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Abstract. Hand motion capture has been an active research topic, fol-
lowing the success of full-body pose tracking. Despite similarities, hand
tracking proves to be more challenging, characterized by a higher dimen-
sionality, severe occlusions and self-similarity between fingers. For this
reason, most approaches rely on strong assumptions, like hands in isola-
tion or expensive multi-camera systems, that limit practical use. In this
work, we propose a framework for hand tracking that can capture the
motion of two interacting hands using only a single, inexpensive RGB-D
camera. Our approach combines a generative model with collision detec-
tion and discriminatively learned salient points. We quantitatively eval-
uate our approach on 14 new sequences with challenging interactions.

1 Introduction

Human body tracking has been a popular field of research during the past
decades [25], recently gaining more popularity due to the ubiquity of RGB-D
sensors. Hand motion capture, a special instance of it, has enjoyed much re-
search interest [11] due to its numerous applications including, but not limited
to, computer graphics, human-computer-interaction and robotics.

Despite similarities, robust techniques [40] for full-body tracking are insuffi-
cient for hand motion capture, as the latter is more complicated on numerous
fronts. Hands are characterized by more degrees of freedom, formulating a higher
dimensional optimization problem. Severe occlusions are a usual phenomenon,
being either self-occlusions or occlusions from another hand or object. Similarity
in shape and appearance causes ambiguities for the differentiation between fin-
gers and hands. Fast motion and lower resolution of hands in images constitute
further complicating factors.

Despite theses challenges, there has been substantial progress in hand motion
capture in recent years. Ballan et al. [3] have presented a system that successfully
captures the motion of two hands strongly interacting with each other and an
additional object. Although the approach achieves remarkable accuracy, it is
based on an expensive and elaborate multi-camera system. On the other hand,
Oikonomidis et al. [27–29] have presented a real time hand tracker using just
a single off-the-shelf RGB-D camera. Despite their success under challenging
scenarios, the exhibited accuracy is not as precise as [3].
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Fig. 1. Qualitative results of our pipeline. Each pair shows the aligned RGB and depth
input maps after depth thresholding, along with the pose estimate output

Our approach for tracking the pose of two strongly interacting hands is
inspired by Ballan et al. [3] and combines a generative model with an occlu-
sion handling method and a discriminatively trained detector for salient points.
While [3] relies on an expensive capture setup with 8 synchronized and calibrated
RGB cameras recording FullHD footage at 50 fps, we propose an approach that
captures hand motion of two interacting hands using a cheap RGB-D camera
recording VGA resolution at 30 fps. We evaluate our approach on 14 annotated
sequences1, which include interactions between hands. We further compare our
method to the single hand tracker [27] on sequences with one hand, showing that
our approach estimates the hand pose with higher accuracy than [27].

2 Related Work

The study of hand motion tracking has its roots in the 90s [32,33]. Although the
problem can be simplified by means of data-gloves [10], color-gloves [48], mark-
ers [47] or wearable sensors [21], the ideal solution pursued is the unintrusive,
marker-less capture of hand motion. Even until recently the study was mainly
confined to the case of a single isolated hand [2,17,24,27,41,42,45]. However, in
pursuit of more realistic scenarios, research effort was directed towards the case
of a hand interacting with an object [15,16,28], two hands interacting with each
other [3, 29] and with an additional object [3]. Multiple objects can be tracked
by means of hand tracking and physical forces modeling [22].

An analytical review of the field can be found in the work of Erol et al. [11]. In
this work a taxonomy is presented, separating the methods met in the literature
in two main categories, namely model-based and appearance-based.

Generative-model approaches [17,31,42] are based on an explicit model used
to generate pose hypotheses, which are evaluated against the observed data.
The evaluation is based on an objective function which implicitly measures the
likelihood by computing the discrepancy between the pose estimate (hypothesis)
and the observed data in terms of an error metric. To keep the problem tractable,
each iteration is initialized by the pose estimate of the previous step, relying
thus heavily on temporal continuity and being prone to accumulative error. The
objective function is evaluated in the high-dimensional, continuous parameter
space.

