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Abstract. State-of-the-art methods for object detection are mostly based
on an expensive exhaustive search over the image at different scales. In
order to reduce the computational time, one can perform a selective
search to obtain a small subset of relevant object hypotheses that need
to be evaluated by the detector. For that purpose, we employ a regres-
sion to predict possible object scales and locations by exploiting the local
context of an image. Furthermore, we show how a priori information, if
available, can be integrated to improve the prediction. The experimental
results on three datasets including the Caltech pedestrian and PASCAL
VOC dataset show that our method achieves the detection performance
of an exhaustive search approach with much less computational load.
Since we model the prior distribution over the proposals locally, it gen-
eralizes well and can be successfully applied across datasets.

1 Introduction

Object detection is a well studied field in computer vision. While most works
have focused on improving the accuracy [1], the computational burden of de-
tectors is another important issue that needs to be solved. Object detectors
commonly process the image at different scales, where only a small region of the
image is processed for evaluating a single object hypothesis. In the extreme case,
all possible rectangular regions, termed windows, are checked for whether they
contain an instance of the object class. Although not all windows are classified
in practice, a dense sampling of the windows with a small stride is necessary to
obtain a high detection accuracy [2]. Since these sliding window approaches are
very expensive, several strategies have been proposed for reducing the processing
time. Among them, cascading [3, 4] is the most popular approach. It makes use
of the fact that some parts of the image can be easily discarded with simple
features and classifiers, such that a full processing of these image parts can be
avoided. Cascading is specific for a classifier and can significantly reduce the
computation time at a small expense of accuracy. When object detection is for-
mulated as an optimization problem, where one searches for instances with the
highest detection score in the full image, branch-and-bound techniques can be
used to search the space of windows more efficiently [5].

A different concept is followed by approaches that generate window proposals.
While sliding window can be regarded as sampling uniformly from the set of
windows, one can also learn a distribution over the set of windows that gives
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a) b)

Fig. 1. When presented with an image a), our algorithm sees patches which might
not contain any pedestrians, but whose visual appearance suggests that there could be
some pedestrians walking on the sidewalk below.

a higher probability to parts of the image where objects are expected and a
lower probability to parts where objects are not expected. The advantage of the
sampling methods is that highly probable candidates are processed first, such
that the number of samples can be easily adapted to the available computational
resources.

Previous work on proposal generation [6–10] has focused on disregarding
windows that do not contain the object. For instance, sky or a building facade
are ignored for detecting pedestrians. We propose to randomly sample very few,
but large image patches and extract information about the image context from
each one of them based on appearance. These nuggets of information are later
combined to estimate a probabilistic prior distribution over object location in
the image. For instance, instead of ignoring a facade of a building, it is a good
indicator for pedestrians and their scales on the sidewalk below (see Fig. 1).

In order to model local probabilistic priors from image context, we learn a
regression from large local image patches to its closest annotated object from
training data. During testing, we combine the local probabilities from several
patches to obtain a distribution over the space of windows. In our experiments,
we show that on the challenging Caltech benchmark [11] as little as 0.2% of the
windows need to be evaluated to achieve the same performance as processing
all windows. Although local priors do not assume that the recording settings
for training and testing data are the same, as we will show in a cross-dataset
experiment, they can be combined with global priors if such global information
is available.

2 Related work

The exhaustive search methods based either on the sliding window approach [2]
or on part-based models [4, 12, 13] are well-established approaches for detecting
objects and proved to be the state-of-the-art according to recent Pascal VOC
challenges [1]. The number of windows examined in an exhaustive search, how-
ever, grows at least linearly with the number of image pixels. Since the image
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needs to be upscaled for detecting small objects, the time for inspecting all win-
dows can exceed the runtime requirements of real-world applications already for
images as small as 320× 240 pixels even on modern computers.

As there are usually far fewer windows containing an object of interest than
the windows without it, methods were developed based on a cascade of classi-
fiers [3, 14–17]. High-confident negatives are rejected in early stages of the cas-
cade and more computational time is spent on windows that are more difficult
to classify. The approach was improved by studying various combinations of fea-
tures and attained state-of-the-art speed performance at a reasonable accuracy
rate for pedestrian detection [18].

