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Abstract
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Michael Julian Black
Yale University

1992

This thesis addresses the problem of recovering 2D image velocity, or optical flow, ro-
bustly over long image sequences. We develop a robust estimation framework for improv-
ing the reliability of motion estimates and an incremental minimization framework for re-
covering flow estimates over time.

Attempts to improve the robustness of optical flow have focused on detecting and ac-
counting for motion discontinuities in the optical flow field. We show that motion disconti-
nuities are one example of a more general class of model violations and that by formulating
the optical flow problem as one of robust estimation the problems posed by motion discon-
tinuities can be reduced, and the violations can be detected. Additionally, robust estimation
provides a powerful framework for early vision problems that generalizes the popular “line
process” approaches.

We formulate a temporal continuity constraint, which reflects the fact that the motion of
a surface changes gradually over time. We exploit this constraint to develop a new incre-
mental minimization framework and show how it is related to standard recursive estimation
techniques. Within this framework we implement two incremental algorithms for minimiz-
ing non-convex objective functions over time; Incremental Stochastic Minimization (ISM)
and Incremental Graduated Non-Convexity (IGNC).

With this approach, motion estimates are always available, they are refined over time,
the algorithm adapts to scene changes, and the amount of computation between frames is
kept fixed. The psychophysical implications of temporal continuity are discussed and the
power of the incremental minimization framework is demonstrated by extending image fea-
ture extraction over time.
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Chapter 1

Introduction

When we walk or drive or even move our heads, our view of the world changes. Even when

we are at rest, the world around us may not be; objects fall, trees sway, and children run.

Motion of this sort, and our understanding of it, seems so straightforward that we often take

it for granted. In fact, this ability to understand a changing world is essential to survival;

without it, there would be no continuity to our perceptions. If robots are to exist in the dy-

namic world of humans, as opposed to merely the factory floor, they too must possess this

ability to understand motion.

What is required is a general and flexible representation of visual motion that can be used

for many purposes and can be computed robustly and efficiently [Tarr and Black, 1991].

This thesis will consider optical flow as a representation of the apparent motion of the world

projected on the image plane of a moving camera. Optical flow is the 2D velocity field, de-

scribing the apparent motion in the image, that results from independently moving objects

in the scene or from observer motion. More specifically, consider the diagram in Figure 1.1

which illustrates how the translation and rotation of the camera cause the projected location� of a point � in the scene to move. Likewise, if point � is moving independently, its pro-

jection on the image plane will change, even when the camera is stationary. It is this vector

field, u � �!�#"$�&%('*)!���!�#"��#�,+-� �.�,"/��0 , describing the horizontal and vertical image motion, that

is to be recovered at every point in the image.

1



2 CHAPTER 1. INTRODUCTION

Y

X

Z

x

yp

P
.

.

T

T

T

Ω

Ω

Ωz

y

x

z

y

x

Y

X

Z

x

yp

P
.

.

T

T

T

Ω

Ω

Ωz

y

x

z

y

x

Figure 1.1: A point � in the scene projects to a point � in the '1�!�#"�0 coordinate system of the
image plane of a camera centered at the origin of the camera coordinate system '324�,56�780 ,
with its optical axis pointing in the 7 direction. The motion of the camera is described by
its translation '*9;:<�#9-=>�,9@?�0 and rotation '1AB:C�#AD=>�#AB?E0 .

One may ask, “What about the motion of a smooth surface like a smooth rotating sphere?”

If the surface of the sphere is untextured then there will be no apparent motion on the image

plane and hence no optical flow. This illustrates that the motion field [Horn, 1986], corre-

sponding to the motion of points in the scene, is not always the same as the optical flow field.

For most applications of optical flow, it is the motion field that is required and, typically, the

world has enough structure that recovering optical flow provides a good approximation to

the motion field. If this were not the case, then humans too, would not be able to exploit

information about optical flow.

What motivates such a representation? Consider the example in Figure 1.2 which shows

two images taken from a video camera mounted on a helicopter flying through a narrow

ravine. The motion of the helicopter gives rise the optical flow field on the right. There is

a wealth of information in this flow field and many uses have been proposed for robotics
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Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed
optical flow field.

and machine vision. For example, from this figure, we see that the flow vectors appear

to emanate from a central point known as the focus of expansion [Gibson, 1979], and that

points closer to the camera move more quickly across the image plane. Properties like this

are thought to be important for biological vision systems [Gibson, 1979] and have been ex-

ploited in machine vision to recover observer motion [Lawton, 1983], detect obstacles [An-

cona, 1992], avoid collisions [Nelson and Aloimonos, 1989], recover scene depth [Adiv,

1985], and track moving objects [Papanikolopoulos and Khosla, 1991]. There are other,
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non-robotic, applications of optical flow as well; particularly in the areas of medical imag-

ing and image compression [Pratt, 1979].

There are still other properties of optical flow that can be exploited. Consider the im-

age sequence in Figure 1.3 where a camera is translating parallel to the image plane. Notice

that the flow field, in the top left of the figure, contains two distinct motions; the soda can is

moving more rapidly than the background. This type of discontinuous flow field is the result

of surfaces at different depths in the scene moving at different rates across the image plane,

due to the effects of motion parallax or the independent motion of the objects. Since the

location of these discontinuities in the flow field correspond to physically significant prop-

erties of the scene, they can be used to detect object boundaries [Black and Anandan, 1990a;

Spoerri and Ullman, 1987; Thompson et al., 1985; Thompson et al., 1982] or segment the

scene into distinct objects [Bouthemy and Rivero, 1987; Heitz and Bouthemy, 1990; Murray

and Buxton, 1987; Peleg and Rom, 1990; Potter, 1980; Schunck, 1989a].

Motion can also be used to analyze the local relationship of surfaces at motion bound-

aries; in particular, whether surfaces are being occluded (covered) or disoccluded (revealed)

[Black and Anandan, 1991b; Mutch and Thompson, 1988; Thompson et al., 1985]. I For ex-

ample, the lower right of Figure 1.3 shows motion boundaries classified as occlusion bound-

aries (in white) or disocclusion boundaries (in black).

In computer vision, one is often interested in other properties of the scene that are un-

related to motion; for example, in the case of object recognition, it may be necessary to

detect perceptually significant image properties like intensity edges (upper right of Figure

1.3). Motion and intensity information can be combined to improve the accuracy of mo-

tion segmentation [Black, 1992a; Gamble and Poggio, 1987; Heitz and Bouthemy, 1990;

Thompson, 1980], and to distinguish between perceptual features that represent structural

properties of the scene and those that are purely surface markings [Black, 1992a]. Addition-

ally, if the optical flow is known, then traditionally static computation of image properties,J
Mutch and Thompson [1988] refer to these as regions of accretion or deletion respectively.
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- Data Conservation

- Temporal Continuity

Constraints:
World

Figure 1.4: Constraints on image motion.

like intensity edges, can be made dynamic and extended over an image sequence.

The general problem of motion understanding, and in particular the computation of op-

tical flow, has been one of the most intensely studied areas of computer vision. Despite rich

mathematical foundations and steady progress, the results from years of computing and us-

ing optical flow have resulted in few practical applications. The failure of optical flow to

live up to its promise may, in many cases, be attributed to a lack of robustness or to ineffi-

ciency. This thesis develops a framework for the robust estimation of optical flow to address

the former, and exploits the constraint of temporal continuity to develop incremental algo-

rithms designed to address the latter.

1.1 Constraints on Image Motion

This section considers the problem of recovering optical flow from image sequences. One

begins by making some assumptions about the scene which by necessity are idealizations

and will often be violated in practice. These assumptions are then embodied in a set of con-

straints on the interpretation of image motion as depicted in Figure 1.4. This thesis will ex-

plore the use of three such constraints: data conservation, spatial coherence, and temporal

continuity.

Data Conservation

Algorithms for computing optic flow must somehow exploit the changes in image inten-

sity over time. The most popular approaches include gradient-based techniques [Horn and
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Figure 1.5: Data conservation assumption. The highlighted region in the right image looks
roughly the same as the region in the left image, despite the fact that it has moved.

Schunck, 1981], correlation [Anandan, 1989], and spatio-temporal filtering [Heeger, 1987].

These approaches all exploit the assumption of data conservation S :
Image measurements (for example, image intensity) corresponding to a small

image region remain the same, although the location of the region may change

over time.

That is, data is conserved as illustrated in Figure 1.5. T
Spatial Coherence

The data coherence constraint alone is not always sufficient to accurately recover optical

flow. First, local motion estimates, based on data conservation, may only partially constrain

the solution. Consider the motion of a line in Figure 1.6. Within a small region, the data

conservation constraint cannot uniquely determine the motion of the line; an infinite numberU
Also commonly referred to as the intensity constancy assumption [Horn, 1986].V
Notice that the highlighted region spans the boundary of the can and hence includes a portion of the back-

ground. This is a case for which the data conservation assumption does not hold. Constraint violations like
this will be addressed in greater detail throughout the thesis.
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Figure 1.6: When viewed through a small aperture, the motion of a line is ambiguous.

of interpretations are consistent with the constraint. This is commonly referred to as the

aperture problem [Horn, 1986]. W Second, and more importantly, motion estimates based

on the data conservation constraint are very sensitive to noise in the images, particularly in

regions where there is very little spatial variation, or texture.

To overcome these problems, many approaches have exploited a spatial coherence as-

sumption:

Neighboring points in the scene typically belong to the same surface and hence

have similar velocities. Since neighboring points in the scene project to neigh-

boring points in the image plane, we expect optical flow to vary smoothly.

This is illustrated in Figure 1.7. This assumption is typically implemented as a smooth-

ness constraint which is seen as regularizing the ill-posed problem [Poggio et al., 1985;

Terzopoulos, 1986].
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Image Plane

Surface

Figure 1.7: Spatial coherence assumption. Neighboring points in the image are assumed to
belong to the same surface in the scene.

Temporal Persistence

The previous two constraints are commonly employed in the recovery of optical flow be-

tween two frames in an image sequence. A less commonly exploited assumption is that of

temporal continuity:

The image motion of a surface patch changes gradually over time.

This constraint, illustrated in Figure 1.8, can be formulated to account for various kinds of

image motion; for example constant velocity or constant acceleration in the image plane.

Temporal continuity is a powerful constraint in as much as it reflects the stability and per-

sistence of the scene. Most attempts to exploit the constraint have focused on batch process-

ing of a spatio-temporal block of images; for example, spatio-temporal filtering [Heeger,

1987] and epipolar-plane image analysis [Bolles et al., 1987]. Only recently has the power

of the constraint been exploited to integrate motion information over time [Black and Anan-X
Because of this ambiguity, the problem of recovering optical flow is referred to as ill-posed [Bertero et al.,

1988; Marroquin et al., 1987; Poggio et al., 1985].



10 CHAPTER 1. INTRODUCTION

Y Y Y ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ [

Figure 1.8: Temporal continuity assumption. A patch in the image is assumed to have the
same motion (constant velocity, or acceleration) over time.

dan, 1991b; Black and Anandan, 1990b; Singh, 1991; Singh, 1992a]. This temporal inte-

gration both improves motion estimates by reducing noise over time and reduces the com-

putation necessary for each new frame.

1.2 Robustness

There are a number of specific problems in optical flow that pertain directly to the robust-

ness of current approaches and must be addressed. The most frequently examined issue is

the recovery of piecewise smooth flow fields in the presence of motion boundaries. Related

to this issue is the problem of actually localizing the motion discontinuities. The two issues

are not the same. There are approaches to recovering piecewise smooth flow which do not

explicitly recover motion boundaries [Nagel and Enkelmann, 1986; Singh, 1990] as well as

approaches for recovering motion discontinuities which do not compute optical flow [Black
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and Anandan, 1990a; Mutch and Thompson, 1988; Spoerri and Ullman, 1987]. Since mo-

tion boundaries correspond to physically significant structures in the scene, their recovery

is of great interest and, for some applications, may be of greater interest than the flow field.

The problems posed by motion discontinuities are one example of a broader issue in

computing optical flow: algorithms for recovering optical flow embody a set of assumptions

about the world which, by necessity, are simplifications and hence, will be violated. These

common assumptions are frequently violated in the real world and this leads to algorithms

that are not robust; for example, the simple spatial coherence constraint is violated at motion

boundaries and its application results in inaccurate, or “over-smoothed”, flow estimates at

the boundary. To accurately recovery optical flow, one must either formulate more realistic

constraints that model the violations or develop techniques that perform well even when

violations are present. In reality, both of these approaches are necessary since any model

of the world is an idealization and will be violated in practice. It is not enough however

to simply ignore model violations; instead, the goal should be to detect and explain these

violations because, as in the case of motion boundaries, they often correspond to interesting

properties of the scene.

These issues lead to three goals to which optical flow algorithms should aspire:

1. Recover optical flow without smoothing across motion discontinuities.

2. Locate the motion boundaries so that they are available to other algorithms which re-

quire knowledge about the surface boundaries of objects.

3. Detect when the underlying assumptions of the model are violated.

A great deal of progress has been made on the first two goals and, indeed, there are numerous

solutions for recovering piecewise smooth flow fields. Instead of focusing on the problem

of recovering optical flow with discontinuities, this thesis will treat the the first two goals as

special cases of the third, and focus on general issues of robustness in the presense of model
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violations. Common violations of the data, spatial, and temporal constraints are described

below.

Data Conservation

The data conservation constraint is violated in numerous common lighting situations; for

example: specular reflections do not necessarily “move with” the surface patch, shadows

can change the appearance of a region, and the illumination may vary (particularly in out-

door scenes). Sensor noise can also be a source of violations, but is more easily modeled

than unconstrained illumination changes.

The simple formulation of the data conservation constraint assumes that image regions

undergo translation in the image plane and ignores the effect of deformations of local im-

age patches due to the relative motion between the observer and the scene. In even sim-

ple scenes, the local image structure can undergo rotation, dilation, contraction, and shear

[Koenderink and van Doorn, 1975]. Additionally, if the objects in the scene are not rigid,

then the local image structure can change in complex ways.

Finally, when multiple motions exist within a region the data conservation constraint is

violated. Recall the simple situation presented in Figure 1.5 where the highlighted region

contains both the foreground and background. Since the soda can and the background are

moving at different rates, no single motion can account for the intensity changes within the

region. This violates the single motion assumption implicit in the data conservation con-

straint. Moreover, data is not conserved within the region since a portion of the background

becomes occluded by the Pepsi can. More generally, in a cluttered scene even very small

regions in the image are likely to contain multiple motions. Consider, for example, the case

of fragmented transparency that arises when viewing a scene through swaying tree branches

or while walking past a picket fence.

The problems become more profound still in cases of transparency where the intensity at

a point in the image is not determined by a single surface, but may be altered by the interac-
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Occlusion Disocclusion Shear

Figure 1.9: Motion Discontinuities

tion of some number of translucent or reflective surfaces. Examples include looking through

a dirty window or watching one’s reflection in a flowing stream. Humans cope with these

situations routinely and can typically attend to one or more of the motions present.

Spatial Coherence

The spatial coherence constraint can take a number of forms, but the most common assump-

tion is that the optical flow within a region is constant. While this assumption is not even

valid for planar surfaces and arbitrary translational motion, the most obvious violation of

the constraint is at motion discontinuities. Figure 1.9 illustrates some commonly occurring

motion discontinuities; including occlusion, disocclusion, and shear.

Applying the spatial coherence constraint at motion discontinuities results in an “over-

smoothed” flow field where the motion discontinuities have been obscured; for example,

see Figure 1.10. The resulting flow field does not accurately describe the underlying mo-

tion. More significantly, the over-smoothing removes important information regarding the

location of physically significant properties of the scene.
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Figure 1.10: Over-smoothing of flow fields for the Pepsi can image sequence. On the left
is a flow field computed with a standard smoothness constraint. The flow field on the right
was computed with a modified smoothness constraint that took into account motion discon-
tinuities. Careful inspection of the left image will reveal that the motion of the soda can
blends smoothly into the background, while in the right image there is a sharp discontinuity
between foreground and background.

