εt exp (−βt Vt(xt))) Ψt (ηt) (dyt),

where

Ψt (ηt) (dyt) =
E
[

exp
(

−
∑t−1

s=0 βs V (Xs)
)]

η0

E
[

exp
(

−
∑t

s=0 βs V (Xs)
)]

η0

exp (−βt Vt(yt)) ηt(dyt).
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Algorithm 2 Interacting Annealing Algorithm

Requires: parameters (εt)t∈N0 , number of particles n, initial distribution η0,
weighting functions (gt)t∈N0 and transitions (Kt)t∈N0

1. Initialization

• Sample x
(i)
0 from η0 ∀i

2. Selection

• Set π(i) ← gt(x
(i)
t ) ∀i

• For i from 1 to n:

Sample κ from U [0, 1]

If κ ≤ εtπ
(i) then

? Set x̌
(i)
t ← x

(i)
t

Else

? Set x̌
(i)
t ← x

(j)
t with probability π(j)

Pn
k=1 π(k)

3. Mutation

• Sample x
(i)
t+1 from Kt(x̌

(i)
t , ·) ∀i and go to step 2
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The interacting annealing algorithm (IAA) describes the approximation
by a particle set using equation (3.1.4). The particle system is initialized by

n i.i.d. random variables X
(i)
0 with common law η0 determining the random

probability measure ηn
0 :=

∑n
i=1 δ

X
(i)
0

/n. Since Kt,ηt
can be regarded as the

composition of a pair of selection and mutation Markov kernels, we split the
transitions into the following two steps

ηn
t

Selection−−−−−−−−→ η̌n
t

Mutation−−−−−−−−→ ηn
t+1, (3.1.6)

where

ηn
t (ω) :=

1

n

n
∑

i=1

δ
X

(i)
t (ω)

, η̌n
t (ω) :=

1

n

n
∑

i=1

δ
X̌

(i)
t (ω)

.

During the selection step each particle X
(i)
t evolves according to the Markov

transition kernel St,ηn
t
(X

(i)
t , ·). That means X

(i)
t is accepted with probability

εtgt(X
(i)
t ), and we set X̌

(i)
t = X

(i)
t . Otherwise, X̌

(i)
t is randomly selected with

distribution
n
∑

i=1

gt(X
(i)
t )

∑n
j=1 gt(X

(j)
t )

δ
X

(i)
t

.

The mutation step consists in letting each selected particle X̌
(i)
t evolve ac-

cording to the Markov transition kernel Kt(X̌
(i)
t , ·).

3.2 Convergence

In this section the asymptotic behavior of the particle approximation model
determined by the IAA is studied. Del Moral established the following con-
vergence theorem [25, Theorem 7.4.4].

Theorem 3.2.1. For any ϕ ∈ B(E),

E
[
∣

∣〈ηn
t+1, ϕ〉 − 〈ηt+1, ϕ〉

∣

∣

]

η0
≤ 2 osc(ϕ)√

n

(

1 +

t
∑

s=0

rsβ(Ms)

)

,

where

rs := sup
x,y∈E

(∏t
r=s gr(x)

∏t
r=s gr(y)

)

,

Ms := KsKs+1 . . .Kt,

for 0 ≤ s ≤ t. Moreover, osc(ϕ) := sup{|ϕ(x)− ϕ(y)| ; x, y ∈ E}.
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This theorem gives us a rough estimate for the number of particles

n ≥ 4 osc(ϕ)2

δ2

(

1 +

t
∑

s=0

rsβ(Ms)

)2

(3.2.1)

needed to achieve a mean error less than a given δ > 0. In order to evaluate
the right hand side, we must calculate the Dobrushin contraction coefficient
of the Markov kernel M . The coefficient lies in the range 0 to 1, and the
more the probability measure M(x, ·) “depends” on x ∈ E the higher the
coefficient will be. We will illustrate this property in the following three
examples where we always assume that E = [0, 1].

Example 3.2.2. If M(x, ·) := δx and x1, x2 ∈ E with x1 6= x2, then we get
supB∈B(E) |δx1(B)− δx2(B)| = 1. This yields β(M) = 1.

Example 3.2.3. If M(x, ·) is independent of x, e.g., if it is equal to the
Lebesgue measure λ, we have β(M) = 0.

Example 3.2.4. Suppose M := KsKs+1 . . .Kt, where (Kk)s≤k≤t are Markov
kernels and s ≤ t. Furthermore, we assume that there exists for all s ≤ k ≤ t
some εk ∈ (0, 1) satisfying for all x1, x2 ∈ E

Kk(x1, ·) ≥ εk Kk(x2, ·), (3.2.2)

i.e., the mixing condition (2.3.2). Let x1, x2 ∈ E and B ∈ B(E). Then we
get |Kk(x1, B)−Kk(x2, B)| ≤ 1− εk and thus β(M) ≤

∏t
k=s(1− εk).