While conventional cascade classifiers still have to inspect the whole set of
windows, the Efficient Subwindow Search (ESS) [5] and its cascaded variant [19]
employ a branch-and-bound scheme to inspect only relevant regions. It approxi-
mates the response of the original classifier over a region by analytically derived
bounding functions. For object detection, the image is first split into large re-
gions and the search then continues recursively in the region ranked highest.
The recursion stops when the window with the highest score is found. Since the
performance of ESS depends on the tightness of the bounding functions, it has
been also proposed to estimate the bounding functions [20].

Other methods focus on an efficient selective search for candidate windows
which then serve as input for a classifier. In [7], it was proposed to estimate
a likelihood function over the windows based on the response of some classi-
fiers. The method refines the likelihood step-wise using Monte Carlo sampling to
specifically draw samples from regions where target objects are more likely. Each
refinement stage employs a more accurate and computationally more intensive
classifier. This method basically combines coarse-to-fine search with cascading.
The work in [6] employed a two-stage procedure. In the first stage, separate
classifiers are applied, one for each aspect ratio/scale. The windows are then
ranked by a pre-trained ranking classifier. In [21] and based on [22], the authors
learn to predict candidate windows from discriminative visual words. A different
bottom-up procedure was proposed in [23]: the image is first segmented by an
unsupervised technique into locally coherent regions that are later reshaped and
combined by the algorithm into rectangles, some of which are discarded as un-
likely to contain an object. The approach of [9] begins with over-segmenting the
image, proceeds with gradually joining similar regions to construct a hierarchical
segmentation and then generates candidate windows based on such a pyramid
of segmentations. In [10], a näıve Bayes model is trained to distinguish windows
with high “objectness”, defined as the probability of a window containing an
object of all classes of interest, from windows containing background based on
multiple cues. Given a testing image, windows on a regular grid are scored based
on saliency. Candidate windows are then sampled from a distribution given by
the saliency scores and the trained model. In [8], an initial set of about 105 win-
dows is generated based on super-pixel segmentation of the image and a global
prior distribution estimated from the training images. The features measuring
“objectness” are extracted for the windows and based on these features the final
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set of 100 or 1000 windows is selected. The approach of [24] estimates surface
orientation and camera viewpoint to predict the scales and positions of the ob-
jects in order to improve the accuracy of object detectors. Since making these
estimations in a general setting is still a very difficult problem, the method is
not applicable for general, time-critical applications.

In contrast to previous approaches for proposal generation that focus on
disregarding local image parts that are unlikely to contain an object, we propose
a complementary approach where local image parts predict the occurrence of
the closest object as shown in Fig. 1. While our approach uses image context to
reduce the search space to promising windows, there are various methods that
employ scene context or inter-object relations to boost the detection accuracy
[25–29]. This is, however, not the focus of the paper.

3 Local Context Priors

Due to the high variation of objects with respect to image position, size, and
aspect ratio, the number of image regions, termed windows, that need to be
classified in order to detect an object, easily exceeds 1 million for a single image.
In particular, detecting pedestrians on a wide range of scales as in the Caltech
benchmark [11] is very expensive. In this work, we investigate a method to
reduce the number of windows to be evaluated in order to get the same results
as commonly used detectors like [2] that process all windows.

The sliding window principle can be formulated as sampling from the set of
all windowsW, where a window is denoted by W = (x, y, w, h) with (x, y) being
the center of the window, w the width, and h the height of the window. The
sampling is performed according to a distribution p(W |I), which depends on the
image I. Each window is then classified according to a probability p(c|W, I) or a
scoring function that gives high values to windows that are tight bounds around
an instance of the object class c. Although not all detectors are probabilistic, we
use the probabilistic formulation:

p(c|W, I)p(W |I). (1)