Temporal Continuity

While temporal continuity provides a powerful constraint, it is typically only valid over

short time intervals. The motion of objects in the world is not nearly so predictable; they

stop, change direction, reverse course, etc. Even in a static world, the motion of the cam-

era may not be smooth. If the camera is unstabilized, then vibration, bounce, and sway can

all lead to violations of a simple temporal continuity assumption. Strict enforcement of the

constraint would lead to mistakes in the predicted location of objects when their motion

changes too rapidly.

These problems are related to the rate of image acquisition. Analogous to the Nyquist

limit in sampling theory, if the sampling rate is significantly higher than the rate of change

in the scene, then the constraint can be applied. This idea has been exploited in work on
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epipolar-plane image analysis [Bolles et al., 1987] in which images are acquired frequently

so that motion between images is kept small. This simplifies the problem of determining

correspondence over time. In contrast, this thesis addresses the general problem of opti-

cal flow estimation in which dense temporal sampling cannot be guaranteed as is typically

the case in applications such as autonomous robotics where images may be acquired at a

relatively infrequent 30 frames/second. In practical applications, like mobile robotics, the

constraint of temporal continuity is likely to be violated.

The constraint can also be violated at motion boundaries where occlusion and disocclu-

sion each present problems. At occlusion boundaries, a surface which has persisted for some

time suddenly disappears. A motion algorithm must be able to deal with this disappearance

and either stop tracking the surface or, for some period of time, continue to track the surface

despite the lack of visible evidence for its presence. In the latter case, the constraint could

be maintained for occlusions of short duration.

Disocclusions present their own problem. All of a sudden a new surface, or portion of

a surface, becomes visible and there is no previous information regarding its motion. Any

algorithm exploiting temporal continuity must be able to adapt to these kinds of changes.

1.3 Incremental Motion Estimation

One of the goals of computer vision is to embody robots with the ability to understand and

act in a dynamic environment. To cope with a continually changing retinal image, a robot

must be able to detect and compensate for this image motion. Many approaches for esti-

mating optical flow have focused on the analysis of motion between two frames in an image

sequence [Anandan, 1989] while others have attempted to deal with spatiotemporal infor-

mation by processing long sequences in a batch mode [Baker, 1988; Heeger, 1987]. More

recently, there has been an interest in incremental approaches which are more suited to the

dynamic nature of motion estimation [Black and Anandan, 1991b; Singh, 1991]. The goal
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of incremental motion estimation can be broadly defined as follows:

Incrementally integrate motion information from new images with previous op-

tical flow estimates to obtain more accurate information about the motion in the

scene over time.

While this definition is broad enough to encompass many different techniques, there are

some general properties that an incremental algorithm should have:

1. Anytime Access: Motion estimates are always available. This is important for robotic

applications where motion information is being used for navigation or obstacle avoid-

ance.

2. Temporal Refinement \ : Flow estimates are refined over time as more data is acquired.

3. Computation Reduction [Heel, 1991]: By exploiting the information available over

time, the amount of computation between any pair of frames is reduced. The goal is

eventually to achieve real-time performance.

4. Adaptation: The nature of incremental approaches requires them to be adaptive. As

the motion of the observer and scene changes over time, an incremental algorithm

must adapt to the changes in motion and the changing retinal image.

While the definition rules out purely batch techniques for processing image sequences, it

does not rule out the possibility of “local batch processing.” Information from new images

might be derived by examining some number of previous frames and performing a batch

analysis. To be considered dynamic however, an algorithm must use historical information

about the motion in the scene and combine it in some way with current information. While

the definition also includes incremental feature-based motion algorithms [Faugeras et al.,

1987], this thesis will only address the estimation dense optical flow fields. ]^
This idea has also been referred to as “quality improvement” [Heel, 1991]._
Where “dense” means that there is an estimate of the optical flow at each pixel in the image.
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1.4 The Approach

This thesis addresses the issues of robust and dynamic optical flow estimation. The first half

of the thesis exploits techniques from robust statistics [Hampel et al., 1986; Huber, 1981;

Rousseeuw and Leroy, 1987] to develop a framework for the robust estimation of optical

flow. Such a formulation exacts a computational price and in response, the second half of

the thesis develops an incremental minimization framework which is used to recover the

optical flow robustly over a sequence of images.

Robust Estimation Framework

There is growing interest in the use of robust statistics and numerous researchers have ap-

plied the techniques to the standard problems of computer vision [Meer et al., 1991; Schunck,

1990]. There are robust approaches for performing local image smoothing [Besl et al., 1988;

Blauer, 1991], classification [Chen and Schunck, 1990], surface reconstruction [Sinha and

Schunck, 1992], segmentation [Meer et al., 1990], pose estimation [Kumar and Hanson,

1990], edge detection [Lui et al., 1990], and structure from motion or stereo [Tirumalai

et al., 1990; Weng and Cohen, 1990]. Robust statistical techniques have also been applied

to the problem of image velocity estimation [Schunck, 1989a; Schunck, 1989b], but previ-

ous formulations lack a coherent, unified, framework for the robust recovery of optical flow

fields.

This thesis shows that robust estimation [Hampel et al., 1986; Huber, 1981] provides

a framework for addressing many of the problems encountered in computing optical flow

while generalizing previous approaches. The problems of robustness discussed here are not

unique to optical flow, but appear again and again in early vision problems employing reg-

ularization techniques. The robust estimation framework that is developed in the context

of optical flow can readily be applied to algorithms for problems like stereo, structure from

motion, image reconstruction, surface reconstruction, and shape from shading.
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The power of the robust estimation framework is illustrated by applying it to a number of

common problems in motion estimation including correlation [Anandan, 1989], regression

[Lucas and Kanade, 1981], and explicit smoothness (or regularization) [Horn and Schunck,

1981] approaches. In particular, the framework is exploited to develop a robust gradient

method [Black, 1992b] which meets the three goals outlined above for robust optical flow:

1) it prevents over-smoothing, 2) it allows the recovery of motion discontinuities, and 3)

violations of model assumptions are detected and their effects on the solution are reduced.

The robust gradient algorithm also illustrates how the framework provides a uniform

way of treating both errors in the motion estimates derived from the input images and motion

discontinuities in the flow field. The formulation is straightforward and experiments on real

and synthetic image sequences show that it performs well in the presence of non-Gaussian

noise and motion discontinuities. The flow field is recovered using a simple, deterministic,

relaxation scheme.

The thesis also explores the relationship between the robust estimation approach and

other formulations based on line processes [Geman and Geman, 1984] or weak continuity

constraints [Blake and Zisserman, 1987]. In certain cases, one can show an equivalence be-

tween the robust estimation formulation and the line-process approaches. And, while the

robust estimation framework is consistent with previous approaches, it offers some advan-

tages. First, it provides a new statistical interpretation for these other approaches. Second,

it provides new tools which can be brought to bear on the problem while not sacrificing the

physical appeal of the line-process formulations. And, finally, this new framework shows

how the line-process approaches can be generalized and applied to new problems in a way

which improves the veracity of the results by reducing the sensitivity of the solution to er-

roneous measurements.
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Figure 1.11: Incremental minimization strategy.

Incremental Minimization Framework

In this thesis, the problem of optical flow recovery is formulated as the minimization of an

objective function composed of the data, spatial, and temporal constraints. The robust for-

mulation of the constraints makes this objective function non-convex, and hence, expensive

to minimize. To ameliorate this problem we exploit the temporal continuity constraint de-

scribed above which, in addition to providing a powerful constraint for the interpretation of

visual motion, allows us to predict the optical flow at the next instant in time. This property

is used to develop a framework for incrementally minimizing the objective function over

the length of an image sequence.

The basic framework is illustrated in Figure 1.11. At any instant in time, the algorithm

has a current estimate of the flow field. When a new image is acquired, the constraints are

applied and the estimate is refined. The important point is that this refinement stage takes

some constant amount of time and only provides a revised estimate of the flow field. At this

point, the temporal continuity assumption is exploited to predict what the flow field will be

at the next instant in time. A new image is acquired, and the process is repeated. The result

of this procedure is that the flow estimate is refined over time, while the goals of anytime

access, temporal refinement, and computation reduction are met.
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Numerous algorithms can be implemented using this general framework. This thesis de-

scribes two such implementations suitable for minimizing non-convex objective functions.

The first, called Incremental Stochastic Minimization (ISM), is an incremental version of

simulated annealing [Kirkpatrick et al., 1983]. The second, is an incremental version of

Blake and Zisserman’s [1987] Graduated Non-Convexity algorithm. In each of these algo-

rithms, there is a parameter which controls the search for a global minimum. By dynami-

cally controlling this parameter based on the image data, the goal of adaptation is also sat-

isfied.

While the framework was primarily designed for computing optic flow, it has more gen-

eral applicability. The ability to minimize an objective function over time by compensating

for image motion allows other problems to be formulated and solved in this temporal mini-

mization framework. For illustration, Chapter 8 will show how intensity-based feature ex-

traction, which is commonly formulated as an optimization problem [Blake and Zisserman,

1987; Geman et al., 1990], can be performed dynamically using this framework. Such an

approach has a number of advantages over static feature extraction. For example, it amor-

tizes the cost of extraction over the image sequence while automatically tracking image fea-

tures. But, more important, the use of motion information allows image features to be clas-

sified as either structural or non-structural properties of the scene.

1.5 Overview of the Thesis

The first portion of the thesis is devoted to issues of robustness while the second half ad-

dresses the problem of incremental estimation. Given the diversity of techniques employed,

previous work is described, and mathematical tools are introduced, as the need arises.

Chapter 2. The common formulations of the optical flow problem are reviewed. The

chapter first introduces the standard formulation of the data conservation constraint and then

reviews three common techniques for flow estimation: area regression, correlation, and reg-
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ularization. In addition to describing the approaches, the chapter explores where they are

violated and examines the current approaches for coping with motion discontinuities.

Chapter 3. The chapter begins by reviewing robust statistical techniques and then intro-

duces the robust estimation framework and uses it to reformulate the regression, correlation,

and regularization approaches. We then explore the relationships between the robust esti-

mation approach and other current approaches by showing how line-process formulations

can be generalized and converted to robust estimation problems. We also show that certain

robust estimation problems can be converted to equivalent line-processes formulations.

Chapter 4. The chapter shows how the robust estimation formulations of optical flow

compare to the least-squares formulations of regression and correlation. Using the robust es-

timation framework we develop a robust gradient-based algorithm and show how the frame-

work leads to more accurate flow fields when noise and motion discontinuities are present.

Detailed descriptions of the algorithm and experimental results on real and synthetic images

are presented.

Chapter 5. The chapter introduces the temporal continuity constraint and reviews pre-

vious uses of the constraint. A general framework for incremental minimization is then de-

veloped and standard hierarchical approaches for coping with large motions are extended to

this incremental framework. Finally, the relationship between the incremental minimization

framework and recursive estimation techniques is discussed.

Chapter 6. In this chapter, the incremental minimization framework is applied to the

problem of stochastic minimization. We introduce a version of simulated annealing which

is suited to solving continuous minimization problems. We then present an incremental

stochastic minimization algorithm which extends the annealing process over an image se-

quence. Experimental results on real and synthetic images are presented.

Chapter 7. A dynamic version of the Graduated Non-Convexity algorithm of Blake and

Zisserman [1987] is developed using the incremental minimization framework. We then use
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this algorithm to demonstrate the psychophysical implications of the temporal continuity

constraint.

Chapter 8. This chapter demonstrates how the framework of incremental minimiza-

tion can be extended to allow other optimization problems to be solved over time. This is

illustrated by implementing an incremental feature extraction algorithm which tracks image

features over time and classifies them as object boundaries or surface markings.

Chapter 9. We conclude by examining what questions have been answered and what

questions remain open. In doing so we point to a number of future directions for work in

optical flow.



Chapter 2

Estimating Optical Flow: Approaches
and Issues

Most current techniques for recovering optical flow exploit two constraints on image mo-

tion: data conservation and spatial coherence. The data conservation constraint is derived

from the observation that surfaces generally persist in time and, hence, the intensity struc-

ture of a small region in one image remains constant over time, although its position may

change. This assumption is often formulated as a first-order [Horn and Schunck, 1981] or

second-order [Nagel, 1983b] constraint on image gradient. Alternatively, the correlation

approach [Burt et al., 1982] attempts to find the displacement that minimizes the disparity

between an image region in one image and the displaced region in a future image under some

match criterion; for example, minimization of the sum of squared differences between pix-

els in the region [Anandan, 1989]. In many commonly occurring situations, this assumption

is violated for some subset of the points within the image region; for example, it is violated

at motion boundaries and when specular reflections are present. In these cases, the data

conservation constraint may still provide useful information if the violating points can be

detected and removed from consideration. When global contrast changes are present, the

simple formulation of the constraint may provide no useful information and data conserva-

tion measurements should be treated as suspect.

23
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The spatial coherence constraint embodies the assumption that surfaces have spatial ex-

tent and hence neighboring pixels in an image are likely to belong to the same surface. Since

the motion of neighboring points on a smooth rigid surface changes gradually, we can en-

force a smoothness constraint [Horn and Schunck, 1981; Snyder, 1991] on the motion of

neighboring points in the image plane. It has long been realized that such a constraint is vi-

olated at surface boundaries and much of the recent work in motion estimation has focused

on where it is violated and how to reformulate it.

This chapter reviews the formulation of the data conservation constraint and the three

principal approaches for exploiting the spatial coherence constraint: regression, correlation,

and explicit smoothness techniques. We also point out the underlying assumptions of these

approaches, indicate when they are violated, describe the problems that result, and review

the major approaches for solving the problems.

There is an observation that can be made about many of the approaches described in

this chapter. That is, the underlying models used in recovering optical flow assume that

the models capture the motion of some finite region. To recover the flow accurately one is

driven to applying the model to large regions. However, there is an important tradeoff. As

the region size grows, so does the likelihood that the model no longer captures the motion

of the region. It will be the focus of the next chapter to develop general tools for coping

with this situation.

2.1 Data Conservation Constraint

This section reviews the assumptions underlying most optical flow algorithms. Let `�� �.�,"-�ba#�
be the image intensity I at a point ���!�#"�� at time a . The data conservation constraint can be

expressed in terms of the standard intensity constancy assumption as follows:`�� �.�,"-�ba#�c% `d���fehg��!�#"iehg�"E�ba!ejgka#�,�J
In fact, l may be a filtered version of the intensity image at time m .
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% `d���feh)Egkan�#"iej+ogkan�ba;ejgka#�,� (2.1)

where u %p'*)!�#+�0rq is the horizontal and vertical image velocity at a point and gka is small.

This simply states that the image value at time a , at a point ���!�#"�� , is the same as the value

in a later image at a location offset by the optical flow.

Gradient-based approaches [Horn and Schunck, 1981] proceed by taking the Taylor se-

ries expansion of the right hand side of (2.1), yielding:`d���!�#"E�ba#��%s`d���!�#"E�ba#�-et`#u�)Egka!et`#vn+/g�a@ew`,xygka!ewzn� (2.2)

where `#u , `#v , and `{x are the first partial derivatives of the brightness ` with respect to � , " ,

and a respectively, and where z contains the higher-order terms. Simplifying and dividing

through by gka we obtain the standard optical flow constraint equation:`#u|)fet`#vn+�et`#x!%s}~` q u ew`#x!%s�o� (2.3)

To recover an estimate of the optical flow at a point one could simply minimize the data-

conservation term: ��� � ).�,+$��%��E�
` u )fet` v +�ew` x �#� (2.4)

When �E���@��%��-S this corresponds to the standard least-squares estimate described by Horn

and Schunck [1981]. As mentioned in Chapter 1, the data-conservation constraint alone is

not sufficient for recovering optical flow due to the aperture problem and sensitivity to noise.