Note that the right hand side of (3.2.1) is minimized if we are able to
choose Markov kernels Ks such that β(Ms) is small. However, if we compare
the examples, we see that this can be interpreted as if we do not “trust the
particles”. In practice, it would be preferable to select the Markov kernels by
means of the “quality” of the particles in the previous step. One approach is
to select kernels that depend on a set of parameters, for example Gaussian
kernels with the entries of the covariance matrix as parameters. The values
of the parameters are then determined automatically by the particles, e.g.,
the variance is set proportional to the sampling variance of the particles.
This can be realized by a dynamic variance scheme as we will explain in
Section 3.3.

It is worth to mention two special cases of the selection kernel (3.1.5) that
defines the resampling procedure in the interacting annealing algorithm. If
εt = 0 for all t, we get the resampling step of the generic particle filter. The
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second special case occurs when we set the parameters εt(ηt) := ε′t/〈ηt, gt〉,
where 0 < ε′t ≤ 1/g and

g := sup
t∈N0

(

sup
x,y∈E

(

gt(x)

gt(y)

))

<∞, (3.2.3)

as proposed in [26]. The selection kernel becomes

St,ηt
(xt, ·) = ε′t

gt(xt)

〈ηt, gt〉
δxt

+

(

1− ε′t
gt(xt)

〈ηt, gt〉

)

Ψt (ηt) . (3.2.4)

Note that the necessary condition ‖(ε′t gt)/〈ηt, gt〉‖∞ ≤ 1 is satisfied since
gt/〈ηt, gt〉 ≤ g. If we set the number of particles n ≥ g, then we can choose

ε′t = 1/n. For some random variables X
(i)
t and the random probability mea-

sure ηn
t =

∑n
j=1 δ

X
(i)
t

/n, we thus have

ε′t
gt(X

(i)
t )

〈ηn
t , gt〉

=
gt(X

(i)
t )

∑n
j=1 gt(X

(j)
t )

.

This means that the expression εtπ
(i) in Algorithm 2 is replaced by π(i)/

∑n
k=1 π(k).

Pierre del Moral showed in [25, Ch. 9.4] that for any t ∈ N0 and ϕ ∈ B(E)
the sequence of random variables

√
n(〈ηn

t , ϕ〉 − 〈ηt, ϕ〉)

converges in law to a Gaussian random variable W when the selection kernel
in (3.1.5) is used to approximate the flow (3.1.2). It turns out that when
we use ε′t = 1/n, the variance of W is strictly smaller than in the case with
εt = 0. This seems to indicate that it is preferable to use the selection kernel
(3.2.4).

3.3 Interacting Simulated Annealing Algorithm

In the preceding section, we discussed how a Feynman-Kac model associated
with a pair (gt, Kt) can be approximated by the IAA without giving details
on gt and on Kt. However, we already introduced unnormalized Boltzmann-
Gibbs measures exp(−βt V ) in Examples 3.1.2 and 3.1.3. In statistical me-
chanics, V ≥ 0 is interpreted as energy, and βt ≥ 0 is the inverse temperature.
In the following we outline an interacting algorithm that can be regarded as
an interacting simulated annealing algorithm (ISA). This means that the dis-
tribution of global minima of V is approximated when βt tends to infinity.
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We suppose that K is a Markov kernel satisfying the mixing condition
(3.2.2) for an ε ∈ (0, 1) and osc(V ) <∞. A time mesh is defined by

t(n) := n(1 + bc(ε)c) c(ε) := (1− ln(ε/2))/ε2 for n ∈ N0. (3.3.1)

Let 0 ≤ β0 ≤ β1 . . . be an annealing scheme such that βt = βt(n+1) is constant
in the interval (t(n), t(n + 1)]. Furthermore, we denote by η̌t the Feynman-
Kac distribution after the selection step, i.e., η̌t = Ψt(ηt). According to [25,
Proposition 6.3.2], cf. also [29], we have

Theorem 3.3.1. Let b ∈ (0, 1) and βt(n+1) = (n + 1)b. Then for each δ > 0

lim
n→∞

η̌t(n) (V ≥ V? + δ) = 0,

where V? = sup{v ≥ 0; V ≥ v a.e.}.
The rate of convergence is d/n(1−b) where d depends on b and c(ε) as

given in [25, Theorem 6.3.1]. This theorem establishes that the flow of the
Feynman-Kac distribution η̌t becomes concentrated in the region of global
minima as t → +∞. The flow can be approximated by the interacting
annealing algorithm with gt = exp(−βt V ) and Kt = K.