1The annotated dataset sequences and the supplementary material are available at
http://files.is.tue.mpg.de/dtzionas/GCPR_2014.html.

http://files.is.tue.mpg.de/dtzionas/GCPR_2014.html
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Discriminative methods learn a direct mapping from the observed image
features to the discrete [2, 34, 35] or continuous [7, 20, 36, 40] target parameter
space. Most methods operate on a single frame [2, 7, 36, 40], being thus immune
to pose-drifting due to error accumulation. Generalization in terms of capturing
illumination, articulation and view-point variation, can be realized only through
adequate representative training data. Acquisition and annotation of realistic
training data is though a cumbersome and costly procedure. For this reason
most approaches rely on synthetic rendered data [20, 35, 40] that has inherent
ground-truth. However, the discrepancy between realistic and synthetic data is
an important limiting factor, while special care is needed to avoid over-fitting to
the training set. The accuracy of discriminative methods heavily depends on the
invariance, repeatability and discriminative properties of the features employed
and is lower in comparison to generative methods.

A discriminative method can effectively complement a generative method,
either in terms of initialization or recovery, driving the optimization frame-
work away from local minima in the search space and aiding convergence to
the global minimum. Sridhar et al. [41] combine in a real time system a Sums-
of-Gaussians generative model with a discriminatively trained fingertip detector
in depth images using a linear SVM classifier. Ballan et al. [3] present an ac-
curate offline tracker that combines in a single framework a generative model
with a salient-point (finger-nail) Hough-forest [14] detector in color images. Both
approaches [3, 41], however, require an expensive multi-camera hardware setup.

3 Tracking Method

3.1 Hand Model

We resort to the Linear Blend Skinning (LBS) model [23], consisting of a trian-
gular mesh, an underlying kinematic skeleton and a set of skinning weights. In
our experiments, a triangular mesh of a pair of hands was obtained by a com-
mercial 3D scanning solution and the skeleton structure was manually defined.
Additional details are provided in the supplementary material1. The skinning
weight αv,j defines the influence of bone j on 3D vertex v, where ∑j αv,j = 1.
The deformation of the mesh is driven by the underlying skeleton with pose
parameter vector θ through the skinning weights and is expressed by the LBS
operator:

v(θ) =∑
j

αv,jTj(θ)Tj(0)−1v(0) (1)

where Tj(0) and v(0) are the bone transformations and vertex positions at the
known rigging pose. The skinning weights are computed using [4].

The global rigid motion is represented by a twist [6,26,31] in the special Eu-
clidean group SE(3). The articulation of the skeleton is expressed by a kinematic
chain of rigid components. For the sake of simplicity, joints with more than 1
degree of freedom (DoF) are modeled by a combination of revolute joints. Using
the exponential map operator, the transformation of a bone Tj(θ) with k DoF
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is therefore given by Tj(θ) =∏i<j Ti(θ)∏kj exp(θkj ξ̂kj), where θ is the parame-

terization of the full pose, θkj ξ̂kj is the twist representation of a single revolute
joint, and Ti<j denotes all previous bones in the kinematic chain.

In our experiments, a single hand consists of 31 revolute joints, i.e. 37 DoF.
Thus, for sequences with two interacting hands we have to estimate all 74 DoF.

Anatomically inspired joint-angle limits [1] constrain the solution space to
the subspace of physically plausible poses as in [3].

3.2 Optimization

Our objective function for pose estimation consists of four terms:

E(θ,D) = Emodel→data(θ,D) +Edata→model(θ,D)+
Esalient(θ,D) + γcEcollision(θ)

(2)

where θ are the pose parameters of the two hands and D is the current pre-
processed depth image. The first two terms minimize the alignment error of
the transformed mesh and the depth data. The alignment error is measured by
Emodel→data, which measures how well the model fits the observed depth data,
and Edata→model, which measures how well the depth data is explained by the
model. The last two terms are inspired by [3]. Esalient measures the consistency
of the generative model with detected salient points in the image. The main
purpose of the term in our framework is to recover from tracking errors of the
generative model. In our scenario with a single camera of low resolution, the 3D
positions of the detected points are less accurate and additional care is needed.
Ecollision penalizes intersections of fingers, ensuring physically plausible poses.

The objective Equation (2) is minimized by local optimization as described
in [31]. In the following, we give details for the terms of the objective function.