Given equation (2.3), we can now see the problem more clearly. Figure 2.1 illustrates

that motions satisfying equation (2.3) are only constrained to lie along a line in � )!�#+$� space.

The equation only constrains the flow vector to lie in the direction of the image gradient;

that is normal to the spatial image orientation [Horn, 1986]. Thus, the optical flow problem

as stated, is ill-posed [Bertero et al., 1988; Marroquin et al., 1987] and requires additional

constraints to recover a unique flow estimate.
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Figure 2.1: Intensity constancy constraint.

Assumptions and Violations

There are a number of implicit assumptions underlying this formulation that are often vi-

olated in practice. The simple statement of intensity constancy and the first-order Taylor

series approximation assume locally constant translational motion and a planar image in-

tensity function. While these approximations become valid in the limit as the size of the

image region shrinks to zero, in practice some finite region size is required, and as it in-

creases the validity of the assumptions are called into question. The intensity constancy

assumption also implies that changes in intensity are due solely to motion and, hence, the

constraint cannot account for changes in illumination, transparency, or specular reflections.

In practice, the constraint imposes a constant flow assumption over a neighborhood.

This results from the fact that to estimate spatial derivatives from discrete images, one must

necessarily examine a region of the image. The spatial and temporal derivatives can be es-

timated from the input using any number of schemes; for example image differences [Horn,

1986] or spatio-temporal filtering [Simoncelli and Adelson, 1991]. Beaudet [1978] defines
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a catalog of optimal local derivative filters; for example the simple ����� filters:� qv % � u�% �� ��� ��� � ���� � ���� � �
�1����

The image derivatives are then computed by convolving the filters with the intensity image:`#u�% � u<�i` , and `#vi% � vD�i` .

Nagel [1983b] has pointed out that by considering second-order spatial derivatives, it

is possible to uniquely recover the optical flow at corners in the grey-level image; that is,

the aperture problem disappears at corners. The approach, however, still implies locally

constant velocity.

Regardless of the approach, the estimates involve pooling information spatially. For

small neighborhoods (for example, local differencing), these estimates of image derivatives

are highly sensitive to noise, particularly in areas with little texture. A common approach

then is to use derivative filters that span larger neighborhoods. The assumption of constant

motion, however, is only a good approximation within a small region. For, as the region

grows, its motion may be less well approximated by a constant model, and it is more likely

to contain multiple motions. The important point to note is that when the neighborhood for

estimating image derivatives spans a surface boundary, the resulting measurements may be

meaningless. The best flow, u, derived by minimizing the intensity constraint equation (2.4)

may be incorrect.

2.2 Regression Techniques

Assuming a model of constant flow within a region we can combine information from neigh-

boring gradient constraint equations to determine the best flow '*)!�#+�0 satisfying all the equa-

tions by finding the '1)!�#+�0 that minimizes the sum of the constraints over the neighborhood:� � � )!�#+$�&% �� u�� vb����� �E�
`,u����!�#"���)�ew`,v����!�#"���+iew`,x����!�#"��b�#� (2.5)
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where �E���@�H% �-S and ¡ is some image region. S More generally, one can assume a more

complex flow model:

u ���!�#"���% u � �!�#"-¢ a �
where a are the parameters of the model. Example models of image flow in a region ¡
include constant, affine, and planar [Bergen et al., 1992]. Our goal is to estimate the param-

eters, a, of the model within a region ¡ by minimizing:� � � a �6% � � �E� }~` q u � a �!et`#x£�,� (2.6)

In the constant case the model is simply the same as the equation above:

u � a �>%c¤ ) +¦¥ %§¤<¨ I¨ S ¥ � (2.7)

For an affine flow model we have:

u ���!�#"E¢ a �&%§¤ ).� �!�#"$�+E���!�#"�� ¥ %§¤ ¨ I e ¨ S �fe ¨ T "¨ W e ¨ \ �fe ¨ ] " ¥ � (2.8)

Notice that when �E� �©�>%�� S this is a standard least-squares regression. This regression,

or area-based, approach has been applied to stereo matching [Lucas and Kanade, 1981],

local motion estimation motion [Simoncelli et al., 1991], and image registration [Bergen

et al., 1992].

Assumptions, Violations, and Previous Approaches

The approach assumes that the motion within a region can be described by a single para-

metric model. When a single surface is present, the affine flow model has been shown to be

a reasonable approximation in many cases [Bergen et al., 1992]. But as the complexity of

the model increases (that is, more parameters must be estimated), larger image regions areU
In the future we will drop the indices ª¬«/ ®¯ when it is clear that the equation applies at every point in a

region.
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required for accurate estimates. The larger the region under consideration, the more likely

it is to contain multiple motions and, hence, not to be well approximated by the model.

It is sometimes possible to detect multiple motions by examining the residual of the

least-squares solution. This idea has been exploited to produce iterative techniques that cope

with and detect multiple motions within a region [Irani et al., 1992]. The approach is to first

compute the best least-squares estimate for the region, detect and remove regions that do not

correspond to the main motion, and then recompute the quadratic estimate and repeat. Such

an approach is a form of robust estimation and has been demonstrated to work well when

the distracting motion occupies a small portion of the region [Irani et al., 1992] T .
The case of multiple transparent motions is more complex. One approach [Bergen et al.,

1990a] uses an iterative algorithm to estimate one motion, perform a nulling operation to

remove the intensity pattern giving rise to the motion, and then solve for the second motion.

The process is repeated and the motion estimates are refined.

To use the regression approach for local motion estimation, region sizes must be kept

small for efficiency and to reduce the likelihood of multiple motions. Intuitively, this ren-

ders the approach more sensitive to noise. One approach to take is to realize this problem

and explicitly represent the uncertainty in the flow estimates [Simoncelli et al., 1991]. This

uncertainty estimate can be exploited by other algorithms that rely on accurate measure-

ments of image motion.

Unlike the regression techniques above that try to find the best flow given the local inten-

sity constraint equations, Schunck [1989a] proposes a method of constraint line clustering

for computing flow estimates near motion discontinuities. The approach, which performs a

cluster analysis on the intersection of constraint lines within a neighborhood, can be viewed

as a robust statistical technique. While the approach does not formulate the optical flowV
This approach can work well when there is one dominant motion and the competing motion(s) (outliers)

have little effect on the initial least-squares estimate, but the approach can be overwhelmed as will be shown
in the following chapter.
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problem in terms of robust estimation, Schunck suggests that “further experiments should be

conducted to compare robust estimates with constraint line clustering,” ([Schunck, 1989a],

p. 1018). Schunck [1989b] has also used a least-median of squares regression technique to

robustly determine the best constraint line intersection within a neighborhood.

2.3 Correlation Techniques

Correlation approaches are similar to the regression approaches, in that they begin with the

intensity constancy assumption, but unlike the gradient formulation, adopt a matching strat-

egy. Given a region in one image the goal is to find the displacement, '*)!�#+�0 , of that region

in the next image that minimizes the following error:� � � ).�,+$�°% �� u�� v±����� '²`d���!�#"E�ba#�E�w`d����ej)Eg�a�,"³eh+/g�a�±a@ejg�a{� 0 S � (2.9)

This is the standard Sum-of-Squared-Differences (SSD) measure [Anandan, 1987a]. As

noted by Simoncelli and Adelson [1991], taking the Taylor series expansion of the correla-

tion formulation, results in exactly the same formulation as the regression approach. Fur-

thermore, Anandan [1987a; 1987b] has shown that, as g�a tends to zero, the results obtained

by minimizing his SSD formulation converge to those obtained by Nagel’s second-order

gradient-based approach [Nagel, 1983b]. Additionally, Anandan shows that as the size of¡ tends to zero, his SSD formulation converges to the first-order gradient-based formula-

tion.

The approach is illustrated in Figure 2.2. Notice that, over a range of displacements,��)!�#+�� , the equation gives rise to a correlation surface in which the minimum corresponds

to the best displacement given the match criterion. This correlation surface,
� �

, is usually

computed over discrete displacements. Determining the best match in this case is straight-

forward, but does not provide sub-pixel accuracy. One can interpolate the image and com-

pute
� �

at sub-pixel displacements, but this involves a more expensive search problem and
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Figure 2.2: Correlation of a patch from one image into the next gives rise to a correlation
surface (inverted here for display so that the minima appear as peaks).

the interpolation introduces assumptions about the underlying image structure. More com-

monly, one computes the discrete SSD surface, finds the best displacement, and computes

sub-pixel estimates by fitting a quadratic to the minimum [Anandan, 1987a; Matthies et al.,

1989].

Correlation is a popular tool in computer vision and has formed the basic matching strat-

egy in many motion and stereo algorithms. It has also been use for tracking [Papanikolopou-

los and Khosla, 1991], and real-time correlation hardware [Burt et al., 1989; Inoue et al.,

1992; Nishihara, 1984] makes it attractive for robotic applications.
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Multiple Motions
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Figure 2.3: Multiple motions are particularly difficult to deal with in situations of frag-
mented transparency. Regardless of the window size chosen, multiple motions will be
present.

Assumptions, Violations, and Previous Approaches

The correlation approach suffers from the same problems as the regression approach. In

particular it assumes the flow field can be approximated as uniform translational motion

within the region of interest. In practice, small amounts of rotation, divergence, and shear

can be tolerated. While the approach also assumes constant illumination, some illumination

changes can be accommodated by using a normalized form of correlation or by prefiltering

the images with a Laplacian filter [Burt et al., 1982].

There is a tradeoff to be addressed with correlation-based approaches; as correlation

window size is increased to improve the reliability of motion estimates, the likelihood that

multiple motions will corrupt the solution also increases. To cope with multiple motions

within a window, Okutomi and Kanade [1992] develop an “adaptive window” technique

that adjusts the size of the correlation window to minimize the uncertainty in the estimate.

Their implementation of the approach is limited by the use of a fixed shape (rectangular)

window that cannot adapt to irregular surface boundaries. The approach also cannot cope

with fragmented occlusion [Shizawa and Mase, 1991] (for example, trees or fences) where,
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regardless of window size or shape, multiple motions are present (see Figure 2.3). It would

be interesting to extend the adaptive window approach to allow an arbitrary subset of the

pixels within a region to be removed from consideration. Such an approach would have the

same flavor as the approach described later in this thesis.

When multiple motions are present within a correlation region, the correlation surface

may contain multiple minima corresponding to the different motions. Additionally, the mo-

tions will interfere with each other, making the minima less clearly defined, and hence, more

sensitive to noise and less reliably detectable. In areas of low texture, noise can also pro-

duce multiple minima in the correlation surface. Confidence-based approaches attempt to

deal with violations of the data term by assigning low confidence to these measurements.

For example, Anandan [1989] computes a directionally selective confidence measure based

on the curvature of the sum-of-squared-difference surface. Areas of low texture do not give

rise to sharp peaks in the SSD surface and hence are assigned low confidence. Thus areas

most sensitive to noise receive low confidence.

Singh [1992a] takes an estimation-theoretic approach to the problem. He first computes

a response distribution, ´ , given the SSD surface,
� �

, defined over some range of discrete

displacements, ��µc¶s).�,+f¶·µ :´¸� ).�,+$��%º¹k»�¼
½E¾ ��¿ � À±� �t��µc¶s).�,+�¶ÁµÂ�
He then computes a least-squares motion estimate:)EÃÄ% Å ¿ Å À ´¸� )!�#+$�Æ)Å ¿ Å À ´Â��)!�#+�� �+�ÃÄ% Å ¿ Å À ´¸� )!�#+$�Æ+Å ¿ Å À ´¸� ).�,+$� �
with the following covariance matrix:Ç % ��� Å4ÈoÅ4É�Ê �Ë¿ � À±� ��¿ » ¿nÌ �ÎÍÅ È Å É Ê �Ë¿ � À±� ÅÏÈ�Å4É�Ê ��¿ � À±� �Ë¿ » ¿nÌ � � À » À Ì �Å È Å É Ê �Ë¿ � À±�Å È Å É Ê ��¿ � Àb� �Ë¿ » ¿nÌ � � À » À Ì �Å�È/Å�É Ê �Ë¿ � À±� Å È Å É Ê �Ë¿ � À±� � À » À Ì �ÎÍÅÏÈ�Å�É Ê �Ë¿ � À±�

�1����
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Confidence measures can be defined as reciprocals of the eigenvalues of
Ç

. When multiple

motions are present the motion estimate may be incorrect but the confidence in the motion

estimate will be low.

While these multiple minima are a problem for optical flow algorithms, a number of au-

thors [Anandan, 1987a; Black and Anandan, 1990a; Fennema and Thompson, 1979] point

out they can be exploited for other purposes. The presence of multiple minima in the cor-

relation surface indicates the possible presence of a motion discontinuity. With some addi-

tional constraints, it is possible to detect the presence of motion discontinuities before the

computation of optical flow [Black and Anandan, 1990a].

2.4 Explicit Smoothness Techniques

The area-based techniques above employ an implicit spatial coherence constraint in that the

flow within a region is assumed to conform to a single motion model. This section addresses

regularization schemes which explicitly implement the spatial coherence constraint. The

notion of a smoothness constraint is motivated by the fact that the local gradient information

may only partially constrain the solution. Additionally, local gradient measurements are

sensitive to image noise, particularly in areas containing little variation in contrast. The in-

troduction of a spatial coherence constraint restricts the class of admissible solutions, mak-

ing the problem well-posed. Such regularization techniques have received a great deal of

attention (see [Poggio et al., 1985] for a review).

The data conservation term,
� �

, is now combined with an explicit smoothness term,�8Ð
, to form an objective function,

�
, which is to be minimized:� � u ��%·Ñ � � � u �!e � Ð � u �#� (2.10)

where Ñ controls the relative importance of the two terms. The smoothness term is defined

as a local constraint over a small spatial neighborhood. It is convenient to adopt a Markov
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Figure 2.4: An image is treated as a grid of sites.

random field (MRF) formulation of the problem. In this chapter, this is formulation is purely

for notational convenience and Markov random fields will not be formally introduced until

Chapter 6.

For an image of size ×h�Ø× pixels we define a grid of sites (Figure 2.4):Ç %·ÙÚ� I �#� S �|�������#��Û Í �ÝÜ.Þj��¶àßb� ��á.�,��âE����á!��¶Á×¸�à��ão�
where � ßb�����,��âE�����b� denotes the pixel coordinates of site � . For different formulations of the

constraint, we will define different neighborhood systems, ä , that determine the local inter-

action of sites. A neighborhood system, äå%·ÙÚä�æ#�#�èç Ç ã , satisfies the following conditions

[Geman and Geman, 1984]:

1. ä!æDé Ç
,

2. �Âêçëä!æ , and

3. ��çëä@x@ì aDçíä!æ .
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Figure 2.5: Various sized neighborhoods in a grid.

The pair Ù Ç �#äDã then defines a graph with ��ç Ç
representing the vertices and pairs, Ùo�����ba#�B����çä@x£ã , being the edges. We define a clique to be a set of sites, òóé Ç

, such that if ���ba�çÁò
and �¸ê%àa , then a�çëä.æ . Let ô be a set of cliques.

