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1. Introduction

We have obtained human segmentation labels to inte-

grate shape information into the SMPLify 3D fitting pro-

cedure and for the evaluation of methods introduced in the

main paper. The labels consist of foreground segmentation

for multiple human pose datasets and six body part segmen-

tation for the LSP dataset. Whereas we discuss their use in

the context of the UP dataset in the main paper, we dis-

cuss the annotation tool that we used for the collection (see

Sec. 2.1) as well as the direct use of the human labels for

model training (see Sec. 2.2) in this document.

In Sec. 3.1, we show additional evaluation data of our

fine-grained models and conclude with further examples for

the applications showcased in the paper in 3.2.

2. Human Segmentation Labels

2.1. Openpose

To get segmentation labels on large scale, we built an

interactive annotation tool on top of the Opensurfaces pack-

age [2]: Openpose. It works with Amazon Mechanical Turk

and uses the management capabilities of Opensurfaces.

However, it is tedious to collect fine-grained segmenta-

tion annotations: it cannot be done with single clicks, and

making an annotation border consistent with image edges

can be frustrating if done without guidance. To tackle the

aforementioned problems, we use the interactive Grabcut

algorithm [7] to make the segmentation as easy and fast as

possible.

The worker task was to scribble into (part) foreground

and background regions until the part of interest was accu-

rately marked. An experienced user can segment images in

less than 30 seconds. We received many positive comments

for our interface.

Figure 1: The labeling interface of our Openpose tool-

box. Green scribbles mark background, blue scribbles fore-

ground. The red dots indicate annotated pose keypoints.

Keypoints are used to initialize the Grabcut [7] mask.

2.2. Models and Results

To explore the versatility of the human labeled data, we

combine all 25,030 images from our annotated datasets with

foreground labels to form a single training corpus. For this

series of experiments, we use a Deconvnet-model [6].

We found that a person size of roughly 160 pixels works

best for training, therefore we normalize and cut out the

people accordingly (for the LSP core dataset this is not nec-

essary since they are roughly in the expected size range).

The images are mirrored and rotated up to 30 degrees in

both directions to augment the training data as much as pos-

sible.

To obtain the final scores, we finetune the model to the

datasets they will be tested on. A summary of scores before
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LSP MPI-HPDB Fashionista Human3.6M

Mean acc. 0.9625 0.9584 0.9738 0.9884

Mean f1 0.9217 0.9092 0.9407 0.8166

Mean acc. (ft.) 0.9684 0.9628

Mean f1 (ft.) 0.9336 0.9169

Table 1: Person vs. background segmentation results for our

base model. The Fashionista and Human3.6M datasets are

used to demonstrate the generalization capability without

finetuning.

Figure 2: Example segmentations from the fashionista

dataset. Large handbags are the biggest source of uncer-

tainty without adaptation to the dataset domain.

Figure 3: HumanEva example (left) and Human3.6M ex-

amples (middle, right) and ground truth.

and after finetuning can be found in Tab. 1.

Additionally to our two annotated test datasets from LSP

and MPII-HumanPose single person, we test the models on

the three datasets Fashionista [10], HumanEva [8] and Hu-

man3.6M [3] without finetuning to analyze their generaliza-

tion behavior and the difficulty and variety of the training

dataset (for scores where applicable, see Tab. 1).

Results on the Fashionista Dataset We use our model

to predict the images of the Fashionista test dataset with-

out using the training part. Example results can be found in

Fig. 2. We achieve a competitive accuracy of 0.9738. This

compares to 0.9608 (over all 56 classes of the dataset) re-

ported by the current state-of-the art method [5]. Liang et

al. achieve an improved score of 0.9706 when including

the Chictopia10k dataset for training. By using the ratio of

≈ 77% background in the dataset (c.t. [9]), it is possible to

give an interval for the foreground vs. background accuracy

of their segmentation method: [0.9608; 0.9960], with which

we can compete even though we have not used any fashion

specific data. We would expect a large improvement from

finetuning, because the main failure case of our foreground

segmentation are large handbags (see, e.g., Fig. 2, image

three). They provide enough visual cues to reliably adapt.

Results on Human3.6M and HumanEva We test our

model on the two 3D evaluation sets used in the main paper

without finetuning. Examples are shown in Fig. 3.