The mixing condition is not only essential for the convergence result but
also influences the time mesh by the parameter ε. In view of equation (3.3.1),
kernels with ε close to 1 are preferable, e.g., Gaussian kernels on a bounded
set with a very high variance as discussed in Section 2.3. However, we cannot
sample from the measure η̌t directly, instead we approximate it by n particles.
Now the following problem arises. On one hand the mass of the measure
concentrates on a small region of E, and on the other hand the particles are
spread over E if ε is large. As a result we get a degenerated system where
the weights of most of the particles are zero and thus the global minima are
estimated inaccurately, particularly for small n. If we choose a kernel with
small ε in contrast, the convergence rate is very slow. Since neither of them
is suitable for applications, we suggest a dynamic variance scheme instead of
a fixed kernel K as already mentioned in Section 3.2.

Let Kt be a family of Gaussian kernels on a bounded set E with covariance
matrices Σt proportional to the sample covariance after the “Resampling”
step. That is, for a constant c > 0,

Σt :=
c

n− 1

n
∑

i=1

(x
(i)
t − µt)ρ (x

(i)
t − µt)

T
ρ , µt :=

1

n

n
∑

i=1

x
(i)
t , (3.3.2)

where ((x)ρ)k = max(xk, ρ) for a ρ > 0. The value ρ ensures that the variance
does not become zero. The elements off the diagonal are usually set to zero,
in order to reduce computation time.
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We remark that the APF is a particle filter where the “Updating” and
“Resampling” steps are replaced by the interacting simulated annealing al-
gorithm with εt = 0. The algorithm is illustrated similarly as in (2.2.2)
by

ηn
t

Prediction−−−−−−−−→ η̂n
t+1

ISA−−−−−−−−→ ηn
t+1. (3.3.3)

The ISA is initialized by the predicted particles X̂
(i)
t+1 and performs M times

the selection and mutation steps. Afterwards the particles X
(i)
t+1 are obtained

by an additional selection. This shows that the annealed particle filter uses a
simulated annealing principle to locate the global minimum of a function V
at each time step. Hence, it is suitable for applications like motion capturing
as illustrated in Fig. 1.2 and demonstrated in Section 4. However, it also
reveals that the conditional distribution (2.2.1) is no longer approximated in
the way of the generic particle filter, and therefore the arguments in Section 2
cannot be applied without modifications. In the next section, we present a
model that approximates a given distribution by the interacting annealing
algorithm.

3.4 Interacting Annealed Sampling Algorithm

Our method is based on annealed importance sampling [30] that allows ad-
ditional interaction of the particles during the steps. Let us consider a finite
sequence of Boltzmann-Gibbs measures

µt(dx) :=
1

〈µ0, exp(−βtV )〉 exp (−βtV (x)) µ0(dx) (3.4.1)

according to some schedule 0 = β0 < β1 < . . . < βT−1 < βT = 1, where
µ0 ∈ P(E). In contrast to simulated annealing and ISA that converge to
the global minima of V , annealed importance sampling approximates the
distribution µT .

We use a Feynman-Kac model associated with a pair (gt, Kt) as intro-
duced in Section 3.1 to describe the mathematical framework. For any
0 ≤ t < T , we define

gt(xt) :=
〈µ0, exp(−βtV )〉
〈µ0, exp(−βt+1V )〉 exp (−(βt+1 − βt)V (xt)) . (3.4.2)

The Markov kernels (Kt)0≤t<T are chosen such that Kt leaves the measure
µt+1 invariant, i.e.,

µt+1(B) =

∫

E

Kt(xt, B) µt+1(dxt), (3.4.3)
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for all B ∈ B(E). Metropolis-Hastings updates [23, 14, 31], for instance, are
suitable choices for Markov transitions that leave a measure invariant. The
following lemma reveals that (µt)0≤t≤T are the Feynman-Kac distributions
associated with the pair (gt, Kt).

Lemma 3.4.1. For any 0 ≤ t ≤ T , we have

E

[

ϕ (Xt)

t−1
∏

s=0

gs (Xs)

]

µ0

= 〈µt, ϕ〉 ∀ϕ ∈ B(E).

Proof: Let ϕ ∈ B(E). From (3.4.2) and (3.4.3) we obtain

E

[

ϕ(Xt)
t−1
∏

s=0

gs(Xs)

]

µ0

=

∫

E

∫

E

. . .

∫

E

ϕ(xt)

(

t−1
∏

s=0

Ks(xs, dxs+1) gs(xs)

)

µ0(dy0)

=

∫

E

. . .

∫

E

ϕ(xt)

(

t−1
∏

s=1

Ks(xs, dxs+1) gs(xs)

)

∫

E

K0(x0, dx1) µ1(dx0)

=

∫

E

. . .