In the case of images, we are interested in particular types of graphs, namely grids, hence

we will consider local neighborhood systems of the form:ä!æ�%·Ù�a��Ý�fõº��ßb� �ö�°�jß±�£a#�b� S eà�râE� �ö�°��âE�£a#�b� S ¶ ï ão�
Figure 2.5 shows the neighborhood systems for various values of ï . For first-order con-

straints � ï %c�k� W , which are used extensively in the literature, we look only at the nearest

neighbor relations (North, South, East, West) in the grid:ä!æ6%ºÙ�ai�o��ß±��â���%ð��ß±�����#��âE� �ö�±�#�t��ßb�ya{�,��âE�£a#�b�&ç÷Ùo� ß©e�����â��,����ßb� â³e��k�,����ß!�à��� â$�,����ß±��âè�à�k�bã�ão�
Even this simple neighborhood system proves very useful and it has an added benefit of

being easily realized on many parallel architectures.X
We call these first-order because the neighborhoods allow us to formalize constraints based on the first-

differences between a site and its neighbors.
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2.4.1 Constant-Flow Model

The most common formulation of
� Ð

is the first-order, or membrane, model. We take as a

measure of smoothness the square of the velocity field gradient:� Ð � )!�#+$�°%s) Su ej) Sv eh+ Su eh+ Sv � (2.11)

where the subscripts indicate partial derivatives in the � or " direction. We can approxi-

mate this equation using a discrete first-order neighborhood system where we consider the

following neighbors:

Ò Ò Ò
Ò�ËÓ �ËÔ�� �ËÓnÕ I �ËÔÆ� �ËÓ �ËÔ��

�ËÓ �ËÔ Õ I �
This leads to the approximation:� Ð � u Ó � Ôn�§% ��) Ó � Ôø�å) ÓÖÕ I � Ôn� S eà� ) Ó � Ô>�j) Ó � Ô Õ I � S e��+ Ó � Ô&�j+ ÓÖÕ I � Ôn� S e���+ Ó � Ô��j+ Ó � Ô Õ I � S � (2.12)

The minimum of this is simply the mean flow ùu for the neighboring points to the North and

East: ú � Ðú ) % )�� �� ��) ÓÖÕ I � Ô ej) Ó � Ô Õ I �>%s)H� ù).� (2.13)ú � Ðú + % +�� �� ��+ Ó²Õ I � Ô�eh+ Ó � Ô Õ I �>%s+è� ù+�� (2.14)

Notice that the mean flow is the best least-squares estimate of the flow for a constant-flow

model. Thus, the simple first-order model implies a locally constant optical flow field. A

more reliable estimate of the mean flow can be achieved by considering a larger region. For

example, Horn [1986] suggests computing the average by convolving the components of

the flow with the mask: ���� ��� � û �û � û� û �
� �� �
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Following the approach of Horn and Schunck [1981], we can take
� �

to be the gradient

constraint equation and
� Ð

to be this simple constant-flow model. This gives the following

least-squares formulation of optical flow:� � u �&%·Ñ;�
`#u�) Ó � Ô&ew`#vn+ Ó � Ô�et`#x£� S e �� 'Î� ) Ó � Ô>� ù) Ó � Ô#� S e���+ Ó � Ô>� ù+ Ó � Ô#� S 0 � (2.15)

This formulation admits a simple iterative relaxation scheme for determining the optical

flow: ) � Û Õ I �Ó � Ô % ù) ÛÓ � Ô � ` u ��` u ù) ÛÓ � Ô ew` v ù+ ÛÓ � Ô et` x ��BewÑ;�
` Su ew` Sv � � (2.16)+ � Û Õ I �Ó � Ô % ù+ ÛÓ � Ô � `,v��
`#u ù) ÛÓ � Ô ew`#v ù+ ÛÓ � Ô et`#x£��BewÑ;�
` Su ew` Sv � � (2.17)

Intuitively, the problem with simple relaxation schemes like this is that to reduce the effects

of noise one must oversmooth the flow field. Remaining faithful to the image measurements

on the other hand results in a noisy flow field. What is needed is a way to ignore noisy

measurements and at the same time prevent smoothing across discontinuities.

2.4.2 Affine-Flow Model

Now consider a second-order smoothness constraint which is referred to by Geman and

Reynolds [1992] as the planar case and by Blake and Zisserman [1987] as the plate model.

For notational simplicity we will consider just the horizontal component of the flow, ) ; the

treatment is identical for the vertical component. The second-order constraint is:� Ð � )©�>%�) Su#u eh��) Su#v eh) Sv�v � (2.18)

where the subscripts indicate second partial derivatives of the flow.
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Using the following neighborhood system:

Ò Ò Ò
Ò
Ò
Ò

Ò Ò
Ò Ò��Ó » I �ËÔ�� �ËÓ �ËÔÆ� ��ÓnÕ I �ËÔ��

��Ó �ËÔ » I �
��Ó �ËÔ��
��Ó �ËÔ Õ I �

��Ó �ËÔ�� ��ÓnÕ I �ËÔÆ�
��Ó �ËÔ Õ I � �ËÓ,Õ I �ÎÔ Õ I �

a b c

the problem is discretized as follows:)�u#u % ) Ó � Ô » I eh) Ó � Ô Õ I �j��) Ó � Ô|� (2.19)) v�v % ) Ó » I � Ô eh) Ó²Õ I � Ô �j��) Ó � Ô � (2.20))�u#v % ��) Ó � Ô&�j) ÓÖÕ I � Ô Õ I eh) Ó � Ô Õ I eh) Ó²Õ I � Ô�� (2.21)

The smoothness constraint is minimized when the second partial derivatives )©u#u , )�v�v ,

and ) u#v are zero. This is the the case when the flow field is locally affine; that is, linear in� and " . As mentioned earlier, these affine models of optical flow have become popular in

regression-based formulations as an alternative to the constant-flow model.

Assumptions, Violations, and Previous Approaches

The two smoothness models described above both assume that a single model can describe

the optical flow locally. Consider what happens if the flow field is discontinuous; that is,

there are multiple motions present in the neighborhood. Figure 2.6 illustrates the situation.

The constant-flow approximation forces ) Ó � Ô to the average of its neighbors ) ÓÖÕ I � Ô , ) Ó � Ô Õ I ,) Ó » I � Ô , and ) Ó � Ô » I . The averaging of the smoothness constraint will result in a blurring across

the motion boundary. Not only does this reduce the accuracy of the flow field, but it obscures

important structural information about the presence of an object boundary. Instead of over-

smoothing, what one would like to do is realize that the flow at ) ÓÖÕ I � Ô is different from the

rest and ignore it.
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Figure 2.6: Smoothing across a flow discontinuity.

Another way to view this problem is by considering the distribution of flow vectors over

a larger neighborhood. For example, the neighborhood in Figure 2.7a contains a set of flow

vectors that are consistent with a constant flow assumption. In contrast, the neighborhood

in Figure 2.7b spans a motion boundary; the flow vectors in the region fall into two distinct

groups. This can be seen in Figure 2.8 where the flow vectors within a neighborhood are

plotted in a ) – + coordinate system. Figure 2.8a corresponds to constant flow within a re-

gion; in this situation, the vectors are clustered in ) – + -space, and the mean flow provides

a reasonable estimate of the motion. Figure 2.8b corresponds to the multiple-motion case

where the flow vectors form multiple distinct clusters in ) – + -space.

In the case of multiple clusters, the mean flow does not do a good job of characterizing

the flow of either cluster. Instead, in cases like this, the goal should be to find the flow that

best describes the majority of the data. There are numerous techniques that attempt this;

the most important being the line-process approaches which provide general techniques for

regularization with discontinuities. There are other techniques as well; including heuristic

techniques that exploit information about the intensity image as well as algorithmic tech-

niques that try to detect discontinuities in the flow field.
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a b
Figure 2.7: Local neighborhoods of flow vectors; a) single motion within a neighborhood,
b) multiple motions within a neighborhood.

x
x

x

x
x

x

x

x
x

x x
x

x
xx

x

v

u
x

x x

xx

xxx

v

u

x x
x

x

xx
x

x x

x x
x

xx
x x

a b
Figure 2.8: Local distributions of flow vectors; a) single motion, b) multiple motions.
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Line-Process Approaches

A large number of researchers have focused on regularization problems involving disconti-

nuities. For example, Terzopoulos [1986] proposes controlled-continuity stabilizers which

can account for both first-order (step) and second-order (crease) discontinuities and can be

extended to recover higher-order discontinuities. In related work, Szeliski [1988] describes

a Bayesian framework for representing reconstruction problems involving discontinuities.

An important class of techniques for coping with spatial discontinuities are the Markov

random field (MRF) formulations [Geman and Geman, 1984; Marroquin et al., 1987] which

a number of authors have applied to the optical flow problem [Black and Anandan, 1990b;

Black and Anandan, 1991b; Konrad, 1989; Konrad and Dubois, 1988; Murray and Buxton,

1987; Tian and Shah, 1992]. These approaches represent discontinuities either explicitly

with the use of a “line process” [Geman and Geman, 1984] or by using weak continuity

constraints [Blake and Zisserman, 1987; Harris et al., 1990; Koch et al., 1988].

Consider the one dimensional example of Blake and Zisserman [1987]. Given some

noisy discontinuous data ü Ó , �w¶pß�¶c× , (Figure 2.9a) find a piecewise-smooth approxi-

mation ) Ó of the true function. With a standard least-squares approach the approximation

will smooth the data too much and the discontinuity will not be recovered (Figure 2.9b).

We desire a more robust fit to the data that provides a better piecewise-smooth interpreta-

tion and indicates the location of discontinuities. This can be expressed as the following

minimization problem:ý¸þrÿ¿ � � � ��)!� � � where
� ��)!� � ��% � � ��)@�!e � Ð � )!� � �;e ��� � � �,� (2.22)

and where: � � � )©� % Û�Ó���� � ) Ó �jü Ó � S (2.23)� Ð ��)!� � �§% � Û� Ó	��� ��) Ó �j) Ó » I � S �b�B� � Ó � (2.24)
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Figure 2.9: A 1D example of piecewise smoothness (redrawn from Blake and Zisserman
[1987]). Figure a illustrates noisy data to which we would like to fit a 1D function. Figure
b illustrates what the least-squares estimate found by minimizing

� � )@�6% Å Ó 'Ö��) Ó �jü Ó �ÆSøe��) Ó �j) Ó » I �ÆS
0 might look like. Figure c shows the recovery of a discontinuous function.��� � � � % 
 Û�Ó���� � Ó � (2.25)

The first term,
�D� � )@� , in the objective function enforces fidelity to the data. The second

term,
� Ð ��)!� � � , encodes a prior first-order smoothness assumption. The

� Ó are boolean valued

line variables which indicate the presence � � Ó %c�k� or absence � � Ó % ��� of a discontinuity

between neighboring values. The final term,
��� � � � , is a penalty term which penalizes the

introduction of a discontinuity. The idea here is that discontinuities are rare and should only

be introduced when they contribute significantly to a better piecewise-smooth solution.

This notion of a line variable can be extended to two dimensions for recovering discon-

tinuities in optical flow. We define a dual ×ë�Ï× lattice,
Ç� %ð� ���ba#� , of all nearest neighbor

pairs � ���±a{� in
Ç

. Figure 2.10 shows the pixel sites �
	�� in the original graph and the disconti-
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	 �§	 � 	� � �	 �§	 � 	� � �	 �§	 � 	
Figure 2.10: Arrangement of pixel sites ��	�� and discontinuities �������� .

nuity processes �n�Ë���è� between the sites. This lattice is coupled to the original in such a way

that the best interpretation of the data will be one in which the data is piecewise smooth.

We define a line process
� % Ù � æ�� x��$���±aèç Ç ��a�çtä!æbã , where

� æ�� xiçàÙÚ�/�|�kã . If
� æÆ� xD% �

then there is no discontinuity between the sites � and a . In the case where
� æ�� x4% � , the

neighboring sites are disconnected and hence a discontinuity exists. To recover piecewise-

constant optical flow the problem is reformulated to introduce line processes in the spatial

term:� � u � � �§% �æ�� Ð ' � � � u æ,�°e �x������ 'Ö�b�B� � æ�� x��#��)Eæ°�j)$xy� S eà�±�B� � æÆ� x��,��+�æ°�å+�x�� S e�
 � æÆ� x¬0r0% �æ�� Ð ' � � � u æ,�°e(�x���� � 'Ö�b�B� � æ�� x��#�b� )Eæ��j)�x£� S e���+�æ°�j+kxy� S �!e�
 � æ�� x�0r0% �æ�� Ð ' � � � u æ,�°e �x������ 'Ö�b�B� � æ�� x���� u æ�� u x�� S e�
 � æ�� xr0r0 � (2.26)

This first-order formulation with discontinuities corresponds to a weak membrane model,

while the second-order formulation corresponds to a thin plate.

The computational task is now much greater as we must jointly estimate u and the dis-

continuities
�
. The original least-squares formulation of

�
was convex and hence easy to

minimize. As we will see later, the introduction of the line processes results in a non-convex

objective function that is more expensive to minimize. There are minimization procedures

for non-convex problems that achieve good results but typically rely on expensive stochastic



2.4. EXPLICIT SMOOTHNESS TECHNIQUES 45

	 � 	� �	 � 	
	 	� 	 	

	 � 	� �	 	
	 �·	� 	 	

	 	� �	 	
	 	
	 	� I � S � T � W � \ � ]

Figure 2.11: Possible configurations of discontinuities at four neighboring edge sites (up to
rotations of ����� ).

minimization procedures [Geman and Geman, 1984; Kirkpatrick et al., 1983] or continua-

tion methods [Blake and Zisserman, 1987; Rangarajan and Chellapa]. A related approach

implements analog, or binary, line processes in hardware using nonlinear resistive networks

[Harris et al., 1990; Koch et al., 1988].

A common use of line process is to model the expected spatial properties of disconti-

nuities in the image; for example the Gestalt notions of continuity or simplicity of form

[Wertheimer, 1912; Koffka, 1935; Lowe, 1985]. This can be achieved by modifying the

penalty term to take into account the local configurations of discontinuities:��� � � ��%�
 �Ã£��� � Ãb� � �,��
��à�/� (2.27)

where ï ç~ô are cliques containing four neighboring edge sites, and
� Ã assigns a “weight”

to the configuration of edges in the neighborhood. The possible configurations are shown

in Figure 2.11. The penalties associated with each configuration can be assigned weights,� Ãf% � Ó , to reflect a preference for certain configurations; for example
� W % � \ % � ] �� T � � I % � S .

Other Approaches

A number of approaches have explored the use of the grey-level intensity image to con-

trol the behavior of the smoothness constraint in optical flow [Cornelius and Kanade, 1983;

Hildreth, 1983; Nagel and Enkelmann, 1986; Wu et al., 1982]. These approaches exploit
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the heuristic that surface boundaries often appear as intensity discontinuities in images. One

approach disables the smoothness term at intensity edges thus preventing smoothing across

the boundary [Cornelius and Kanade, 1983; Gamble and Poggio, 1987; Hutchinson et al.,

1988]. Alternatively, the “oriented smoothness” constraint of Nagel and Enkelmann [1986]

ties the effect of the smoothness constraint directly to the grey-level variation in the image,

enforcing smoothness only along the directions for which the grey-level variation is not suf-

ficient to determine the flow vector.

A related class of approaches use confidence measures computed from the data to propa-

gate flow measurements from areas of high confidence to areas of low confidence [Anandan,

1989]. Singh, for example, [1990] uses covariance matrices computed from the SSD sur-

faces and the distribution of flow vectors in small neighborhoods to determine an optimal

flow estimate.

Schunck [1989a] interleaves discontinuity detection and regularization. Given an esti-

mate of the optical flow, motion discontinuities are detected in the flow field [Thompson

et al., 1985] and then a smoothness operator is applied that prevents smoothing across the

boundary. This gives a new flow estimate and the process is repeated.

Darrell and Pentland [1991] have noted the limitations of edge-based schemes when re-

covering multiple motions in cases of fragmented occlusion. Instead, they propose a scheme

in which multiple layers are used to represent the various motions. They use an Markov ran-

dom field approach to assign pixels to the appropriate layer.