For sliding window detectors, p(W |I) is a uniform distribution over W. We aim
to learn a distribution p(W |I) that gives a higher probability to image regions
where instances of the object class c can be expected from the context. In our
case, the probability is not modeled globally over the full space but locally over
local image patches P(y) located at y as illustrated in Fig. 1. In this way, we
do not have to process the full image first and can thus compute very efficiently
local priors over W from local image information. Another advantage is that
the sampled patches do not need to include the objects of interest. Instead,
the context gives information where relevant objects could be. For instance, the
building in Fig. 1 gives information that the closest pedestrians are expected
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below the building. In order to handle N local priors, we combine them by

p(W |I) =
1

N

∑
i

p(W |P(yi)), (2)

where yi = (xi, yi) and p(W |P(yi)) = p((x− xi, y − yi, w, h)|P(yi)). (3)

The right hand side of (3) models the relative location of a window with respect
to the patch location yi. In this way, the probability becomes invariant to global
translations. The context is also not learned explicitly, but implicitly and di-
rectly from the image data. Hence, the approach does not require any expensive
computation and the prior (2) can be computed within 10ms as we will show in
the experiments.

For learning the local priors, we use regression forests [30] that have been
previously applied to a variety of regression problems in computer vision [31–34].
In the sequel, we outline the learning procedure of the priors and its application
for object detection.

3.1 Training

For learning a local prior p(W |P) given an image patch P, we have to collect
some training pairs (Pi,Wi). To this end, we randomly sample fixed-size patches
Pi from images that contain at least one annotated object. For each patch, we
then search for the closest annotated bounding box (x, y, w, h), with (x, y) being
the center of the bounding box, to the patch center yi and use the relative
position as window:

Wi = (x− xi, y − yi, w, h). (4)

In some cases, the closest bounding box does not correspond to the closest ex-
pected occurrence of an object. For instance, a building on the left hand side of a
street might be associated with a pedestrian on the right hand side of the street
since the training image captured only a scene where a pedestrian appeared on
the right hand side. In order to enforce locality and reduce noise since not all
plausible locations and scales of the objects are annotated, we only take patches
that have at least some overlap with an annotated bounding box; see Fig. 1.

Having collected the training pairs (Pi,Wi), we learn a regression forest as
in [30]. For each tree in the forest, we select a random subset of our training
data and train each tree recursively. To this end, we generate at each node a
set of binary tests. Each test t is defined by a random feature and a random
threshold and splits the training data arriving at the current node. We evaluate
the splitting quality of each test t using the information gain:

IGt = H(A)−
∑

k={0,1}

|Ak(t)|
|A|

H (Ak(t)) (5)

where H denotes the entropy, A the samples arriving at the node and Ak(t) the
split sets of A obtained by test t. For efficiency, we use a Gaussian approximation
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of the distribution over W as in [31, 33]:

H(A) = 2 (1 + log (2π)) +
1

2
log
(
|ΣW |

)
, (6)

where ΣW is the covariance matrix of the windows W in the set A.
Once the optimal split which maximizes the information gain is found, the

parameters of the test function are stored at the node and the construction of
the tree continues recursively on the two subsets given by the split. As soon as
the number of samples arriving at the node is below a threshold or the maximal
depth is reached, a leaf node is created. At each leaf, we store the mean W and
covariance matrix ΣW of the windows W ending in the leaf during training.

3.2 Testing

For testing, we randomly sample a set of patches P(yi) from the image as illus-
trated in Fig. 2. Each patch is then passed through the random forest consisting
of L trees, ending in a leaf l for each tree. Based on the normal distributions
p(W |l) = N (W ; W l, Σ

W
l ) stored at the leaves, we compute the average of the

leaves as in [30] and obtain the normal distribution given the patch P(yi):

p(W |P(yi)) = N (W ; W,ΣW ), (7)

W =
1

L

∑
l

(xl + xi, yl + yi, wl, hl), (8)

ΣW =
1

L2

∑
l

ΣW
l . (9)

Since the regression forest models only the relative location of the windows,
we have to add the patch center yi = (xi, yi) to the mean in (8). To obtain a
full distribution over the set of windows W, we combine the local priors of the
sampled patches P(yi) by a sum of Gaussians (2).

In order to use the local priors for object detection, we generate N samples
from the distribution and run an object detector on the image regions of the
sampled windows. Note that the local priors are specific to an object category,
but not to any detector. For each sampled patch P(yi), we sample ρ windows
from the corresponding normal distribution (7). Keeping the overall number of
windows N fixed, the number of sampled patches P(yi) is then given by N

ρ . The

parameter ρ is basically a trade-off between sampling locally based on (7) and
exploring the full image by sampling more patches; see Fig. 2.