3.2.1 Preprocessing: For pose estimation, we first remove irrelevant parts
of the RGB-D image by thresholding the depth values and applying skin color
segmentation [19] on the RGB image. As a result, we get a masked RGB-D
image, which is denoted as D in Equation (2). The thresholding of the depth
image avoids unnecessary processing like normal computation for points far away
and the skin color segmentation removes occluding objects from the data.

3.2.2 Fitting the model to the data: The first term in Equation (2) aims
at fitting the mesh parameterized by pose parameters θ to the preprocessed data
D. To this end, the depth values are converted into a 3D point cloud based on the
calibration data of the sensor. The point cloud is then smoothed by a bilateral
filter [30] and normals are computed [18]. For each vertex of the model vi(θ),
with normal ni(θ), we search for the closest point Xi in the point cloud. This
gives a 3D-3D correspondence for each vertex. We discard the correspondence if
the angle between the normals of the vertex and the closest point is larger than
45○ or the distance between the points is larger than 10 mm. We can then write
the term Emodel→data as a least squared error of point-to-point distances:

Emodel→data(θ,D) =∑
i

∥vi(θ) −Xi∥2 (3)
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An alternative to the point-to-point distance is the point-to-plane distance, which
is commonly used for 3D reconstruction [9, 38,39]:

Emodel→data(θ,D) = ∥ni(θ)T (vi(θ) −Xi)∥2 (4)

The two distance metrics are evaluated in our experiments (Section 4.1.3). In
general, the point-to-plane distance converges faster and is therefore preferred.

3.2.3 Fitting the data to the model : Only fitting the model to the data is
not sufficient as we will show in our experiments. In particular, poses with self-
occlusions can have a very low error since the measure only evaluates how well the
visible part of the model fits the point cloud. The second term Edata→model(θ,D)
matches the data to the model to make sure that the solution is not degenerate
and explains the data as well as possible. Since matching the data to the model is
expensive, we reduce the matching to depth discontinuities [13]. To this end, we
extract depth discontinuities from the depth map and the projected depth profile
of the model using an edge detector [8]. Correspondences are again established by
searching for the closest points, but now in the depth image using a 2D distance
transform [12]. Similar to Emodel→data(θ,D), we discard correspondences with
a large distance. The depth values at the depth discontinuities in D, however,
are less reliable not only due to the depth ambiguities between foreground and
background, but also due to the noise of cheap sensors. The depth of the point in
D is therefore computed as average in a local 3x3 pixels neighborhood and the
outlier distance threshold is increased to 30 mm. The approximation is sufficient
for discarding outliers, but insufficient for minimization. For each matched point
in D we therefore compute the projection ray uniquely expressed as a Plücker
line [31,37,43] with direction di and moment mi and minimize the least square
error between the projection ray and the vertex vi(θ) for each correspondence:

Edata→model(θ,D) =∑
i

∥vi(θ) × di −mi∥2 (5)

3.2.4 Collision detection Collision detection is based on the observation
that two objects cannot share the same space and is of high importance in case
of self-penetration, inter-finger penetration or general intensive interaction.

For detecting collisions, we use bounding volume hierarchies (BVH) to effi-
ciently determine collisions between meshes [44]. Having found a collision be-
tween two triangles fs and ft, the amount of penetration can be computed as
in [3] using a 3D distance field in the form of a cone. Considering the case where
the vertices of fs are the intruders and the triangle ft is the receiver of the
penetration (similarly for the opposite case), the cone for computing the 3D
distance field Ψft is defined by the circumcenter of the triangle ft. Letting nft
denote the normal of the triangle, oft the circumcenter, and rft the radius of
the circumcircle, we have

Ψft(vs) =
⎧⎪⎪⎨⎪⎪⎩

∣(1 −Φ(vs))Υ (nft ⋅ (vs − oft))∣2 when Φ(vs) < 1

0 when Φ(vs) ≥ 1
(6)
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Φ(vs) =
∥(vs − oft) − (nft ⋅ (vs − oft))nft∥

− rft
σ
(nft ⋅ (vs − oft)) + r

(7)

Υ (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−x + 1 − σ when x ≤ −σ
− 1−2σ

4σ2 x
2 − 1

2σ
x + 1

4
(3 − 2σ) when − σ ≤ x ≤ +σ

0 when x ≥ +σ
(8)