2.5 Large Motions

An implicit assumption of the gradient-based approaches is that the image motion is small;

that is, less than a pixel. While the correlation approach can cope with larger motions, the

computational burden, and possibility for false matches, rises rapidly as the search distance

increases. To ameliorate these difficulties, multi-resolution schemes are often used.
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FHG

Figure 2.12: Gaussian pyramid. Each level in the pyramid is a subsampled version of the
level below convolved with a Gaussian filter.

The basic idea is to construct a pyramidal representation of an image [Burt and Adelson,

1983] in which higher levels of the pyramid contain filtered and sub-sampled versions of the

original image (Figure 2.12). This reduction operation can be implemented as convolution

and sub-sampling:

if �����/� mod ��� and "��º�/� mod ��� then` � » I#� u S � v S �!#"Ø�<`$�Ý���!�#"��~Ü.�!�#" at level �
end

where " is some filter (for example a Gaussian), “ � ” represents convolution, and `%� is the

image at level � in the pyramid. \ While various other filters can be used, the general effect is

to reduce the high frequency components of the image at the coarser scales. Multigrid relax-

ation algorithms [Terzopoulos, 1983] exploit this property to converge on a coarse solution

at the high levels and successively refine the solution at finer levels of the pyramid.^
The image size at level & is ')(+*,'-( ; so, for example, at the coarse level, &+.0/ .
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Multi-resolution gradient-based schemes have been developed by Enkelmann [1986]

and Glazer [1987]. Anandan [1989; 1987a] developed a coarse-to-fine correlation-based

approach. Coarse-to-fine refinement strategies have also been applied to regression schemes

[Bergen et al., 1992]. Below, a simple coarse-to-fine scheme, that is consistent with these

approaches, is described. Later in the thesis, we will explore a number of novel strategies.

The following is a sketch of a simple coarse-to-fine gradient-based approach:

for � from coarse-level to fine-level do
u �1! project � u � » In� � � ; project with interpolation2 ` �3! ` �Ú� x �±a{�©�w`$�Ý� x � u �Ý�ba��à��� ; warp image by flow fieldýÂþrÿ54 u ��`$�u g�)fet`$�v g�"�e 2 `$�|�!e � Ð � u ��ejg u � ; compute new g u
u � ! u � ejg u ; update flow

end

The algorithm uses pyramids of images and flow fields. At a given level in the pyramid,

the algorithm takes as an initial estimate, the projection of the optical flow computed at the

next coarser level. ] The flow estimate is used to warp the image at time aE� � “towards” the

image at time a . This allows us to compute an estimate of the temporal derivative
2 ` . 6 We

then obtain a new estimate of the motion, g u, between the partially registered images and

update the motion estimate u. This kind of hierarchical processing is illustrated in Figure

2.13.

The projection operation can take a number of forms, the simplest being “projection with

duplication”:

u�Ú���!�#"��7! � u � » In�$8 u S 9 ��8 v S 9 �#� Ü°�!�#" at level � .

Here grid points are projected from the level above and duplicated to “fill in” the missing

grid points. A better scheme is “projection with interpolation”:_
The initial flow at the coarse level is taken to be zero.:
Here we follow the notation of [Bergen et al., 1992] in using ;Bl instead of l=< to indicate that the temporal

derivative is being estimated between a partially registered pair of images.
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Figure 2.13: Hierarchical Processing.

u�Ú���!�#"��! � u � » In� round � u S �,� round � v S �±�#� Ü°�!�#" at level �
if ���ð�Ú� mod ��� and ">�(�Ú� mod ��� then

u �Ú� �!�#"$�?! IW '1)@�Ý��� �à���#"è�à�k�°ej)���� �fe����#"��à���be)��Ú��� �à���#"�eà����eh)@�Ú� ��eà���,"�eà����0�� Ü.�.�," at level �
else if ���ð�Ú� mod ��� then

u �Ú� �!�#"$�?! IS '1)@�Ý��� �à���#"��@eh)@�Ú� �fe����#"���0 � Ü°�!�#" at level �
else if "A�ð�Ú� mod ��� then

u �Ú� �!�#"$�?! IS '1)@�Ý���!�#"è�à�k�!eh)@�Ú� �!�#"³e��k� 0�� Ü°�!�#" at level �
end

As in the case of projection, there are a number of different warping schemes that can be

employed. First, let us consider the so called “backwards warp”. For this kind of warping,

we take the flow vector at each site and treat it as the incoming flow vector to that site. The

tail of the vector will likely fall someplace in between sites, hence we perform a bi-linear

interpolation to obtain the new estimate. This process is illustrated in Figure 2.14 and can
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Figure 2.14: Backwards warping.

be expressed as: `d���!�#"E�ba#�B! `d���H�j)!�#"��j+E�ba#�#�
This scheme can easily be improved by the use of more sophisticated interpolation schemes;

for example, bi-cubic spline interpolation.

In the case of a “forwards warp”, the flow vector is used it to predict where the site will

have moved. This kind of warping is more complex and computationally expensive, but

more easily motivated than the backwards warp. We need to constrain the distance that any

site can move by using a coarse-to-fine strategy. Then the scheme can be implemented by

searching in a fixed neighborhood about a site to determine what flow vectors project to that

neighborhood (see Figure 2.15). With such a scheme there may be collisions; that is, more

than one flow vector may project to the same neighborhood. To determine the new value of

a site, one needs a way to combine incoming flow vectors and resolve conflicts. Chapter 6

presents an implementation of such a warping scheme.

As Battiti et al., [1991] have pointed out the simple coarse-to-fine approaches have a

number of problems. In particular, if an error is made in estimating the motion at the coarse
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Figure 2.15: Forwards warping.

scale, it will be propagated down to the finer scales with no way to correct it resulting in

temporal aliasing. More generally, the standard scheme does not provide criteria to decide

what is the appropriate level in the pyramid at which to compute a particular velocity esti-

mate. They suggest an adaptive scheme in which reliability estimates are used to determine

the appropriate level at which to stop refining a particular flow estimate. Even such an adap-

tive scheme has limitations; for example, coarse-to-fine approaches cannot, in general, be

used to estimate large motions of purely high frequency patterns.

The straightforward coarse-to-fine strategy is also not easily extended to incremental

motion estimation. Chapter 5 develops two coarse-to-fine strategies that can be used in in-

cremental estimation. The first approach is a flow through strategy which is a coarse-to-fine

scheme without refinement. The motion is computed at each level of the pyramid indepen-

dently and in parallel and then combined across levels using a strategy similar to that of

Battiti et al. The second approach is a coarse-to-fine strategy, with refinement, that is ap-

propriate for dynamic algorithms.
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Chapter 3

Robust Estimation Framework

The previous chapter illustrated the generality of the problem posed by motion disconti-

nuities; measurements are corrupted whenever information is pooled from a spatial neigh-

borhood that spans a motion boundary. Both the data conservation and spatial coherence

assumptions are affected by this problem.

We can view motion discontinuities as causing violations of the assumptions of data con-

servation and spatial coherence, and as such we would like to treat the violation of both

constraints in a uniform manner. In particular, model violations such as these result in mea-

surements that can be viewed in a statistical context as outliers [Hampel et al., 1986; Huber,

1981]. The problem can be treated as one of recovering optical flow in the presense of these

outliers and, hence, we appeal to the field of robust statistics which addresses the problem

of estimation when the assumptions about the world are, by necessity, idealized and one

expects that the assumptions will occasionally be violated.

This chapter formulates a framework for the robust estimation of optical flow. It begins

by introducing robust estimation with an emphasis on on Hampel’s [1986] approach based

on influence functions. We draw on the ideas of robust estimation and influence functions

in formulating problems in optical flow and illustrate the approach by reformulating regres-

sion, correlation, and explicit smoothness schemes in this framework.

This robust estimation approach is closely related to the traditional line-process approaches

53
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mentioned in the previous chapter. The notion of a line process, however, carries a spatial

connotation and is applied only to the spatial smoothness term. Instead, we generalize the

idea and define an outlier process that is applied to both the data and spatial terms. We will

show how such a formulation in terms of binary or analog outlier processes can be converted

into an equivalent robust estimation problem.

This relationship is explored more fully by showing how a wide class of robust esti-

mation formulations admit physical interpretations in terms of binary or analog outlier pro-

cesses. Following the work of Rangarajan and Chellapa [Rangarajan and Chellapa] we show

how to construct equivalent outlier-process formulations for robust estimation problems.

3.1 Robust Statistics

The field of robust statistics [Hampel et al., 1986; Huber, 1981] has developed to address

the fact that the parametric models of classical statistics are often approximations of the phe-

nomena being modeled. In particular, the field addresses how to handle outliers, or gross

errors, which do not conform to the assumptions. While most of the work in computer vi-

sion has focused on developing optimal strategies for exact parametric models, there is a

growing realization that we must be able to cope with situations for which our models were

not designed. I
As identified by Hampel [1986, page 11] the main goals of robust statistics are:

(i) To describe the structure best fitting the bulk of the data.

(ii) To identify deviating data points (outliers) or deviating substructures for

further treatment, if desired.

These goals mirror those we laid out in Chapter 1 and we will return to them after reviewing

the fundamental ideas of robust estimation.J
As Einstein noted: “So far as mathematics is exact, it does not apply to nature; so far as it applies to nature,

it is not exact.”
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To state the issue more concretely, robust statistics addresses the problem of finding the

values for the parameters, a % ' ¨ � �|������� ¨ Û 0 , that best fit a model, u ����¢ a � , to a set of data

measurements, d % ÙÚü � �#ü I �������n�#ü Ð ã , in cases where the data differs statistically from the

model assumptions.

In fitting a model, the goal is to find the values for the parameters, a, that minimize the

size of the residual errors ��üoæ°� u ����¢ a �±� :ýÂþrÿ
a �æ�� Ð �E� ü æ � u � ��¢ a �#��C æ �#� (3.1)

where C-æ is a scale parameter, which may or may not be present, and � is our estimator.

When the errors in the measurements are normally distributed, the optimal estimator is the

quadratic: �E��ü�æ�� u ����¢ a �,��C-æb��% ��ü�æ�� u ����¢ a �b��S�DC Sæ � (3.2)

which gives rise to the standard least-squares estimation problem. The function � is called

an M-estimator since it corresponds to the Maximum-likelihood estimate. The robustness of

a particular estimator refers to its insensitivity to outliers, or deviations, from the assumed

statistical model.

An estimator is said to be robust if the solution to equation (3.1) is relatively insensi-

tive to “small” deviations from the assumptions. The term “small” can have two meanings.

The first refers to relatively small deviations for the bulk of the data and the second to large

deviations for a few data points. The breakdown point of an estimator refers to the largest

fraction of the data that can be arbitrarily bad and that will not cause the solution to be ar-

bitrarily bad. For example, the least-squares approach has a breakdown point of ��� since

introducing an arbitrarily bad outlier can produce arbitrarily bad estimates regardless of the

sample size. A robust technique on the other hand may have a breakdown point of up to����� ; that is, the estimator can cope with up to ����� of the data being outliers.

Robust estimators are also characterized by their efficiency. The efficiency of a robust

estimator refers to the ratio between the theoretically lowest variance achievable for a given
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Figure 3.1: Fitting a straight line. The underlying model for the majority of the data is the
line ( "-� �@�6%º�o�Ë���Heà�Ú�Ë� ) to which uniform random noise over the range 'Î�C�/�Ë�Ú�/�B�o�Ë�Ú�k0 has
been added. There are a number of outlying data points that do not conform to the model of
a line. a) Least-squares fit. b) Robust fit (using Lorentzian estimator described in the text).

problem and the actual variance achieved using the robust estimator. For example, if the

errors in the data are Gaussian, then the quadratic estimator is fully efficient, yielding the

solution of theoretically minimum variance. One typically must trade off efficiency for ro-

bustness, but many robust estimators exist which are over EÚ��� efficient.

3.1.1 Robust Estimators

The least-squares approach is not without its problems. When the noise is not Gaussian,

the estimate may be skewed from the “true” solution. Figure 3.1 shows an example of fitting

a line to data in the presence of outliers. Figure 3.1a illustrates how the least-squares fit is

skewed in the direction of the outliers. The fit recovered in figure 3.1b is robust in the sense

that it rejects the outliers and recovers a “better” fit to the majority of the data.

The problem with the least-squares approach is that the outliers contribute “too much”

to the overall solution. Outlying points are assigned a high weight by the quadratic estima-
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Figure 3.2: Quadratic estimator � ¨ � and � -function �GF�� .
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Figure 3.3: L1 norm. � ¨ � Estimator, �GF��!� -function.

tor 3.2. To analyse the behavior of an estimator we take the approach of Hampel [1986]

based on influence functions. The influence function characterizes the bias that a particular

measurement has on the solution and is determined by the derivative, � , of the estimator

[Hampel et al., 1986]. Consider, for example, the quadratic estimator:�E���@�>%à� S � �<���@��%����!� (3.3)

For least-squares estimation, the influence of outliers increases linearly and without bound

(Figure 3.2b).

To increase robustness, an estimator must be more forgiving about outlying measure-

ments. The most obvious first step is to replace the quadratic (or L2 norm) with the absolute
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Figure 3.4: Huber’s min-max estimator. � ¨ � Estimator, �GF��!� -function.

value (or L1 norm): �E���@��% � �ø��� �<���@��% sign ���@�#� (3.4)

In Figure 3.3 it is clear that outlying points are weighted less heavily by the L1 norm but

the estimator is not robust in that it still has a breakdown point of ��� . Additionally, the L1

norm does not perform as well as the quadratic estimator when the errors are Gaussian. For

this reason Huber [1981] proposed the minimax estimator (Figure 3.4):�5H
� �@�6% I �ES{�Ý��z�etz#��� �3����¶Ázn��3��� �3���J�Ázn� �7H����@��% I �@��zn� �3���o¶Ázn�
sign ���@� � �ø�5�àzn� (3.5)

Huber’s minimax estimator combines the behavior of the L2 norm when the errors are small

while maintaining the L1 norm’s reduced sensitivity to outliers. S
To increase robustness further we will consider redescending estimators for which the

influence of outliers tends to zero. There are two common examples, the first being An-

drews’ sine:�E� �!��K��6% I �3KML�NPO����@� K�� �3���oõt�QKk�K otherwise � �<���!��K���% I O þrÿ � u R � �3����õ��QKk�� otherwise � (3.6)

The other commonly used estimator is Tukey’s biweight:�E���!��K��>% I RGS u ÍS � R Í u SS e u�T] �3����õUK��R T] otherwise � �<���!��K���% I �!�GK�S6�j�ES#��S � �ø�öõUKk�� otherwise � (3.7)U
The minimax V -function is often written as VXW�ªr«Ú¯Y.�Z�[]\�ª_^b`Z3a�b�ªr«o-cM^ ¯£¯ .
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Figure 3.5: Redescending Estimators.
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These estimators are plotted along with their � -functions in Figure 3.5. By examination of

their � -functions we see that they both share a saturating property; that is, the influence of

outliers tends to zero.

Another estimator with similar properties is the Lorentzian:�Jd�� �©�&%UefNhgji��Be ��lk �Cnm S=o � �pdo���@��% �Ú��hC S eh� S � (3.8)

Also illustrated in Figure 3.5, the Lorentzian is continuously differentiable, and its � -function

has a very simple form. These properties make it attractive and we will come back to it in

the following chapter where it will be used in developing a robust optical flow method.

3.2 Robust Estimation Framework

We now apply these tools of robust statistics to develop a framework for the robust estima-

tion of optical flow. In Chapter 2 we introduced three standard approaches for estimating

optical flow which were all posed in terms of least-squares estimation. We also indicated

that the models used are idealizations that are frequently violated in practice and that the

least-squares solutions are particularly sensitive to such violations. To improve the robust-

ness, without sacrificing our simple models, we reformulate our minimization problems to

account for outliers by using the robust estimators described above.