While (2) weights the Gaussians uniformly, we have also investigated to
weight the Gaussians based on the variance. To this end, we weight each Gaus-
sian p(W |P(yi)) by wi ∝ 1

log(|ΣW |) , where
∑
i wi = 1. This is motivated by the

observation that leaves with high variance are less confident about the location
of the closest objects than leaves with low variance. Therefore, the weighting
focuses the local sampling on the patches that are more confident. In our exper-
iments, we observed that the weighting of the Gaussians improves the results
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a) b)

Fig. 2. Example illustrating the local prior method. a) Exploration patches (blue) are
generated uniformly at random and suggested windows (cyan) are sampled from the
estimated distributions. b) Hits (ground truth is painted green, hits are painted purple).

slightly for small sample sizes, but the difference to (2) becomes negligible for
larger sample sizes.

4 Experimental results

We focus our evaluation on three challenging datasets. The Caltech pedestrian
detection benchmark [11] contains real-world sequences captured with a camera
mounted on a car. The publicly available dataset consists of about 1M frames in
640× 480 pixel resolution, split over a training and a testing set. A few example
images are shown in Fig. 3. We followed the evaluation protocol of [11] and used
the settings “reasonable” and “overall”. The corresponding sets will be referred
to as caltechreasonable and caltechoverall. For the parameter evaluation, we did
not use all the frames, but subsets (every 300th frame; 402 frames in total). We
denote them caltech300reasonable and caltech300overall. The second dataset for pedes-
trian detection is taken from [35]. It was recorded from a mobile platform in an
urban environment and contains 290 annotated images. We rescaled the images
from the resolution 384×288 to 640×480 pixels. We will refer to this dataset as
amsterdam and use it only for testing. We also evaluated our method on PAS-
CAL VOC 2007 and 2006 [1] to further examine the performance on other object
categories and non-urban environments. In the following figures, the mean value
and standard deviation are reported over five runs.

4.1 Caltech

We chose patch size to be large relative to the image and fix P to 256×256 pixels.
As image features, we use histograms of gradients [2] (HOG) or generalized Haar
features [36] which can be efficiently implemented using integral images [37]. We
will refer to these features as Haar features. As a pre-processing step before
feature extraction, patches are down-sampled to the dimension of 128 × 128
pixels.

The regression forests have been trained with 5 trees, where each tree was
trained on a random subset of 450 images containing at least one pedestrian.
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a) b)

c) d)

Fig. 3. Results on images from Caltech pedestrian benchmark [11] obtained by our
method with ρ = 20, Haar features, and 5,000 sampled windows. Each image triple
consists of: 1) ground truth (green), 2) suggested windows hitting the ground truth
(purple), 3) density over the centers of the windows. a) The sidewalk area is correctly
detected. b) 5,000 samples are not enough to obtain good hits for the pedestrians.
c) Pedestrians are correctly recognized in an indoor setting. d) The method correctly
detects that pedestrians are less likely to appear in the middle of the street. Best viewed
in color.

From these images, 50,000 patches P were extracted for training. For the training
of a single node, 30,000 random tests were assessed. The minimal number of
patches arriving at a leaf was set to 10 and the maximum tree depth was set to
20.

Fig. 3 shows a few example results from caltechoverall. Given an image, the
method computes the distribution consisting of a sum of Gaussians over the
windows W = (x, y, w, h). The figure visualizes only the distribution over (x, y).
The distributions change depending on the image. While the distributions in
Fig. 3a) and b) focus on the sidewalk which is nearly horizontal in these images,
the distributions in c) and d) cover a larger area of the image. Since the sampled
windows are limited to 5,000 in this example, some of the pedestrians are missed
in b) although the estimated distribution is reasonable.

For quantitative evaluation, we classified the proposed windows using a SVM
classifier and histogram of gradients features as in [2]. In our experiments, we
used the OpenCV implementation of [2]. We will refer to it as classifier HOG.
Although our method can generate continuous values for the windows, we limited
the results to the set of windows generated by the sliding window approach in
order to provide a fair comparison. We used a multiplicative scale stride of 1.05
and positional stride of 4 pixels. For the “reasonable” setting, the image scale
range was [0.5, 2.5] and for the “overall” setting, it spanned [0.5, 5.2].