The parameter σ defines the field of view of the cone and is fixed to 0.5 as in [3].
For each vertex penetrating a triangle, a force can be computed that pushes

the vertex back, where the direction is given by the inverse normal direction of
the vertex and the strength of the force by Ψ . Using point-to-point distances (3),
the forces are computed for the set of colliding triangles C:

Ecollision(θ) = ∑
(fs(θ),ft(θ))∈C

⎧⎪⎪⎨⎪⎪⎩
∑

vs∈fs
∥ − Ψft(vs)ns∥2 + ∑

vt∈ft
∥ − Ψfs(vt)nt∥2

⎫⎪⎪⎬⎪⎪⎭
(9)

Though not explicitly denoted, fs and ft depend on θ and therefore also Ψ , v and
n. For point-to-plane distances (4), the equation gets simplified since nTn = 1:

Ecollision(θ) = ∑
(fs(θ),ft(θ))∈C

⎧⎪⎪⎨⎪⎪⎩
∑

vs∈fs
∥ − Ψft(vs)∥2 + ∑

vt∈ft
∥ − Ψfs(vt)∥2

⎫⎪⎪⎬⎪⎪⎭
(10)

This term takes part in the objective function (2) regulated by weight γc. An
evaluation of different γc values is presented in our experiments (Section 4.1.1).

3.2.5 Salient point detection: Our approach is so far based on a generative
model, which generally provides accurate solutions, but recovers only slowly
from ambiguities and tracking errors. It has been shown in [3] that this can
be compensated by integrating a discriminatively trained salient point detector
into a generative model. In [3], a finger nail detector was applied to the high
resolution images and due to the multi-camera setup it could be assumed that
the nails become visible in some of the cameras. For low-resolution video of
a single camera, finger nails cannot be reliably detected. Instead we train a
fingertip detector [14] on raw depth data where the training data is not part of
the test sequences. More details are given in the supplementary material.

Since we resort to salient points only for additional robustness, it is usually
sufficient to have only sparse fingertip detections. We therefore collect detections
with a high confidence, choosing a threshold of cthr = 3.0 for our experiments.
The association between detections and fingertips of the model, as shown in
Table 1, is solved by integer programming [3, 5]:

argmin ∑
s,t

estwst + λ∑
s

αsws + λ∑
t

βt

subject to ∑
s

est + βt = 1 ∀t,

∑
t

est + αs = 1 ∀s

est, αt, βs ∈ {0,1}

(11)
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Table 1. The graph contains T mesh fingertips ξt and S fingertip detections δs. The
cost of assigning a detection δs to a finger ξt is given by wst as shown in table (a).
The cost of declaring a detection as false positive is λws where ws is the detection
confidence. The cost of not assigning any detection to finger ξt is given by λ. The
binary solution of table (b) is constrained to sum up to 1 for each row and column

(a)
Fingertips ξt V

ξ1 ξ2 . . . ξT α

D
et

ec
ti

o
n
s
δ s δ1 w11 w12 . . . w1T λw1

δ2 w21 w22 . . . w2T λw2

δ3 w31 w32 . . . w3T λw3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
δS wS1 wS2 . . . wST λwS

V β λ λ . . . λ ∞

(b)
Fingertips ξt V

ξ1 ξ2 . . . ξT α

D
et

ec
ti

o
n
s
δ s δ1 e11 e12 . . . e1T α1

δ2 e21 e22 . . . e2T α2

δ3 e31 e32 . . . e3T α3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
δS eS1 eS2 . . . eST αS

V β β1 β2 . . . βT 0

The weights wst are given by the 3D distance between the detection δs and the
finger of the model ξt. For each finger ξt, a set of vertices are marked in the
model. The distance is then computed as the centroid of the visible vertices of
ξt and the centroid of the detected region δs. For the weights ws, we investigate
two approaches. The first approach uses ws = 1 as in [3]. The second approach
takes the confidences cs of the detections into account by setting ws = cs

cthr
. The

weighting parameter λ is evaluated in the experimental section (Section 4.1.2).
If a detection δs has been associated to a finger ξt, we have to define corre-

spondences between the set of visible vertices of ξt and the point cloud of the
detection δs. If the finger is already very close and the distance is below 10 mm,
we do not compute any correspondences since the localization accuracy of the
detector is not higher. In this case the finger is anyway close enough to the data
to achieve a good alignment. Otherwise, we compute the closest points between
the vertices vi and the points Xi of the detection:

Esalient(θ,D) =∑
s,t

est

⎧⎪⎪⎨⎪⎪⎩
∑

(Xi,vi)∈δs×ξt
∥vi(θ) −Xi∥2

⎫⎪⎪⎬⎪⎪⎭
(12)

As in (4), a point-to-plane distance metric can replace the point-to-point metric.
When the overlap of the fingertip and the detection is less than 50%, replacing
the closest points Xi by the centroid of the detection leads to a speed up.

4 Experimental Evaluation

Benchmarking in the context of 3D hand tracking remains an open problem
[11] despite recent contributions [41, 46]. Related RGB-D methods [27] usually
report quantitative results only on synthetic sequences, which inherently include
ground-truth, while for realistic conditions they resort to qualitative results.

Although qualitative results are informative, quantitative evaluation based
on ground-truth is of high importance. We therefore manually annotate 14 new
sequences, 11 of which are used to evaluate the components of our pipeline and 3
for comparison with the state-of-the-art method [27] (details in the supplemen-
tary material). The standard deviation for 4 annotators is 1.46 pixels.
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Table 2. Evaluation of collision weights γc, using a 2D distance error metric (px).
Weight 0 corresponds to deactivated collision detection, noted as “LO +S” in Table 5.
Sequences are grouped (see supplementary material) in 3 categories: “Severe” for in-
tense, “some” for light and “no apparent” for imperceptible collision. Our highlighted
decision is based on the union of the “severe” and “some” sets, noted as “at least
some”

γc 0 1 2 3 5 7.5 10 12.5

All 5.40 5.50 5.63 5.23 5.18 5.19 5.18 5.21
Only Severe 6.00 6.18 6.37 5.73 5.66 5.67 5.65 5.71
Only Some 3.99 3.98 3.98 3.98 3.98 3.99 3.99 3.98

At least some 5.52 5.65 5.80 5.31 5.26 5.27 5.25 5.29

Table 3. Evaluation of the parameter λ of the assignment graph of Equation (11),
using a 2D distance error metric (px). Value λ = 0 corresponds to deactivation of the
detector, noted as “LO +C” in Table 5. Both versions of ws described in Section 3.2.5
are evaluated

λ 0 0.3 0.6 0.9 1.2 1.5 1.8

ws = 1
5.24

5.23 5.21 5.21 5.18 5.19 5.30

ws = cs
cthr

5.21 5.19 5.18 5.18 5.28 5.68

The error metric for our experiments is the 2D distance (pixels) between
the projection of the 3D joints and the corresponding 2D annotations. Details
regarding the joints taken into account in the metric are included in the supple-
mentary material. We report the average error over all frames of all sequences.

4.1 Pipeline Components

Our system is based on an objective function consisting of four terms, described
in Section 3.2. Two of them minimize the error between the posed mesh and
the depth data by fitting the model to the data and the data to the model.
A salient point detector further constraints the pose using fingertip detections
in the depth image, while a collision detection method contributes to realistic
pose estimates that are physically plausible. The above terms participate in the
objective function in a weighted scheme, which is minimized as in [31].

In the following, we evaluate the parameters used in our components and
assess both each component’s individual contribution to the overall system per-
formance, as well as of the combination thereof in the objective function (2).

4.1.1 Collision Detection The collision detection component is regulated
in the objective function (2) by the weight γc, so that collision and penetration
get efficiently penalized. Table 2 summarizes our evaluation experiments for the
values of γc. Although we choose γc = 10 for the present dataset, a generally
proposed range of values for new sequences would be between 5 and 10.