∫

E

ϕ(xt)

(

t−1
∏

s=1

Ks(xs, dxs+1) gs(xs)

)

µ1(dx1)

...

=

∫

E

ϕ(xt) µt(dxt).

�

Note that the constant term of gt in Equation (3.4.2) is unimportant for
the algorithm since it is compensated by εt of the selection kernel (3.1.5) and
by the normalization factor of the Boltzmann-Gibbs transformation (3.1.3).
The resulting interacting algorithm can be regarded as an interacting anneal-
ing sampling algorithm (IAS) that converges to µT according to Theorem
3.2.1.

In the context of filtering µ0 is the predicted conditional distribution,
exp(−V ) is the likelihood function, and µT is the posterior distribution ap-
proximated by the weighted particle set. Hence, it would be desirable to
combine IAS with the generic particle filter as suggested in [8, Ch. 7]. How-
ever, we must pay attention to the crucial assumption that the transitions Kt

leave the measures µt+1 invariant. This means that the transitions depend
on µ0 and thus on the unknown signal. On account of this limitation of the
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IAS, we believe that the ISA is more relevant for applications, particularly
for motion capturing. We will therefore restrict the evaluation in Section 4
to the ISA.

Another important consequence of this result is that the annealed parti-
cle filter does not approximate the conditional distribution (2.2.1), since it
diffuses the particles by kernels that do not satisfy (3.4.3). Hence, the APF
is not suitable for filtering problems as shown in Fig. 1.1.
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4 Evaluation

In Section 3.3, we observed that the APF uses ISA for each time step and
thus performs well for motion capturing. For an exhaustive experimental
evaluation, we track an articulated arm with less DOF than in the example
given in Fig. 1.2. The aim of this section is not to find “the best” parameters
since these depend on the specific application. Rather, we reveal the general
impact of the parameters on the performance using an experimental setting
that is typical for human motion capturing. The evaluation results provide
a general guidance and a good starting point for finding the optimal setting
for a particular application.

Furthermore, we compare the two selection kernels discussed in Sec-
tion 3.2. The ISA with εt = 0 (3.1.5) is denoted by ISA0 and with ε′t = 1/n
(3.2.4) by ISA1/n. In Section 4.2, we demonstrate the influence of the mixing
condition that is essential for the convergence of the ISA (Theorem 3.3.1).
Finally, the filtering example illustrated in Fig. 1.1 is discussed in detail.

Figure 4.1: Left: Pose of the arm is described by the vector x = (α, β, γ)T .
Center: Varying α of the template. Right: Graph of gt over (α, β).
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4.1 Motion Capturing

Experimental Set-up and Implementation Details The arm consists
of three limbs and three joints. The position of the arm is described by
xT = (α, β, γ) ∈ E, where E := [−170, 170] × [−125, 125] × [−125, 125] as
depicted in Fig. 4.1. For evaluating, a sequence of 201 synthetic images
is generated. X0 is uniformly distributed in E yielding an unknown arm
position at the beginning. The angles αt+1, βt+1, and γt+1 are sampled from
Gaussian distributions on E with mean αt, βt, and γt and variance σα = 20,
σβ = 40, and σγ = 30, respectively. This sequence (Seq1) is difficult for
tracking since the velocity and the direction of the movement may change
from frame to frame. In a second sequence (Seq2), the arm moves from
position (−30,−80,−40)T to (50, 30, 20)T and back with constant speed as
illustrated in Fig. 4.2. Moreover, we added some Gaussian noise to each
position vector.

Figure 4.2: Left: Motion sequence Seq2. Right: Template’s silhouette
(top). Error map (bottom).

For calculating the weighting functions gt, the image is converted to a
binary image by thresholding. This image is compared with the silhouette of
each arm template that is determined by a particle x

(i)
t as shown in Fig. 4.2.

An error map is obtained by a pixelwise AND operation between the inverted
binary image and the template’s silhouette. The weighting functions are then
calculated by gt := exp(−Ne/Np), where Np denotes the number of pixels of
the template’s silhouette and Ne the sum of the pixel values in the error map.
The graph of the weighting function is plotted in Fig. 4.1. We observed in
our experiments that g ≈ 40 (3.2.3). This means that the selection kernel
(3.2.4) is valid if the number of particles is greater than 40.
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In the following, we evaluate the performance of the ISA0 and ISA1/n

in combination with different annealing schemes, variance schemes, number
of annealing runs, and number of particles. The simulations for Seq1 and
Seq2 were repeated 50 and 40 times, respectively. The error of an estimate
∑

i π
(i)x

(i)
t was measured by 1− gt. The averages of the mean square errors

(MSE) for each sequence indicate the performance.
Since in real world applications the measurements are noisy caused by

clutter, film grain, bad lighting conditions, CCD camera noise, etc., we also
added strong noise to the weighting functions by exp(−ϑ(Ne + W

(i)
t )/Np),

where ϑ(N) = max(0, min(N, Np)) and W
(i)
t are independent zero-mean

Gaussian random variables with variance 40000. For comparison, Np ≈ 4000.