In Fig. 4a), we show the performance with respect to the parameters ρ and
the number of sampled windows N from the prior distribution. As measure, we
use the log-average miss rate as in [18]. As one can see, the miss rate decreases
with an increasing number of sampled windows. The impact of ρ can be said
to be negligible up to a certain level. For the rest of the experiments, we used
ρ = 20 as parameter for the local priors (LP 20).

To evaluate the impact of the patch size, we varied the patch size for LP
20 HOG with 10k windows on caltechreasonable. The log-avg. miss rates were:
0.79 (32×32), 0.75 (64×64), 0.74 (128×128), 0.74 (256×256), 0.72 (384×384).
This shows that the impact of the particular size is rather small as long as the
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Fig. 4. a) Log-average miss rate with respect to parameter ρ. b) Log-average miss
rate with respect to the weight of the global image coordinates (pos.). Parameter ρ
was fixed to ρ = 20. Both experiments were evaluated on caltech300

reasonable with HOG
features and in conjunction with HOG classifier.

patches are reasonably large. The patch size of 256×256 is used for the rest of
the experiments.

In Fig. 5a) and 6, we compare our method with the sliding window approach
on the Caltech dataset using classifier HOG. While the sliding window approach
processes about 1 million windows in “reasonable” setting, LP 20 with HOG
features requires only 10,000 - 50,000 windows to achieve a comparable perfor-
mance. This corresponds to 1.1%-5.4% of all windows. In the “overall” setting
(Fig. 6b), the computational advantage of our method becomes even more pro-
nounced as the search space grows larger with the increasing number of scales:
sliding window processes 5 million windows, while our method needs to inspect
only 0.2%-1.0% thereof for a comparable performance. Since also detecting small
objects is of utter importance for many real-world application like driver assis-
tance systems [11], the “overall” setting is highly relevant.

We also compared HOG features with Haar features for learning the local
priors. While the Haar features perform worse than the HOG features, the Haar
features are 9 times faster to compute.

We also compare the local priors to a global prior (GP). It has been shown
that spatial Gaussian priors are the most important cue for modeling visual at-
tention [38] so we model the global prior as Gaussian over the set of windows
given in absolute spatial coordinates and estimated from the training annota-
tions. Since in Caltech dataset the camera was mounted on a car, sampling from
the global prior already improves the sliding window approach. Therefore, we
combined the global and local priors by adding the absolute (x, y) coordinates
of the sampled training patch centers as additional features for learning the re-
gression forests, where the impact of the local image features (HOG) and the
global image coordinates (pos.) were weighted. The results for different settings
are shown in Fig. 4b). Learning only with image coordinates corresponds to
learning a global prior, which performs worse than HOG combined with patch
position. Fig. 5 and Fig. 6 show that the global information improves the local
prior for this dataset and performs as good or better than the global prior. The
miss rate / false positive per image curves computed for a single evaluation run
are shown in Fig. 7a).
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Fig. 5. Comparison between HOG classifier and Deformable parts classifier (DP) per-
formed on caltech300

reasonable (upper row) and caltech300
overall (bottom row). The global

prior (GP) and sliding window serve as base line. The classifier HOG (a) is outper-
formed by the classifier DP (b).

In order to show that the learned priors are not specific to a detector, we
employed a state-of-the-art classifier [4] (referred here as classifier DP). The
evaluation with the classifier DP is presented in Fig. 5b). When Fig. 5a) and
Fig. 5b) are compared, it becomes evident that the classifier DP has a lower
miss rate than the classifier HOG, which agrees with the results presented in the
literature [11]. The performance of our method changes accordingly.

We report here the average runtime of our method in conjunction with the
classifier HOG. Sliding window approach took 18s to inspect 932k windows in
“reasonable” setting, and 84s in “overall” setting (single-threaded; Intel Core i7-
2600K CPU with 4 GB RAM). For benchmark, we used our method to sample
5k windows and run a classifier over them. The generation of windows (ρ = 20)
with HOG features took 90ms and with Haar features 10ms, respectively. Adding
location coordinates to the features did not affect the average runtime. Overall,
our approach requires 0.8s for the “reasonable” and 1.3s for the “overall” setting,
which corresponds to a runtime reduction by a factor of 23 and 65, respectively.
Since the local priors are computed in few milliseconds, they can be used to
speed up faster detectors like [18] or to use slower, but more accurate detectors.