The regression approach is simply reformulated as:ý¸þ¬ÿ¿ � À ��� ��)!�#+�� where,
��� ��)!�#+���% � � �E�
` u )�ew` v +³et` x �,� (3.9)

where � is a robust estimator. Similarly, we can reformulate correlation as the minimization

of: � � � u �>% �� u�� v±� ��� �E��`�� �.�,"-�ba#�;�w`d����ej)Egkan�#"ieh+/g�an�ba@ejg�a#�b�#� (3.10)

The object function for the regularization approach becomes:� � u �6% �æ�� Ð �� Ño� I �
`#u�)Hew`#vn+�ew`,x��!e �x�� � � � S �q� u æ�� u x���� �� � (3.11)
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where, in the regularization case, � I and � S may be different estimators. Such an approach

can likewise be taken with many other early vision problems that are formulated in terms

of least-squares optimization.

Notice what we have done. We have simply taken the standard formulations of optical

flow and made the observation that these correspond to least-squares regression. Because

each approach involves pooling information over a spatial neighborhood these least-squares

formulations are inappropriate. By treating the problems in terms of robust estimation, we

hope to alleviate the problems of oversmoothing and noise sensitivity typically associated

with these approaches. In the case of the regression approach, the reformulation in terms

of robust regression is not terribly surprising. Of greater interest is the robust formulation

of the regularization approach. As pointed out in Chapter 2, the first-order regularization

term corresponds to a locally constant model of optical flow, and minimizing the first-order

formulation produces a least-squares estimate with respect to this model. This estimate is

simply the mean flow in a neighborhood which is not robust and results in oversmoothing.

The relationship between regularization with discontinuities, regression, and outlier re-

jection has only recently become evident. Besl [1988] formulated neighborhood smooth-

ing operations using robust techniques, but did not address regularization. Schunck later

noted that standard first-order “regularization is a least-squares method and the algorithm

produced by regularization averages data over local neighborhoods,” [Schunck, 1990, page

6]. Schunck, however, did not formulate the regularization term using robust estimators.

Independently, Black and Anandan [1990b] formulated the optical flow problem using ro-

bust estimators for both data and regularization terms. Black and Anandan [1991b] latter

clarified the connection between outlier rejection and regularization with line processes. At

about the same time Blauer and Levine [1991] were investigating regularization with the

more robust L1 smoothness metric. And, more recently, Black [1992b] has shown that the

standard Horn and Schunck formulation of optical flow corresponds to a least-squares re-
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gression problem, and by simply reformulating the problem as one of robust regression, the

problems of oversmoothing and noise are drastically reduced.

This approach has a number of advantages. The formulation of minimization problems

in the robust estimation framework is very similar to the familiar least-squares formulations

and this gives the robust formulations an intuitive appeal. Robust estimators and their influ-

ence functions are also powerful formal and qualitative tools that are useful for analyzing

robustness. In particular, examination of the influence functions provides a means of com-

paring estimators and their effects on outliers.

Within the robust estimation framework, it is natural to “robustify” both the data con-

servation and spatial coherence terms. With traditional line-process or weak-continuity ap-

proaches this has not been the case. These previous approaches have focused on the spatial

term while maintaining a quadratic estimator for the data term. And, as we will see, the ex-

plicit use of robust estimators brings to light the relationships between the robust estimation

framework and these previous approaches. Additionally, an analysis of a robust estimation

problem can illuminate possible underlying physical interpretations in terms of binary or

analog line processes.

Recall the three goals we set out for robust optical flow in Chapter 1:

1. Recover optical flow without smoothing across motion discontinuities.

2. Locate the actual motion boundaries so that they are available to other algorithms that

require knowledge about the surface boundaries of objects.

3. Detect when the underlying assumptions of the model are violated.

These are very similar to the goals of robust statistics. The first corresponds to Hampel’s

first goal; that is, to recover the solution best fitting the “bulk of the data.” When trying to

recover the flow within a neighborhood that spans a motion discontinuity, there will be two

conflicting sets of measurements corresponding to the two motions. By adopting the robust



3.2. ROBUST ESTIMATION FRAMEWORK 63

estimation framework, we can recover the dominant motion and ignore the other measure-

ments as outliers. T
In satisfying the first goal we have identified the spatial outliers and, in so doing, have

implicitly determined the existence of a motion boundary. By examining the outliers, the

motion boundary can be recovered.

These first two goals are really special cases of the third goal. However, unlike most

previous approaches, we are not simply interested in violations of the spatial coherence as-

sumption. The robust estimation framework allows us to detect violations of the data coher-

ence term as well which, as we will see, can significantly improve motion estimates. More

generally, detecting where assumptions are violated, may, as Hampel suggests, allow algo-

rithms to perform further processing in interesting regions of the image.

3.2.1 Minimization

The approach above decouples the problem of formulatingan optimization problem robustly

from the problem of recovering the solution. The minimization problem can be treated as

a separate issue and a host of techniques can be brought to bear on the problem. In this

thesis we consider two general schemes. In the case where our objective function is dif-

ferentiable, local optimization is performed using Newton’s method. In the case where the

objective function is not differentiable, we will use a stochastic minimization scheme, but

will defer describing the approach until Chapter 6.

For now, we will describe the general gradient-descent method, and, in the following

chapter provide details of the method applied to various approaches. Given the following

optimization problem, ýÂþrÿu "°���@�#� (3.12)V
This ignores the case where the discontinuity divides the neighborhood exactly in half so that 50% of the

measurements are due to each motion. In this case, no technique will work well, and it is not even clear what
the “correct” motion estimate should be.
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we first approximate " by its Taylor series expansion,

"�� �fejgÚ�@�7rs"�� �@�!e�"Xt ���@��gÚ��e " tut � �@�� gÚ� S eà�����|� (3.13)

To minimize " we drop the terms above first order, take the derivative, and set it equal to

zero: üv"ü�� %s��%s" t ���@�!ew" tut ���@��gÚ�.� (3.14)

We then obtain the following iterative update equation,� Û Õ I %s� Û ejgÚ� (3.15)

where, g��¸%·� " t � �@�" tut � �@� (3.16)

Unlike the least-squares estimation formulation, the robust objective function is not guar-

anteed to be convex. This means that a local optimization procedure like the above may get

“stuck” in local minima. To perform global optimization we can use a continuation method

like Graduated Non-Convexity [Blake and Zisserman, 1987] as will be shown in the next

chapter.

3.2.2 Other Robust Approaches

There are other approaches to robust statistics that have been applied to computer vision

problems. For example, Irani et al. [1992] formulated an area regression technique that per-

forms iterative outlier rejection. The strategy is to first obtain a least-squares estimate of the

motion which hopefully corresponds to the bulk of the data. Then outliers can be identified

by examining the residuals. Some number of outliers are removed and a new least-squares

estimate is found. This iterative scheme can work well when the outliers are not extremely

bad or do not occupy much of the image.
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Figure 3.6: Problems with iterative outlier rejection (see text).

If, however, there are a large number of outliers, or the outliers fall far from the true

solution, then the least squares estimate may be very poor. If the initial estimate is poor,

outliers may have small residuals while the residuals of some true measurements look like

outliers. In such a situation a simple iterative technique could lock onto an incorrect solution

and reject the true measurements. This can be seen in Figure 3.6 where the data is the same

as that in Figure 3.1 with the addition of a few outliers in the lower right. On the left we

have used the iterative approach described for detecting and rejecting outliers. If the initial

estimates are bad, the final result can be drastically poor. On the right is the result achieved

using the robust estimator formulation with the Lorentzian estimator.

There are other avenues by which to approach the problem of robustness. One avenue

that has become popular in computer vision involves the use of robust iterative procedures

like least-median-of-squares (LMedS). W Model parameters are estimated by minimizing the

median of the squares of the residuals:ý¸þrÿ
a med æ��ü�æ�� u ����¢ a �±� S � (3.17)

The approach achieves a breakdown point of 50% due to the fact that the median can tolerateX
See [Rousseeuw and Leroy, 1987] for a complete description or [Meer et al., 1991] for applications to

computer vision.
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up to half of the data being outliers.

Another approach to solving the robust estimation problem is to convert it into an equiv-

alent iteratively reweighted least squares (IRLS) problem [Beaton and Tukey, 1974; Campbell,

1980]. The least-squares approach tries to find parameters, a, that produce small residuals,��ü æ � u � ��¢ a �b� . The idea of IRLS is to assign weights, Þ æ , to the residuals at each site, � ,

in a region, ¡ , where the weights control the influence of the residuals. High weights (ap-

proaching unity) are assigned to “good” data and lower weights to outlying data.

The M-estimation problem is first converted into an equivalent weighted least-squares

problem: �æ���� �E� ü�æ�� u ����¢ a �±�>% �æÆ�|� ÞBæ#� ü�æ�� u ����¢ a �±� S � (3.18)

To minimize, we take the derivatives of both sides and set them equal to zero:�æ���� �i� ü æ � u ����¢ a �b�>%s� �æÆ�yx Þ æ ��ü æ � u � ��¢ a �b�>%��/� (3.19)

The weights are then given by, ÞBæ6% �i� ü�æ�� u � ��¢ a �b�ü�æ�� u ����¢ a � � (3.20)

The first step in the iterative solution of the weighted least-squares problem is to com-

pute an initial estimate for the parameters, a. This can be done by setting the Þèæ�% � and

solving the unweighted least-squares problem. This initial estimate is then used to com-

pute the weights Þ æ . These values are used to compute the weighted least-squares solution

[Strang, 1976]. The weights are then updated and the process is repeated until some termi-

nation condition is met.

We prefer the straightforward formulation in terms of a minimization problem with ro-

bust estimators. Such an approach has two main advantages. First, standard global opti-

mization techniques like continuation methods and stochastic minimization can be imme-

diately applied to the problem. Second, as we will see in the next sections, our formulation
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allows us to clearly identify the relationships between the robust estimation framework and

line-process approaches.

3.3 From Line Processes to Robust Estimation

Recall the line-process formulation of the optical flow problem where we take
� �

to be the

gradient formulation of the intensity constraint equation:� � u � � �§% �æ�� Ð 'Ö�
` u ) æ ew` v + æ et` x � Se �x������ 'z
 Ð �b�B� � æ�� x£�y� u æ°� u x�� S e�� Ð � æÆ� x�0¬0�� (3.21)

where
� æ�� x is a binary-valued line process, and where 
 Ð

and � Ð
are constant factors control-

ing the weighting of the smoothness term and the penalty term respectively. Such a formu-

lation allows violations of the spatial smoothness term, but does not account for violations

of the data term. As was shown in Chapter 2, the assumptions of the data term are also fre-

quently violated in practice.

This prompts us to generalize the notion of a “line process” to that of an “outlier pro-

cess” that can be applied to both data and spatial terms. The motivation behind such a gen-

eralization is to formulate a process that performs outlier rejection in the same spirit as the

robust estimators do. The optical flow problem is then reformulated using outlier processes

as follows: � � u � � �#ü/�§% �æ�� Ð 'z
 � �±�B�jü�æ{�#��`#u|)-æ�et`#vn+�æ!ew`#xy� S e�� � ü�æe �x�� � � 'z
 Ð �b�<� � æ�� x���� u æ�� u x�� S e�� Ð � æ�� xr0¬0�� (3.22)

where we have simply introduced a new process üdæ and constant scaling factors 
 � � �
. This

process allows us to ignore erroneous information from the data term.
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3.3.1 Eliminating the Outlier Process

The formulation above leads to an expensive joint estimation problem where one not only

has to estimate u but also the binary outlier processes ü and
�
. In the case of the simple binary

line-process formulation, Blake and Zisserman [1987] showed how the line variables can

be removed from the equation by first minimizing over them. They obtain a new objective

function that is solely a function of u. Exactly the same treatment can be applied to the

outlier-process version.

First, we rewrite equation (3.22) as:� � u � � �#ü/�§% �æÆ� Ð7{ �b�
`,u�)Eæ.et`#v|+�æ.et`#x£�,�#ü�æ�|
 � �)� � �!e�æ�� Ð �x ����� { ��� u æ�� u x���� � æ�� x���
 Ð �=� Ð �#� (3.23)

where,

{ � �.� � ��
>�=�>�§% 
6�±�i� � ��� S e�� � � (3.24)

and where � is an outlier process.

The optimization problem is then,ý¸þrÿ
u � � � �~} � � � � �æÆ� Ðp{ �b��`#u|)-æ�et`#vn+�æ!ew`#xy�#�#ü�æn��
 � �=� � �e �æ�� Ð �x�� ��� { �q� u æ�� ux���� � æ�� x���
 Ð �=� Ð �#� (3.25)

Notice that the first term does not depend on
�

and the second term does not depend on ü .

Thus we can rewrite the equation as,ý¸þ¬ÿ
u � ¤ ýÂþrÿ� � i �æ�� Ð { �b�
`,u�)Eæ.ew`,vn+�æ.et`#x£�,�#ü�æ�|
 � �)� � � o eý¸þrÿ� �~} ���� �æÆ� Ð �x�� ��� { ��� u æ�� u x���� � æ�� x��|
 Ð �=� Ð �v�� �� � (3.26)
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Figure 3.7: Family of quadratics with a common intersection. The infimum of this of this
family is the truncated quadratic shown in bold.

Figure 3.7 shows the function { � �.� � ���Ú���k� plotted for various values of the outlier pro-

cess � , and the infimum of this family of quadratics plotted in bold. \ This bold curve is the

standard truncated quadratic used by Blake and Zisserman [1987]:�E� �!��
6�)�6�c% I 
°�-S if �3����õ�� ��� � 
 ,� otherwise, (3.27)�i� �!��
6�)�6�c% I �D
°� if �3����õ�� �>� � 
 ,� otherwise. (3.28)

We can now eliminate the outlier processes from the equation and rewrite it in terms of

the truncated quadratic:ýÂþrÿ
u �æ�� Ð '3�E�b�
`,u�)Eæ.et`#vn+�æ�et`#x£�,��
 � �=� � �!e �x�� ��� �E��� u æ°� u x����|
 Ð �=� Ð � 0�� (3.29)

Notice that this is identical to the robust estimation formulation with the truncated quadratic

as the estimator. This is one of the common redescending estimators used in robust statistics.

Up to a fixed threshold, errors are weighted quadratically, but beyond that the estimator has

a saturating property; errors receive a constant value. By examining the � -function (Figure

3.8) we see that the influence of outliers goes to zero beyond the threshold.^
While the figure shows a family of quadratics for /���&j��� , the infimum is determined by the cases

where &+.l/ or &�.�� . In this case, & is simply a binary valued line process.
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Figure 3.8: Truncated quadratic � -function.

Analog Outlier Processes

Geman and Reynolds [1992] showed that this approach can be generalized to analog line

processes that assume continuous nonnegative values, �ë¶ � ¶ � . Now if we modify the

equation leading to the truncated quadratic by allowing the 
 and � above to be functions

of the outlier process rather than constants, we have:

{ ���!� � �>%s
>� � ��� S e���� � �,�
Geman and Reynolds [1992] show that choosing �D� � � such that:

�D� ����%s�o��D� � � is strictly decreasing ��D�±�k��%ð�����
and 
>�����ë% � with 
 increasing, results in a family of quadratics. The envelope of this

family of quadratics is defined by taking the infimum:�E���@�>% þrÿ�����5��� I �G
>� � ��� S e��D� � �±�#�
As in the case of binary line processes, performing the minimization over the line pro-

cesses results in an estimator, � , where the line processes have been removed. For example,
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Figure 3.9: Geman and Reynolds estimator. Unlike the truncated quadratic, this family of
quadratics has no common intersection.