GPF vs. ISA We assumed that the dynamics for Seq1 were known. Hence,
the algorithms were initialized by the uniform distribution on E and the
prediction step (3.3.3) was performed according to the Gaussian transitions
used for the arm simulation. By contrast, we did not use the dynamical
model for tracking Seq2. The initial distribution was instead the uniform
distribution on [−20,−40]×[−60,−100]×[−20,−60] ⊂ E and the transitions
kernels were the same as for Seq1. In order to provide a fair comparison
between GPF with nT particles and ISA with various annealing schemes,
the number of particles is given by n = bnT /T c where T denotes the number
of annealing runs. The GPF with nT = 250 produced a MSE of 0.04386
for Seq1 and 0.04481 for the noisy sequence. Seq2 was tracked with 225
particles and MSE of 0.01099 and 0.01157, respectively.

Annealing Schemes We evaluated the performance of various annealing
schemes 0 ≤ β0 ≤ · · · ≤ βT−1 with fixed length T = 5. While the particles
were diffused between the annealing steps for Seq1 by Gaussian kernels with
σα = 20, σβ = 40, and σγ = 30, we set σα = σβ = σγ = 5 for Seq2. In
Fig. 4.3, the MSE for the annealing schemes with decreasing increments

βt = α (1− c−(t+1)) (geometric),
βt = α ln(t + c)/ ln(T + c− 1) (logarithmic),
βt = α ((t + 1)/T )c (polynomial)

are given. The schemes are normalized such that βT−1 = α = 4. When c
tends to infinity or to 0 in the case of a polynomial scheme, βt → α for all
0 ≤ t < T .

The diagrams show that the geometric annealing schemes are unstable in
the sense that the curves of the MSE with respect to c contain many local
optima, particularly for Seq1. It makes the optimization of the scheme for
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Figure 4.3: Performance for different annealing schemes with T = 5. Aver-
age of the MSE for the sequences Seq1 (top) and Seq2 (bottom) with noisy
measurements (dashed) and without noise (solid). Left: βt = α (1− c−(t+1)).
Center: βt = α ln(t + c)/ ln(T + c− 1). Right: βt = α ((t + 1)/T )c. Top:

The curves for the geometric annealing schemes are unstable and the best
result is obtained by ISA1/n with a logarithmic scheme. Bottom: The error
decreases when βt → α. The impact of the selection kernel and noise is small.

βt ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise
α (t + 1)/T 0.03634 0.03029 0.03220 0.02809
α 1.2t+1−T 0.02819 0.02302 0.03185 0.02609

α 1.8t+1−T 0.04214 0.05128 0.03891 0.04452

Seq2 Seq2 with noise
α (t + 1)/T 0.01006 0.00948 0.00988 0.01026

α 1.2(t+1−T ) 0.00818 0.00805 0.00827 0.00858

α 1.8(t+1−T ) 0.01514 0.01501 0.01557 0.01543

Table 4.1: MSE error for annealing schemes with constant and increasing
increments (T = 5). The schemes are outperformed by the annealing schemes
given in Fig. 4.3.
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a particular application quite difficult. The logarithmic schemes performed
best where the lowest MSE for Seq1, namely 0.01501, was achieved by an
ISA1/n with c = 10. In comparison, the errors for Seq2 are significant lower
and the scheme with βt = α performs best since the motion is simple and
local maxima rarely occur. Furthermore, the difference between the two se-
lection kernels is small. The impact of noise on the results is also minor when
the dynamics are simple in contrast to the more difficult sequence. The ob-
servation that the error for Seq1 with noise significantly declines as c goes to
infinity indicates that the other parameters are not well chosen for this noisy
sequence. Providing some results for schemes with constant or increasing
increments in Table 4.1 reveals that these schemes are outperformed by the
schemes given in Fig. 4.3. We use henceforth a polynomial annealing scheme
with c = 0.1 since both ISA0 and ISA1/n performed well for the scheme.