Finally, we evaluated on caltechreasonable the benefit of a regression compared
to a classification that just discards parts of the image. To this end, a random
forest with HOG features was trained to discriminate patches containing objects
with the same settings as before. During test time, we ranked patches on a dense
grid and thoroughly explored the best ones by sliding window. The inspection
stopped at 50k inspected windows. The classification with log-avg. miss rate
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Fig. 6. Performance comparison evaluated on a) caltechreasonable and b) caltechoverall

using the classifier HOG. The local context priors were trained on corresponding
caltechreasonable and caltechoverall datasets.
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Fig. 7. a) Comparison of miss rate / false positive per image curves evaluated on
caltechreasonable with classifier HOG in a single run (log-avg. miss rate is indicated in
the legend). The global prior (GP) and sliding window are used as base lines. The
number of suggestions is indicated as suffix. The best performance is achieved by
local priors combined with global image coordinates. b) Evaluation on amsterdam
in “reasonable” setting with local priors trained on caltechreasonable. Methods relying
on global features fail, while the ones based only on local features successfully adapt.

0.78 for 256×256 and 128×128 patch size performs worse than the regression LP
20 HOG (Fig. 6). When we ranked the patches based on the classification, but
sampled windows with LP 20 HOG, the performance did not differ significantly
for a patch size 256×256. For 128×128, however, the performance improved for
5k windows: 0.71 (5k), 0.70 (10k), 0.66 (50k). This shows that the combination
of ranking or discarding image parts with predicting the scale and location of
objects using a regression is worth to be explored more in detail in the future.

4.2 Amsterdam

To evaluate the generalizability of the local prior, we have performed a cross-
dataset experiment. To this end, the local prior was trained on caltechreasonable
and applied to amsterdam. The evaluation protocol and the parameters are the
same as for the Caltech dataset. The results are presented in Fig. 7b). Due to



12 Marko Ristin, Juergen Gall, Luc Van Gool

variability in camera position, the global prior (GP) completely fails, while the
local priors LP 20 without global features still perform well, thus indicating that
the local prior does not overfit to the dataset bias in contrast to the global prior.

4.3 PASCAL VOC

In order to demonstrate that the approach also generalizes to other categories
than pedestrians in urban environments, we have evaluated the approach on
PASCAL VOC 2007 dataset [1].The evaluation protocol “comp3” was followed.
The local priors were trained individually for each class on the “trainval” sets
and applied to the respective “test” sets. Patch size was set to 128×128. Prior to
feature extraction, patches were down-sampled once. Classifier DP [4] was used
for the classification. In contrast to the pedestrian datasets, the performance
of the Haar features is slightly better than the HOG features. While the HOG
features capture shape better than Haar features, which is very important in
urban environments, the Haar features also capture color information, which is
a useful cue for the general categories. We therefore report results only for Haar
features. Table 1a) shows the comparison with [4] as baseline, a related method
for window proposal [9] and a branch-and-rank approach [20]. Except for one
category, we outperform [20] in terms of average precision (AP), while we match
the performance of [9] in many categories, but at significantly lower runtime
cost. Our approach requires 7 ± 2ms for proposal generation whereas [9] takes
at least 8s for the segmentation.

Due to the subsampling of window space, our approach misses some objects
(see Table 1a)), but also removes some false positives. Since [4] is not perfect,
subsampling can therefore even increase the AP. As the number of sampled
windows increases, the AP converges to the baseline.

We evaluated our method with the same parameter settings on PASCAL
VOC 2006 [1] to compare its sampling performance with two other selective
search methods [6] and [19]. As in [6, 19], we use the area under overlap-recall
curves as measure. Both reference methods proposed 1,000 windows. The results
are presented in Table 1b). We outperform [19] on all but two categories and get
close to the state-of-the-art [6] on some categories. While [6] and [19] require at
least 400ms on average, our method is by more than a factor of 57 faster and
requires only 7ms.