Geman and Reynolds show that choosing:


>� � �>% � T)� S�o�b�<� � I � S � ����� � �>% � �j� � I � S� �
produces a family of quadratics whose infimum produces the following robust estimator:�E���@�>% ����Deº�3��� �
as shown in Figure 3.9.

This new � function has many of the same properties of the truncated quadratic; in par-

ticular, it has the saturating property of redescending estimators. This can be seen by ex-

amining its � -function (Figure 3.10). Notice that the strictly concave nature of � leads to

an � -function where everything except a perfect match of model to data is treated as an

outlier. Geman and Reynolds [1992] point out that this concavity on � �/���à� results in an

estimator which, unlike the quadratic, does not interpolate across image transitions. Addi-

tionally, since the influence of outliers goes to zero, the estimator does not introduce a bias

against large discontinuities.
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Figure 3.10: � -function for the Geman and Reynolds estimator
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3.4 From Robust Estimators to Line Processes

The previous section showed that, given a formulation in terms of binary or analog out-

lier processes, we can derive an equivalent formulation in the robust estimation framework.

This is only half the story. For certain choices of robust estimators, we can convert a robust

estimation problem into an equivalent problem involving binary or analog outlier processes.

In this section we summarize the results of Rangarajan and Chellapa [Rangarajan and

Chellapa] and apply them to the problem of recovering an equivalent formulation of the ro-

bust gradient equation with an analog outlier process. Recall, for example, the robust gra-

dient formulation of optical flow:� � )!�#+$�&% �� � Ð '²Ño�E��`#u�) � et`#vn+ � ew`#x��!e �Û ����� �E�q� u � � u Û ����0�� (3.30)

where �E���@� is, for example, the Lorentzian estimator. We will first derive an equivalent cost

function that contains a new process s. We then define the outlier processes in terms of this

process s. This allows equation (3.30) to be rewritten in terms of outlier processes.
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3.4.1 An equivalent objective function

We begin by introducing a new cost function, �$æ{�yan�#��� , which contains an unobservable pro-

cess � . In our case we introduce two new processes, s % '*�P���,� u 0 , to account for violations

of the data and spatial terms. The objective function is rewritten in terms of �;æ as follows:� ��)!�#+E� s �§% �� � Ð '²Ño�oæ#�
`#uÝ) � ew`#vn+ � et`#x��#� ��e �Û � � � �oæ�q� u� � uÛ ���,� u ��0 � (3.31)

Our goal is for the minimum of (3.31) to be the same as the minimum of (3.30); that is,

the introduction of the processes � � �,� u should not change the solution. To achieve this, we

must find the correct function ��æ .
Both processes, �$� and � u, are treated identically, so for simplicity, we will drop the

subscripts in the following discussion. Since � is going to be related to an outlier process

we assume that ���ð� . We also assume that the value, �� , that minimizes � æ �ya�,�ö� is ��H%·a S .
Now let ������� %ó�E� � ��� and � t � ��� be the derivative with respect to � . These assumptions

mean that, like an outlier process, � is insensitive to the sign of the error.

We then minimize with respect to s and eliminate it from the cost function. If the result

gives us our original cost function (3.30) then the introduction of s has not changed the so-

lution to our minimization problem. For this to be the case, we need to find a function �;æ
such that the following conditions are met:ý¸þrÿæ �oæ#�£an�#���>%U�°�£a S ��%à�E�ya{� and ��è%s�$�)g ý¸þrÿæ �oæ�ya�,�ö�&%àa S �
Rangarajan and Chellapa show that a function satisfying these requirements is:�oæ#�£an�#���>%º�£a S � �����Xt �����!e��°�����#� (3.32)

if and only if:

�Xtut¬�����>õ��/�j���à�o� (3.33)
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As an example, we now consider the Lorentzian estimator; recall:�E���@�§% efNhg i �De ���k � Cnm S-o �
for which we derive the following functions:

��� ���§% efNDgE�±�Dej���#� (3.34)� t � ���§% ��Dej� � (3.35)

�Ytutr� ���§% � ��b�Deh��� S � (3.36)

We see that for the Lorentzian estimator � tut ����� satisfies condition (3.33) and hence if we

take, �oæn�£an�#����% a±S��j��Deh� e�efNhgE�b�Dej���,� (3.37)

then the introduction of the unobservable s does not effect the optimal motion estimate.

3.4.2 Recovering the outlier process

Above, we introduced an unobservable process s to derive an equivalent objective function

(3.31). We now show how to use � to construct an analog outlier process �¸çt'*�o���0 . There

are many choices, but a reasonable set of properties for an analog outlier process is:

1. ��� ���>%s� ,

2. �����à��%ð� ,

3. � t �������s� with equality only at ��%s� and ��%s� .

The third property is required for the transformation to be monotonic and is guaranteed by

the concavity of � ; �G� tut �����>õà�o�D���Á��� .
Rangarajan and Chellapa show that the function:��������%ð�<���Yt������,� (3.38)
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Figure 3.11: Analog Line process �������#�>���s� , for the Lorentzian estimator.

satisfies these properties when � t � ���¸% � and � t �-�à�¸%p� . In the case of the Lorentzian

estimator we see that equation (3.36) satisfies these conditions as well as the concavity con-

dition (3.33). Figure 3.11 illustrates the Lorentzian outlier process:��������% �i� �� eh� � (3.39)

We now can construct an equivalent outlier-process formulation of our minimization

problem. Recall that above we introduced a new cost function �Eæ that depended on a new

process � . When, � æ �ya�,�ö�&%ð�£a S �j�����Ytr� �ö�!ew��� �ö�,�
the minimum of the objective function was unchanged by introducing the process � .
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Figure 3.12: The function �dæ#�£an�#��� is plotted for various values of � . The Lorentzian estima-
tor � is the infimum of this family of functions.

Now, given the definition of the line process � in terms of � , we can rewrite the function�oæ in terms of � : �oæ�ya�,�ö�c% �£a S �j����� t �����!e��°�����% a S �Xt �����°�j� �Xt¬�����!e��°�����% a S �b�<�å��� ���b�°�j���b�<�å��� �ö�±�!e��°�����% a S �b�<�å��� ���b�!ew��� �ö�,� (3.40)

where ��� ���~% ��� ���B�s���b�H�s�������b� can be thought of as the “penalty” for introducing a

discontinuity. Figure 3.12 shows ��æn�£an�#��� plotted for various values of � . The figure also

plots the Lorentzian estimator � which corresponds to the infimum of the �-æn�£an�#��� functions. ]
Finally, we rewrite the robust optical flow equation (3.31) in terms of the outlier pro-

cess � by simply substituting the outlier process a S �±�D� �������b�deå������� for � æ in the objective_
For a similar treatment, the reader is refered to the work of Geman and Reynolds [1992].
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function: � � )!�#+-� s � % �� � Ð 'ËÑ/�oæn�
`#u|) � et`#v�+ � et`#x��#� ��e �Û � �q� �oæ#��� u � � u Û ���#� u �#�% �� � Ð 'ËÑ@��`#u�) � et`#vn+ � ew`#xy� S �±�B�j����� ��b�!et��� � �Ý�e �Û � �q� ��� u� � u Û � S �b�B�j����� u �±�!ew����� u �b� 0�� (3.41)

Notice that substituting in the line process � does not change the minimum of the objective

function.

3.5 Choosing an Estimator

One issue that arises with the robust estimation framework is how one chooses the appro-

priate estimator for a given problem. The answer will depend on a number of factors. First,

one must consider the optimization scheme used to minimize the objective function. The

scheme we use requires that the estimator be twice differentiable. For other implemen-

tations the issue may be the practicality of implementing the estimators, or their outlier-

process formulations, in VLSI networks [Harris et al., 1990; Hutchinson et al., 1988; Koch

et al., 1988].

One may also require that the estimator meet the criteria necessary for there to be an

equivalent outlier-process formulation. The robust formulation can then be extended by

adding interactions between the spatial line processes in the standard way.

One may also have some incomplete knowledge about the distribution of measurement

errors. In this case more statistically motivated estimators can be chosen. For example, a

contaminated Gaussian model [Durrant-Whyte, 1987] can approximate the behavior of the

truncated quadratic by varying the parameters:� ��ü�æ��3)Eæb�§% �B�wz� �Ú�QC I exp i$� ��ü æ �j) æ � S�DC SI o e z� ���QC S exp i/� ��ü æ �j) æ � S�DC SS o
(3.42)
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Figure 3.13: Contaminated Gaussian. a) shows the estimator for zH%ó�o�Ë� , C I % �/��� , andC S %ð�o�Ë� . b) the � -function. c) with C S %·�Ú�/��� , the estimator becomes more like the trun-
cated quadratic.

where C I õ�õ¡C S and zBõèõ·�Ú�Ë� . This model assumes that measurements are typically gov-

erned by a Gaussian distribution with small variance, but occasionally are characterized by

a Gaussian with a large variance. The negative logarithm of this distribution gives the esti-

mator in Figure 3.13a. By examining the � -function in Figure 3.13b we see that this esti-

mator does not technically have the saturating property that we desire, but, by adjusting the

parameters, we can achieve a reasonable approximation to the truncated quadratic 3.13c.

For global optimization with continuation methods, the estimator must have a control

parameter that controls the shape of the function and the amount of outlier rejection per-

formed. The truncated quadratic does not naturally have this property, and consequently

Blake and Zisserman had to construct an approximation which could be controled.
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Geiger and Girosi [1991] derive another approximation to the truncated quadratic based

on a mean field formulation of the optimization problem. Instead of minimizing over the line

processes, they integrate them out and derive the following estimator:�J¢o���@�>%s
4� �� efNhgE�b�Bew¹ » ¢ �	£ u#Í »5¤ � �#� �p¢�� �©�&% ��¹ ¢ � ¤�» £ u Í � Ñ���Dew¹ ¢ � ¤ö» £ u Í � � (3.43)

where � is a thermodynamically motivated control parameter which controls the shape of

the function. This parameter, � , is the same as the inverse of the temperature parameter used

in simulated annealing. Figure 3.14 shows the mean field estimator for various values of � .

For small � the function behaves like the quadratic while, as � goes to infinity, the function

approaches the shape of the truncated quadratic.

Leclerc [1989] derived another estimator by starting with a different formulation of the

smoothness term. Consider the following objective function:� � u �>% �æ�� Ð � � � u �!e �x ��� � �±�i�jgo��� u æ°� u x����b�#� (3.44)

where g/� �©� is the Kronecker delta function,g/� �@��% I � if �Ø%s�o�� otherwise � (3.45)

Leclerc developed a continuation strategy by approximating the delta function with the es-

timator (Figure 3.15),�J¥n� do���@�>%·�<�w¹ »�¦ Í§©¨Gª�« Í � �M¥� d�� �©�>% �Ú��v¬�C�� S ¹ »U¦ Í§©`ª-« Í � (3.46)

As ¬ goes to zero, the estimator approaches the delta function.

The Lorentzian estimator introduced above satisfies many of the criteria that we have

mentioned. For example, it is twice differentiable and, as we saw, admits an analog line

process. It also has a probabilistic interpretation in that it is an optimal estimator if the error

distribution is Cauchy:

Prob � ü�æ�� )-æn��CEæ
�® ��De IS3¯ � � » ¿ �d��s° S � (3.47)
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Figure 3.14: Mean Field Estimator
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Figure 3.15: Leclerc estimator.
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Figure 3.16: Gaussian and Cauchy distributions. The tails of the Gaussian, on the left, drop
off quickly. The tails of the Cauchy distribution are more forgiving.

Both the Gaussian and Cauchy distributions are shown in Figure 3.16. Notice that the tails

of the Cauchy distribution decrease more gradually than the Gaussian. This means that out-

liers are considered more likely and hence not penalized as heavily by the Lorentzian esti-

mator when the do occur. 6
Another important factor involves the scale parameters of some of the estimators. We

will show in the following chapter how the scale parameter of the Lorentzian can be natu-

rally set, and that it can be used to construct a sequence of estimators to be used in a con-

tinuation method.

:
We do not know whether, and are not claiming that, the Cauchy distribution is the correct statistical model

for the errors found in real scenes. It is merely presented here as a heuristic choice reflecting the kind of be-
havior we desire with respect to outliers.
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Chapter 4

Robust Optical Flow: Experimental
Results

This chapter demonstrates the benefits of the robust estimation framework. The framework

from the previous chapter is applied to each of the approaches described in Chapter 2. This

robust formulation of the regression, correlation, and explicit smoothness approaches im-

proves the performance of the approaches, particularly when multiple motions are present.

The main focus of the chapter will be the robust formulation of the explicit smoothness, or

regularization, schemes, for these approachs provide a general purpose method for recov-

ering dense optical flow fields. The method developed here is a simple reformulation of the

standard first-order Horn and Schunck approach within the robust estimation framework.

The resulting robust gradient-based algorithm is experimentally compared and contrasted

with other optical flow techniques.

4.1 Regression Approaches

Since most statistical applications of robust statistics are to regression problems it is natural

to formulate regression-based optical flow within the robust framework. Recall that the goal

of the regression approach is to estimate the model parameters a that produce the best flow

u � ¨ � for a region ¡ . If the motion of the region is assumed to be constant, this reduces to

83
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finding the motion � ).�,+$� that minimizes:� � )!�#+$�°% � � �E�
`,u�)fet`#vn+�ew`,x£�#� (4.1)

where the image derivatives, `nu , `#v , and `#x , are computed at each point in the region and a

single value of ��)!�#+�� is estimated for the entire region.

The minimization problem is solved using Newton’s method as described in the previous

chapter. Below, the update equations for ) are derived; exactly the same treatment can be

applied to derive the update equations for + .

Taking the Taylor expansion of
�

gives:� ��)HejgÚ).�,+$�³r � � ' �E�
` u )Hew` v +�ew` x �!eh�i��` u )�et` v +�ew` x �b` u g�)�eúú ) �<�
` u )fet` v +³et` x �b` Su gÚ) S eà�����30 � (4.2)

where � is

ú �E���@�b� ú � . To minimize, we take the derivative, drop the higher order terms, and

set the equation to zero:ú �ú ) %s��% � � '1�i��`#un)fet`#vn+�ew` q �b`#u�e úú ) �i�
`,u�)Hew`#vn+�et`#x£�±` Su g�)�0�� (4.3)

This gives us an update equation:g�)¸%ð� Å � �<�
` u )Hew` v +³et` x �±` uÅ �µ´´ ¿ �i�
` u )Hew` v +�et` x �±` Su � (4.4)

and, ) Û Õ I %�) Û ehg�)!� (4.5)

A slightly different minimization approach is adopted by Bergen et al. [1992]. They

use a Gauss-Newton minimization procedure where, at the current iteration, ß , there is an

estimate, u Ó , and the change, g u, in the estimate is obtained by minimizing:� ��g u �>% � � �E� }~`ög u e 2 `o�#� (4.6)
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Figure 4.1: Constant Model Experiment.

where, 2 `�� x �>%·`d� x �ba#�°� `d� x � uÓ �ba&�à�k�,� (4.7)

This has the effect of warping the previous image based on the current flow estimate. The

temporal derivative is then computed with respect to this warped image and the estimate is

refined by the new g u. This Gauss-Newton approach may offer some advantages over the

standard Newton’s method in that the estimates of the temporal derivatives become more

accurate as the images are registered by the warping process.

Bergen et al. [1992] take � to be the standard quadratic estimator and hence solve a least-

squares regression problem. When, in addition to the dominant motion, there is another

“distractor” motion within the region, the least squares estimate will be inaccurate. This can

be contrasted with a robust formulation in which � is taken to be the Lorentzian estimator.