(σ2
α σ2

β σ2
γ) ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise
(15 35 25) 0.02527 0.01985 0.02787 0.02573
(20 40 30) 0.02145 0.01756 0.02453 0.02213

(25 45 35) 0.02341 0.02011 0.02506 0.02357
(15 40 35) 0.02238 0.01891 0.02035 0.02510
(25 40 25) 0.02240 0.01905 0.02622 0.02345

Seq2 Seq2 with noise
(0.5 0.5 0.5) 0.00637 0.00631 0.00643 0.00664

(2 2 2) 0.00612 0.00627 0.00639 0.00652
(5 5 5) 0.00668 0.00648 0.00666 0.00702

(0.5 2 5) 0.00611 0.00626 0.00643 0.00629

(5 2 0.5) 0.00661 0.00674 0.00674 0.00695

Table 4.2: MSE error for constant variance schemes. The decreasing schemes
perform better (Tables 4.3 and 4.4).

Variance Schemes During the mutation step of the ISA, the particles
were diffused according to a Gaussian distribution where the variance for
each annealing step is defined by a variance scheme. The errors for constant
schemes are given in Table 4.2, for deterministic schemes in Tables 4.3 and
4.4, and for dynamic schemes (3.3.2) in Fig. 4.4. The first column of Tables
4.3 and 4.4 contains the reference variance that is reduced for each annealing
step by the decreasing scheme given in the second column. We give three
examples where ι ∈ {α, β, γ}: (−dα − dβ − dγ) means that σ2

ι,t = σ2
ι,t−1 − dι.
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(σ2
α σ2

β σ2
γ) Decreasing scheme ISA0 ISA1/n ISA0 ISA1/n

Seq1 Seq1 with noise
(32 49 36) (−4 − 3 − 2) 0.01997 0.01920 0.02437 0.02335
(32 58 54) (−4 − 6 − 8) 0.02243 0.02485 0.02480 0.02093
(32 70 54) (−4 − 10 − 8) 0.02048 0.02066 0.02332 0.02411
(32 52 42) (−4 − 4 − 4) 0.02193 0.01919 0.02489 0.01795

(29 52 45) (−3 − 4 − 5) 0.01989 0.01666 0.02029 0.02074

(23 47 35) ×β3

α
β2

α
β1

α
β0

α
0.02230 0.01950 0.02654 0.02203

(27 47 37) −0 1.5 1.52 1.53 0.02187 0.02324 0.01807 0.02328
(27 47 37) −0 1.53 1.52 1.5 0.02048 0.02219 0.02398 0.02109
(48 97 73) ×0.8 0.82 0.83 0.84 0.02140 0.02030 0.02099 0.02326
(30 60 45) ×0.9 0.92 0.93 0.94 0.01907 0.01690 0.02470 0.02142

Table 4.3: MSE error for deterministic variance schemes. The schemes are
outperformed by dynamic variance schemes (Fig. 4.4).

(σ2
α σ2

β σ2
γ) Decreasing scheme ISA0 ISA1/n ISA0 ISA1/n

Seq2 Seq2 with noise
(3.5 5 8) (−1 − 1 − 1) 0.00619 0.00632 0.00635 0.00629

(5 5 5) (−1.5 − 1.5 − 1.5) 0.00614 0.00623 0.00640 0.00656
(3.5 5 6.5) (−1 − 1.5 − 2) 0.00606 0.00626 0.00641 0.00642
(6.5 5 3.5) (−2 − 1.5 − 1) 0.00648 0.00654 0.00651 0.00656

(7.5 7.5 7.5) −0 1.5 1.52 1.53 0.00649 0.00657 0.00662 0.00662
(7.5 7.5 7.5) −0 1.53 1.52 1.5 0.00636 0.00638 0.00646 0.00657
(1.2 1.2 1.2) ×0.8 0.82 0.83 0.84 0.00622 0.00623 0.00649 0.00639
(.75 .75 .75) ×0.9 0.92 0.93 0.94 0.00631 0.00607 0.00636 0.00641

Table 4.4: MSE error for deterministic variance schemes. The best dynamic
variance schemes (Fig. 4.4) perform as well as the best deterministic variance
schemes.
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The decreasing scheme −0 d1 d2 d3 gives the variance scheme σ2
ι,t = σ2

ι,t−1−dt.
The scheme σ2

ι,t = dt+1σ2
ι is denoted by ×d1 d2 d3 d4.

The dynamic variance schemes are not only easier to handle since they
depend only on one parameter c, but they also outperform the deterministic
schemes provided that an appropriate parameter c is chosen. The best result
for Seq1 with MSE 0.01175 was obtained by ISA1/n with parameter c = 0.3.
In comparison to the GPF , the MSE was reduced by more than 73%. We see
that the error for Seq2 was not significantly improved when comparing the
best settings for constant, deterministic, and dynamic schemes. It indicates
that the flow of Feynman-Kac distributions locates the global minimum and
that the error is mainly caused by the particle approximation. Hence, an
improvement is only expected by reducing the number of annealing runs
yielding more particles for approximation or by increasing nT .