4.1.2 Salient Point Detection The salient point detection component de-
pends on the parameters ws and λ, as described in Section 3.2.5. Table 3 sum-
marizes our evaluation of the parameter λ spanning a range of possible values
for both cases ws = 1 and ws = cs

cthr
. Although the difference between the two
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Table 4. Evaluation of point-to-point (p2p) and point-to-plane (p2plane) distance met-
rics, along with iterations number of the optimization framework, using a 2D distance
error metric (px)

Iterations 5 10 15 20 30

p2p 7.39 5.31 5.11 5.04 4.97

p2plane 5.39 5.18 5.14 5.13 5.11

Table 5. Evaluation of the components of our pipeline. “LO” stands for local op-
timization and includes fitting both data-to-model (d2m) and model-to-data (m2d),
unless otherwise specified. Collision detection is noted as “C”, while salient point de-
tector is noted as “S”. The number of sequences where the optimization framework
collapses is noted in the last row, while the mean error is reported only for the rest

Components LOm2d LOd2m LO LO +C LO + S LO +CS
Mean Error (px) 15.19 − 5.59 5.24 5.40 5.18
Improvement (%) − 6.39 3.40 7.36

Failed Sequences 1/11 11/11 0/11 0/11 0/11 0/11

versions of ws is not very large, the latter performs better for a wide range (0.6
to 1.2) of parameter λ. We therefore choose ws = cs

cthr
and λ = 1.2.

4.1.3 Distance Metrics Table 4 presents an evaluation of the two distance
metrics presented in Section 3.2.2, namely point-to-point (Equation (3)) and
point-to-plane (Equation (4)), along with the number of iterations of the mini-
mization framework. The point-to-plane metric leads to adequate minimization
with only 10 iterations, providing a significant speed gain, being thus our choice.
However, we perform 50 iterations for the first frame in order to ensure an accu-
rate refinement of the manually initialized pose. The runtime for the chosen setup
(see supplementary material for benchmark details) is 2.74 and 4.35 seconds per
frame for scenes containing one and two hands respectively.

4.1.4 Component Evaluation Table 5 presents the evaluation of each com-
ponent and the combination thereof. Simplified versions of the pipeline, fitting
either just the model to the data or the data to the model can lead to a collapse
of the pose estimation, due to unconstrained optimization. Our experiments
quantitatively show the notable contribution of both the collision detection and
the salient point detector components. The best overall system performance is
achieved with the combinatorial setup described by the objective function (2).
Qualitative results are depicted in Figure 1.

4.2 Comparison to State-of-the-Art

Recently, Oikonomidis et al. used particle swarm optimization (PSO) for a real-
time hand tracker [27–29]. These works constitute the state-of-the-art for single-
view RGB-D hand tracking. For comparison we use the software released for
tracking one hand [27], with the parameter setups of all the above works. Each
setup is evaluated 3 times in order to compensate for the manual initialization
and the inherent randomness of PSO. Qualitative results depict the best version,
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Table 6. Comparison of our method against the FORTH tracker. We evaluate the
FORTH tracker with 4 parameter-setups met in the referenced literature of the last
column Mean (px) St.Dev (px) Max (px) Generations Particles Reference

F
O
R
T
H set 1 8.58 5.74 61.81 25 64 [27]

set 2 8.32 5.42 57.97 40 64 [28]
set 3 8.09 5.00 38.90 40 128 [3]
set 4 8.16 5.18 39.85 45 64 [29]

Proposed 3.76 2.22 19.92

while quantitative results report the average. Figure 2 qualitatively showcases
the increased accuracy of our method, along with the decreased accuracy of
the FORTH tracker due to the sampling nature of PSO. Quantitative results of
Table 6 show that our system outperforms [27] in terms of tracking accuracy.
However, it should be noted that the GPU implementation of [27] is real time,
in contrast to our CPU implementation. Detailed results for each evaluation of
the parameter setups are included in the supplementary material.

5 Conclusion

In this work we have presented a system capturing the motion of two highly
interacting hands. Inspired by the recent method [3], we propose a combination
of a generative model with a discriminatively trained salient point detector and
collision modeling to obtain accurate, realistic pose estimates with increased
immunity to ambiguities and tracking errors. While [3] depends on expensive,
specialized equipment, we achieve accurate tracking results using only a single
cheap, off-the-shelf RGB-D camera. We have evaluated our approach on 14 new
challenging sequences and shown that our approach achieves a better accuracy
than the state-of-the-art single hand tracker [27].
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Fig. 2. Qualitative comparison with [27]. Each image pair corresponds to the pose
estimate of the FORTH tracker (left) and our tracker (right)
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