5 Conclusion

In this work, we presented a novel method for generating window proposals
based on the local context. It sparsely examines the image and incorporates the
knowledge extracted from a patch even if it does not contain an object of inter-
est. While the approach generalizes well and can be successfully applied across
datasets and for various categories, it can also be adapted to make use of global
a priori knowledge. The experiments show that it achieves the detection per-
formance of a computationally expensive exhaustive search in a fraction of the
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Table 1. a) Comparison of performance on PASCAL VOC 2007 by average precision
(AP). Our method outperforms [20] and [10] and matches [9] at lower runtime cost.
b) Comparison of performance on PASCAL VOC 2006 in terms of area under overlap-
recall curves (AUC). We generally outperform [19] and in some categories come close
to state-of-the-art [6]. Our method, however, is at least by a factor of 57 faster.
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[6] 70.7 70.6 66.6 73.2 69.9 71.1 71.1 72.8 65.5 67.9 69.9
[19] 62.4 58.8 49.6 76.7 52.5 71.8 63.7 63.4 41.7 44.2 58.5

time. The approach also achieves competitive results compared to state-of-the-
art approaches for proposal generation, but at significantly lower runtime cost.
In further work, we would like to test the performance of our method with dif-
ferent features and other classifiers as well as to combine it with complementary
methods for reducing the runtime, like cascading.
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13. Pedersoli, M., Vedaldi, A., Gonzàlez: A coarse-to-fine approach for fast deformable
object detection. In: CVPR. (2011)

14. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Computationally efficient face
detection. In: ICCV. (2001)

15. Brubaker, S., Mullin, M., Rehg, J.: Towards optimal training of cascaded detectors.
In: ECCV. (2006)

16. Zhang, W., Zelinsky, G., Samaras, D.: Real-time accurate object detection using
multiple resolutions. In: ICCV. (2007)

17. Felzenszwalb, P., Girshick, R., McAllester, D.: Cascade object detection with de-
formable part models. In: CVPR. (2010)

18. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral Channel Features. In: BMVC.
(2009)

19. Lampert, C.: An efficient divide-and-conquer cascade for nonlinear object detec-
tion. In: CVPR. (2010)

20. Lehmann, A., Gehler, P., Van Gool, L.: Branch & rank: Non-linear object detection.
In: BMVC. (2011)

21. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object
detection. In: ICCV. (2009)

22. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In:
CVPR. (2007)

23. Russakovsky, O., Ng, A.: A steiner tree approach to efficient object detection. In:
CVPR. (2010)

24. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. IJCV 80 (2008)
25. Torralba, A., Murphy, K., Freeman, W.: Using the forest to see the trees: exploiting

context for visual object detection and localization. Commun. ACM 53 (2010) 107–
114

26. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative models for multi-class object
layout. In: ICCV. (2009)

27. Divvala, S., Hoiem, D., Hays, J., Efros, A., Hebert, M.: An empirical study of
context in object detection. In: CVPR. (2009)

28. Sadeghi, M., Farhadi, A.: Recognition using visual phrases. In: CVPR. (2011)
29. Li, C., Parikh, D., Chen, T.: Extracting adaptive contextual cues from unlabeled

regions. In: ICCV. (2011)
30. Breiman, L.: Random forests. Machine Learning 45 (2001) 5–32
31. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for

efficient anatomy detection and localization in ct studies. In: Medical Computer
Vision Workshop. (2010)

32. Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.S.: Hough forests for
object detection, tracking, and action recognition. TPAMI 33 (2011) 2188–2202

33. Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random
regression forests. In: CVPR. (2011)

34. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regres-
sion of general-activity human poses from depth images. ICCV (2011)

35. Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L.: Dynamic 3d scene analysis
from a moving vehicle. In: CVPR. (2007)

36. Dollár, P., Tu, Z., Tao, H., Belongie, S.: Feature mining for image classification.
In: CVPR. (2007)

37. Crow, F.: Summed-area tables for texture mapping. SIGGRAPH Comput. Graph.
18 (1984) 207–212

38. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans
look. In: ICCV. (2009)