Figure 4.4: Performance for dynamic variance schemes with different values
of c in the presence of noise (dashed) and without noise (solid). Left: MSE
for Seq1. The error is significantly reduced in comparison to deterministic
schemes (Tables 4.2 and 4.3). The best result is obtained by ISA1/n with
c = 0.3. Right: MSE for Seq2. The best dynamic variance schemes perform
as well as the best deterministic variance schemes (Tables 4.2 and 4.4).

Number of Annealing Runs and Particles The influence of the number
of annealing runs for different values of nT is plotted in Figs. 4.5 and 4.6.
Seq1 was tracked by ISA0 and ISA1/n with a dynamic scheme with c = 0.2
and c = 0.3, respectively. The parameters for Seq2 were 0.06 and 0.05,
respectively. The curves for ISA1/n are quite stable with an unique optimal
parameter T = 6 independent of nT and noise, see Fig. 4.5. By contrast, the
curves for ISA0 contain deep local minima, in particular when the sequence
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was disturbed by noise. Moreover, one can observe at T = 7 that the error
for ISA1/n increases significantly when the number of particles is not clearly
greater than g (3.2.3). This shows the impact of the condition on the results.
The MSEs for Seq2 are given in the diagram on the left hand side of Fig. 4.6.
The error was reduced by reducing the number of annealing runs and by
increasing nT as expected whereas the differences between ISA0 and ISA1/n

were minimal. It also demonstrates the robustness of ISA to noise. As
comparison, the error of the GPF is hardly reduced by increasing nT . The
MSE was still above 0.043 and 0.01 for Seq1 and Seq2, respectively.

Figure 4.5: Performance of ISA0 (triangles) and ISA1/n (circles) for different
numbers of annealing runs T with nT = 250, 300, and 400. The curves for
ISA1/n are more stable with an unique optimal parameter T = 6, but the
error increases at T = 7. More annealing runs are required than for Seq2

(Fig. 4.6). Left: MSE for Seq1 without noise. Right: MSE for Seq1 with
noise.

Real Sequences We applied ISA0 and ISA1/n also to human motion cap-
turing as visualized in Fig. 4.7. The diagram on the right hand side contains
the estimated angles of the left and the right knee where the values acquired
from the marker based system provide a ground truth. For the experiments
that are described in [9], 250 particles and a geometric annealing scheme
with T = 11 were used. We compared the root mean square errors (RMSE)
for both knees obtained by ISA0 with c = 0.1 for the dynamic scheme and
ISA1/n with c = 0.12, where we repeated the simulations 25 times. While the
average of the RMSE was not significantly improved by ISA1/n as expected
from the previous results, the variance was reduced by 19.8% compared to
ISA0.
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Figure 4.6: Performance of ISA0 (triangles) and ISA1/n (circles) for different
numbers of annealing runs T with nT = 225, 300, and 400. Left: MSE
for Seq2 with noisy measurements (dashed) and without noise (solid). The
error decreases with increasing nT whereas the differences between ISA0 and
ISA1/n are minimal. The error is only slightly affected by noise. Center:

Variance of MSE for Seq2 without noise. The variance also decreases with
increasing nT . The curves for ISA1/n are more stable. Right: Variance with
noise.

Figure 4.7: Tracking the lower part of a human body during walking. Left:

The estimates (projected mesh) by the APF using a 3D model with 18 DOF
(4 of 180 frames). Right: A comparison of the estimated joint angles of the
right and left knee with a marker based motion capture system reveals the
accuracy of ISA1/n.
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When we compare the result with our arm example in Fig. 4.6, we find no
evidence that the variance reduction can be generalized. While the variance
of the error is significantly lower for ISA1/n with nT = 225, ISA0 performs
better with nT = 300, and the differences are marginal for nT = 400. The
diagrams, however, reveal that the curves for ISA1/n are more stable and
the variances are reduced by increasing nT .

4.2 Mixing Condition

In this Section, we illustrate the impact of the mixing condition that is es-
sential for the convergence results given in Sections 2.3 and 3.3. For this
purpose, we track a stiff arm, i.e., x = α. We suppose that the arm move-
ment is given by the process Xt := Xt−1 + Vt, where X0 := 0 and Vt are i.i.d.
uniform random variables on [−10, 10]. Let us examine the events where
Vt ∈ [9.75, 10] for 1 ≤ t ≤ 400. Even though the probability that this occurs
is very small, it is strictly greater than zero.