For Human3.6M, there is segmentation information

available that was obtained from background subtraction.

In the rightmost image in Fig. 3 we show our segmentation

result together with the ground truth, where chair and parts

of the background are labeled erroneously as foreground.

To calculate accuracy and f1 scores on the Human3.6M

dataset, we sample 5 images from all of the commonly used

test sequences of subjects 9 and 11 randomly, which is a

total of 1,190 images, and average their scores.

Body Part Segmentation We leverage the base human

segmentation model by dropping its last layer and retrain-

ing it on our body part segmentation data. This is required

due to the very little training data we have for this task

(only 1,000 examples). On average, the retrained network

achieves a score of 0.9095 accuracy and 0.6046 macro f1.

Example results can be found in Fig. 5.

Furthermore, this allows us to make comparisons be-

tween a model trained on the human labeled data, a model

trained on generated data from SMPL on the exact same set

(including potentially erroneous fits) and our model trained

on UP-S31 (which contains only the subset of ‘good’ fits

on the LSP training set but additional good fits to the other

datasets) reduced to a six part representation. We provide

example segmentations for comparison in Fig. 6.

The resulting macro f1 scores are 0.6046 for the human

model, 0.5628 for the model trained on LSP SMPL pro-

jections, and 0.6101 for the 31 part segmentation model

reduced to six parts. The model trained on the generated

annotation outperforms the model trained on human labels,

highlighting again the versatility and quality of the dataset

presented in the main paper.

3. Additional Evaluation of the

Fine-Grained Models

3.1. Part­by­part Evaluation

In Fig. 7, we provide visualizations of the scores for fine-

grained segmentation and keypoint localization. All the

values are from models trained and tested on the full UP

dataset.

Unsurprisingly, the segmentation scores for wrists,

hands, ankles and feet are the lowest. This is not only due

to the model being unstable in this regions (c.t. Fig. 6,

Fig. 8), but also due to our generated ground truth being

noisy in these regions, since SMPL does not receive infor-

mation about foot or hand orientation during the fits other

than the foreground segmentation. The mean IOU score

over all parts is 0.4560, and the accuracy 0.9132.

The keypoint score visualization shows the same pattern,

with the lowest scores at the big toes. The overall stability

is very high with an average PCK@0.2 of 0.9450 (for the

14 core keypoints: 0.9388).



31 Part Segmentation 91 Keypoint Pose Estimation

3D Fitting on 91 Landmarks Direct 3D Pose and Shape Prediction

Figure 4: Results from various methods trained on labels generated from the UP dataset (improved Fig. 4, main paper).

Figure 5: Part segmentations on LSP. Due to little training

data, the model remains rather unstable.

Figure 6: Comparison of part segmentation on two exam-

ples from the LSP test set. For each example from left to

right: CNN trained on the 1,000 human labeled training ex-

amples, CNN trained on projections from SMPL fits on the

same 1,000 samples, CNN trained on UP-S31, which con-

tains only the high quality fits from the 1,000 samples as

well as high quality fits from the other datasets.

3.2. Examples

Due to an image size-independent visualization param-

eter, the 91 landmark pose visualizations are rather small

in the main paper. An improved version of Fig. 4 (main)

is provided in Fig. 4 and has been integrated into the main

paper.

Additionally to that, we provide more examples from

many datasets for all our discussed learning and fitting

methods in Fig. 8. We added examples from the Fashionista

dataset [10], from which we did not use data for finetun-

ing the models. Further samples from the LSP dataset [4]

and the MPII Human Pose Database [1] are provided, which

have harder background than the motion capture datasets.

Additional examples of improved fits from using 91 key-

points from our predictor over fits to the 14 ground truth

 

(a) Segmentation.

  

(b) Landmark detection.

Figure 7: Visualization of the discriminative model scores.

keypoints can be found in Fig. 9. We only show one fit that

improves due to wrong ground truth labels (first row, right-

most triple), even though this is a frequent source of im-

provement. Instead, we want to highlight that the fits take

more details into account and the additional keypoints pro-

vide hints to disambiguate perspective and rotation. With

the cues about limb rotation, the fits look more realistic. We

expect this to improve the pose estimator even further once

the additional samples are integrated into the dataset.
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