For the simulations, we used an APF with ISA0 and parameters n =
100, T = 2, β0 = 3.2. The initial distribution was δ0 and the mutation
kernels Kt(x, ·) were uniform distributions on [x − 2, x + 2]. When uniform
kernels were chosen for prediction in accordance with the process Xt, the
APF was not capable of tracking the articulated arm as shown in Fig. 4.8.
The algorithm lost track of the arm after some time and was not able to
recover afterwards. For comparison, the uniform kernels were replaced by
Gaussian kernels with variance 100, which satisfy the mixing condition since
the state space is bounded. In this case, the arm was successfully tracked
over a sequence of 400 images, see Fig. 4.9. We carried out the simulations
25 times. This shows that the APF may fail when the mixing condition is
not satisfied, even though the particles are correctly predicted according to
the dynamics.

4.3 Filtering Problem

We already mentioned that the GPF outperforms the APF for the filtering
problem since the latter does not approximate the posterior distribution. An
example is illustrated in Fig. 1.1, where we applied the algorithms to a one-
dimensional nonlinear filtering problem. The signal and observation process
are defined by

Xt =
Xt−1

4
+ 5

Xt−1

1 + X2
t−1

+ 2 cos(1.2 t) + Vt, Yt =
X2

t

20
+

X3
t

100
+ Wt, (4.3.1)
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Figure 4.8: When the mixing condition is not satisfied, the APF loses track
of the articulated arm after some time and is not able to recover. From top

left to bottom right: t = 1, 5, 158, 165.

Figure 4.9: When the mixing condition is satisfied, the APF is able to track
the articulated arm. From top left to bottom right: t = 1, 5, 158, 165.
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where Vt and Wt are independent zero-mean Gaussian random variables with
variances 10 and 1, respectively. The distribution of X0 is a standard normal
distribution. This example is similar to the studied problem in [12], where
the extended Kalman filter performs poorly.

We evaluated the APF with various parameter settings as in the arm
example and repeated each simulation with 200 time steps 100 times. The
performance was measured by the resulting root mean square error from the
true signal, where nT = 300 was fixed. The best result of the APF is plotted
in the diagram of Fig. 1.1 with RMSE of 2.7988. For comparison, the error
of GPF was only 2.6037.
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5 Conclusions

We have proposed two algorithms, namely interacting simulated annealing
(ISA) and interacting annealing sampling (IAS), which combine interact-
ing and annealing strategies. Based on Feynman-Kac models, we provided
convergence results and conditions that are sufficient for convergence. While
ISA converges to the regions of global minima, IAS approximates a given
distribution.

We showed that the annealed particle filter (APF ), which performs an
ISA for each time step, does not solve the filtering problem since ISA does
not approximate the posterior distribution in contrast to IAS. This was con-
firmed by an example where the generic particle filter (GPF ) outperformed
the APF . For a tracking application, however, the models for a filtering
problem are often unknown whereas a fitness function can be easily designed
from the available image features. In this case, ISA determines the global
optimum of the fitness function, which leads to a good performance of the
APF in contrast to GPF as we have demonstrated in our experiments.

The ISA approximates a flow of Feynman-Kac distributions that con-
verges to the regions of global minima. The optimal parameters are therefore
a trade-off between the approximation of the global minima by the flow and
the approximation of the flow by particles. The first consequence of this are
the dynamic variance schemes that outperform constant and deterministic
variance schemes as we have shown. It also influences the optimal number
of annealing runs provided that nT is fixed. When the global optimum is
easily determined by the flow, the error is mainly introduced by the particle
approximation. Increasing the number of particles n by reducing the number
of annealing runs improves the performance. More annealing runs, on the
contrary, provide a better localization of the global optimum by the flow.

Based on two versions of the selection kernel, we compared the algorithms
ISA0 and ISA1/n where the latter gives a better convergence result of the
particle approximation if n > g is satisfied. In our experiments, however,
we found no evidence that one kernel is better than the other. From the
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practitioner’s point of view, the kernel can be selected as follows: When the
number of particles is clearly greater than g, we recommend to use ISA1/n for
finding the optimal setting since the error curves were more stable with re-
spect to the parameters. Afterwards, it is usefull to apply the ISA0 with the
final setting as it cannot be guaranteed for very complex weighting functions
that the chosen parameters are optimal. The kernel with the best results is
then selected.

Furthermore, we demonstrated in our experiments that the error declines
by increasing nT and that the ISA is robust to noise. Since the piecewise
constant annealing scheme given in Theorem 3.3.1, which is sufficient for
convergence, is too slow for most applications, we compared various annealing
schemes where the logarithmic schemes performed best. Although we suspect
that these schemes work well also for more complex applications, the results
do not provide evidence for a general conclusion since the optimal annealing
scheme is likely to depend on the shape of the weighting function and thus
on the application. Hence, more experiments for a wide range of applications
would be necessary.

Finally, we gave an example that illustrates the impact of the mixing
condition on the APF , which is essential for the uniform convergence of the
GPF and the convergence of the ISA.
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