Consider Figure 4.1 which shows an experiment in which a simple constant flow model

is used to estimate image velocity. A number of trials were performed, and in each case there

were two random noise patterns present in the window; one moving to the right, the other

moving up. Estimates of the horizontal motion component were computed as increasing

amounts of the upward motion (the distractor) were added to the region. Figure 4.2 shows

the results of the experiment. The dominant horizontal motion is shown as a solid line. The

robust (Lorentzian) estimator does a good job of recovering the dominant horizontal motion

and ignoring the distracting motion until approximately ûö��� of the region is occupied by

the distractor. Not surprisingly, the least squares approach performs poorly, producing the
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Figure 4.2: Constant model experimental results. Error for quadratic and robust formu-
lations as a function of the amount of distractor.

mean horizontal motion rather than the dominant one.

4.2 Correlation-Based Approaches

The second set of optical flow techniques to be reformulated are the correlation-based ap-

proaches. Recall that the correlation approach is simply formulated as:� � � )!�#+$�&% �� u�� vb����� �E�
`d���!�#"E�ba#�;�w`�� ��ej)!�#"�ej+E�ba!eà�k�±�#� (4.8)

where �E� �@�6%�� S for the sum-of-squared-difference formulation. Also recall that computing

the correlation over a range of displacements gives rise to a correlation surface (or SSD

surface in the quadratic case) and that the minimum of this surface corresponds to the best

motion estimate with respect to the data conservation assumption.

The standard quadratic error measure has the property that as data errors increase, the

contribution of the error term increases without bound. As a result, when multiple motions

are present within the neighborhood of a site, the correlation computed for one of the mo-
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tions is corrupted by the data errors corresponding to the other motion [Black and Anandan,

1991b].

These problems can be reduced by adopting the robust estimation framework, in which

the erroneous measurements are treated as outliers and rejected. Figure 4.3 compares the

correlation surface generated using the quadratic estimator with one where � is a robust M-

estimator; in this case: �E���!��C���% ����De����@� C�� S � (4.9)

The surfaces are computed at the corner of a randomly textured square translating across a

randomly textured background. The two peaks in Figure 4.3b correspond to the two motions

present in a window centered at the corner. Notice that these peaks are not clearly defined

when the quadratic estimator is used (Figure 4.3a).

An important property of this robust correlation approach is that it does not suffer the

same problems as the adaptive window technique of Okutomi and Kanade [1992]. Outliers

can be scattered across the window with no spatial coherence as is the case with fragmented

transparency. The approach, however, cannot deal with the more general case of multiple

motions caused by reflection and translucency.

The robust correlation approach can be exploited in the early detection of motion discon-

tinuities [Black and Anandan, 1990a]; that is, the estimation of motion boundaries before

the computation of the optical flow field. In previous work, we formulated a number of con-

straints for detecting motion boundaries, one of which was the presence of multiple peaks

in the correlation surface. The approach detected the two sharpest peaks in the correlation

surface and then computed a heuristic measure indicating the confidence that multiple mo-

tions are present. If � � and � I are the values of
� �

for the two best displacements then the

confidence in the presense of a motion boundary can be heuristically defined as:ò Ð % � � � � I �
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Figure 4.3: SSD versus Robust Correlation. Correlation surfaces computed at a translat-
ing corner (inverted for display); multiple motions are present within the correlation win-
dow. a) SSD surface. b) Robust correlation surface; noise is suppressed and peaks are more
visible.
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a b

Figure 4.4: Multiple motions in correlation surface (see text). a) Confidence ò Ð
using SSD

surface. b) Confidence using robust correlation (truncated quadratic).

This measure has a maximum of 1.0 at a motion boundary and falls off as distance from the

boundary increases.

The effect of robust correlation on peak detection and boundary localization can be seen

by considering the discontinuity confidence measure ò Ð
displayed in Figure 4.4. The mo-

tion sequence consisted of a randomly textured square moving two pixels across a randomly

textured background. Noise was added to the second image in the sequence, and the cor-

relation was computed between the images. Figure 4.4(a) shows the results of peak detec-

tion when the SSD measure was used. When the quadratic was replaced by the truncated

quadratic estimator, peak detection was noticeably improved (Figure 4.4(b)).

4.3 Explicit Smoothness Approaches

This section illustrates how robust estimation can be brought to bear on the explicit smooth-

ness, or regularization, approaches to optical flow by considering the standard Horn and
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Schunck formulation of the problem [Horn and Schunck, 1981]. This formulation repre-

sents a least-squares estimate of the flow field. Such estimates are commonly known to be

sensitive to measurements that do not conform to the statistical assumptions of the model.

A robust gradient method is formulated by recasting the least-squares formulation of opti-

cal flow in the robust estimation framework. The approach achieves the three goals stated

earlier; it prevents smoothing across motion boundaries, it permits the recovery of motion

boundaries, and it provides a general framework for treating, and detecting, violations of

model assumptions.

We have shown how the data conservation and spatial coherence constraints can be made

robust in the presence of erroneous image measurements and motion discontinuities. The

least-squares form of the optical flow equation is reformulated as: I� � )!�#+$�§% � Ð Ñ � � ��)!�#+��@e � Ð � ).�,+$�,�% �æÆ� Ð '²Ño�E�
`#uÝ)-æ!ew`#vn+Úæ.et`#x���C I �e �Û ����� �E� )Eæ��j) Û ��C S �!e �Û � ��� �E��+Úæ��å+ Û ��C S � 0�� (4.10)

When � is the quadratic error measure, this is the least-squares optical flow equation. For

the robust formulation, we simply replace the quadratic error measure by the more robust

Lorentzian M-estimator. The implications of this reformulation are explored in the remain-

der of this section.

4.3.1 Discontinuities and Parameter Estimation

We would like to be able to set thresholds ¶ I and ¶ S that determine what data and smoothness

errors are considered outliers. To do so we need to determine the appropriate values for C I
and C S . These values determine the point at which measurements are considered outliers,J

The smoothness term here is slightly different than the version proposed in the previous chapter where we
minimized ·Úª�¸ u ¹%c u º5¸v»�¯ . We treat ¼ and ½ seperately in the current formulation to make clear the parallels
to the Horn and Schunck approach.
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which may be taken to be the point at which the influence of the measurements begins to

decrease; that is where the derivative of the � -function:ú Sb�ú � S % ú �ú � % �o���hC!S6�j�ES{�� �DC S ej� S � S � (4.11)

equals zero. This occurs when: �~%�¾ � �BC@� (4.12)

So to define an outlier threshold ¶ , we set Cë%U¶E� � � .

For example, in the case of the smoothness constraint, if a difference of �o�Ë�Ú� pixels is

considered a discontinuity then C S % �/�Ë�Ú���Ú�����Ú� . This threshold could presumably be set

on the basis of psychophysical evidence. S Motion discontinuities can be recovered from the

computed flow field by examining where this threshold is exceeded:� æÆ� x°% I � �3)Eæ�� )�x#���¡¶æ or � +�æ��j+�xb�5�U¶næ� otherwise (4.13)

For the data term we make a conservative estimate of the variance in the intensity error

for the optimal flow field. We do this by computing the intensity error ` u )�e÷` v + e ` x in the

case where the flow is zero everywhere; that is, the error is simply `�x . We then compute the

variance of this initial error and take that as the value of C I .
4.3.2 Convexity

The least-squares formulation of optic flow is relatively straightforward to solve since the

objective function is convex. The robust formulation, however, may not be convex, becauseU
The spatial discontinuity threshold is currently set based on simple estimates of what constitutes a “no-

ticeable” discontinuity. It is the term “noticeable” that needs to be studied more closely. For example what
effect does contrast across the boundary, relative motion of the surfaces, and spatial frequency of the patterns
on either side of the boundary have on our ability to perceive motion discontinuities. There has been some
work in this area by [Baker and Braddick, 1982; van Doorn and Koenderink, 1983; Hildreth, 1984; Vaina and
Grzywacz, 1992].

Since the correct threshold is not known, a threshold is chosen based on experience and is held constant
throughout the experiments. This is important for judging the results of the approach. The discontinuity
thresholds have not been adjusted to produce “nice looking” results on each of the chosen image sequences.
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if the data and smoothness terms disagree, we can minimize for either one and treat the other

as an outlier.

Formally, the objective function is convex when the Hessian matrix:

¿ % ��� ´ Í ½´ ¿ Í ´ Í ½´ ¿ ´ À´ Í ½´ À ´ ¿ ´ Í ½´ À Í
�1�� (4.14)

is positive definite [Rockafellar, 1970]. This condition is met if and only if both eigenvalues

of the matrix
¿

are positive. This gives us a simple test for convexity. It is easy to show

that
�

is locally convex when:ý � ÀæÆ� Ð �Ë�
`,u�)Eæ.et`#v|+�æ.et`#x£�|�ð¶ � �C I %�¶ I � and (4.15)ý �$ÀæÆ� Ð ý � ÀÛ ����� �3)Eæ��j) Û �ð¶ � �C S %�¶ S � and (4.16)ý � ÀæÆ� Ð ý � ÀÛ � � � � +�æ°�j+ Û �ð¶ � �C S %�¶ S � (4.17)

These conditions correspond to the case where there are no data or spatial outliers. In this

range, the � -function is roughly linear and the error function � is roughly quadratic.

Given that the objective function may be non-convex, there are a number of minimiza-

tion techniques which can be brought to bear on the problem. First we will describe an op-

timization technique that rapidly converges to a local minimum. We then consider a global

optimization strategy.

4.3.3 Simultaneous Over-Relaxation

Simultaneous Over-Relaxation (SOR) belongs to a family of relaxation techniques that in-

clude Jacobi’s method and the Gauss-Seidel method [Press et al., 1988; Strang, 1976; Varga,

1962]. We compute the first partial derivatives of the robust flow equation (4.10):ú �ú ) æ % �æ�� Ð '²ÑE`#u��<�
`#u|)Eæ.et`#vn+�æ!ew`#x���C I �!e �Û � � � �i��)Eæ!�j) Û ��C S ��0�� (4.18)ú �ú +�æ % �æ�� Ð '²ÑE`#v|�i��`#u�)Eæ!ew`#vn+Úæ.ew`,x���C I �!e �Û � ��� �i� +�æ!�j+ Û ��C S ��0�� (4.19)



4.3. EXPLICIT SMOOTHNESS APPROACHES 93

Then the iterative update equations for minimizing
�

at step ×~es� are simply [Blake and

Zisserman, 1987]: ) � Û Õ I �æ % ) � Û �æ �ÂÁ �9è��)Eæb�
ú �ú )Eæ � (4.20)+ � Û Õ I �æ % + � Û �æ �ÂÁ �9�� +�æ
� ú �ú +Úæ � (4.21)

where Á is an overrelaxation parameter that is used to overcorrect the estimate of ) � Û Õ I � at

stage ×�e�� . T
The terms 9è��)-æb� and 9�� +�æ,� are upper bounds on the second partial derivatives of

�
:9è��)@�Ã�

ú S �ú ) Sæ � Ü°��ç Ç � (4.22)9è��+��Ã�
ú S �ú + Sæ � Ü°��ç Ç � (4.23)

The second derivative is maximized when both the data and smoothness errors are zero ev-

erywhere, which implies: 9è��)@� % ÑE`öSuC SI e ûC SS � (4.24)9è��+�� % ÑE`öSvC SI e ûC SS � (4.25)

When �÷õÄÁ õ � the method can be shown to converge [Varga, 1962] but the rate of

convergence is sensitive to the exact value of Á . While determining the optimal Á is difficult

in the case of a non-linear problem, we can get a rough approximation by computing the

optimal value for the linear Jacobi version of the problem. The optimal Á is then related to

the largest eigenvalue ��ÅQÆQÇ�È�� of the Jacobi iteration matrix which can be shown to be:

ÅÉÆQÇ�È % L�NPOB� { � (4.26){ % ���×¸eà�k� � (4.27)V
This is simply Newton’s method as formulated earlier when Ê�.²� and Ë>ª_¼�¯Y.0Ì U=ÍÎ ÌD¼ . We adopt this

slightly different formulation for faster convergence and consistency with Blake and Zisserman’s notation.
SOR can also stand for Successive Over-Relaxation, but here we prefer “Simultaneous” as the updating will
be performed in parallel.
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Figure 4.5: Checkerboard pattern for first-order smoothness exploits parallelism.

for an × �¦× problem [Strang, 1976]. The approximation to the optimal overcorrection is

then:

ÁBÑ � x�% �o�b�<�ÓÒ �B��Å SÆQÇ�È �Å SÆQÇ�È � (4.28)

For example, a ���Úñí�t�|��ñ image would have an overcorrection of Á�Ñ � x�%c���ÔE��Ú���DE , and a� û � � û image would have Á?Ñ � x°%·�Ú�]E�� � ûö� . In practice, this approximation works well and

for an ×÷��× problem acceptable convergence is reached within only × iterations.

The algorithm can be implemented sequentially, but is inherently parallel. Notice that,

for first order constraints, each site is dependent on its nearest neighbors. While updating a

site � , the estimates of its neighbors aBçëä æ must be held fixed. By partitioning the sites using

a checkerboard pattern, half the sites can be updated at once while the other half remains

unchanged [Geman and Geman, 1984; Murray et al., 1986]. In Figure 4.5 all the sites can

be updated in two iterations by first updating the black sites and then updating the white

sites in parallel. This parallelism can easily be exploited on a SIMD architecture like the

Connection Machine [Hillis, 1985] with a physical processor for each site.

For higher order constraints more complex partitionings are required which increases

the number of iterations required to update the entire field. But, since we expect the neigh-

borhood size to be small with respect to the image, there is still a tremendous speedup gained

by this data-level parallelism.
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Faster convergence can be achieved using Chebyshev acceleration [Press et al., 1988].

Here the value of Á is updated after each half-iteration (ie. after updating all the white, or

all the black, sites) using the following scheme:

Á �]� � % ���Á � I � S � % �k���±�i��Å SÆQÇ�È �����,�Á � Û Õ I � S � % �k���±�i��Å SÆQÇ�È Á � Û � �|û/�,�w×4%º�k���o�����|���������s�Á ��Õ � ± Á Ñ � x �
4.3.4 Graduated Non-Convexity

We now turn to the problem of finding a globally optimal solution when the function is

non-convex. Stochastic approaches like simulated annealing [Geman and Geman, 1984;

Kirkpatrick et al., 1983] have been used by a number of authors for recovering optical flow

with non-convex objective functions [Black and Anandan, 1991b; Konrad and Dubois, 1988;

Murray and Buxton, 1987]. We will explore this approach in detail later in the thesis but, for

now, we can exploit the nature of the objective function and the choice of robust estimator

to use a deterministic continuation method.

Continuation methods [Rangarajan and Chellapa] involve constructing a sequence of ap-

proximations to the objective function by varying a control parameter. The initial approx-

imation is constructed to be convex and, hence, is readily minimized using, for example,

the SOR technique above. This minimum is then tracked as the control parameter is varied

to produce successively better approximations of the true objective function. For a given

objective function the challenge is to construct the sequence of approximations.

Specifically, we will consider the Graduated Non-Convexity (GNC), algorithm which

has been studied in detail by Blake and Zisserman [1987]. While Blake and Zisserman con-

struct approximations to the truncated quadratic, we find that, by taking the Lorentzian as

the robust estimator, there is a natural sequence of approximations. In the previous section,
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Figure 4.6: Graduated Non-Convexity. �E� �!��C�� and �<���!��C�� plotted for thresholds ¶ çÙo� � �#ñ/�±û��#�o���kã . a) Error measure �E���!��C�� . b) � -function �i���!��C�� .
it was noted that

�
is convex if the outlier thresholds ¶ I and ¶ S are set to be greater than

maximum data and smoothness errors. Assume that the motion in the scene is constrained

to be less than some constant. This can be achieved by using a coarse-to-fine approach (see

Chapter 2) in which, by refining the motion across scales, we ensure that the motion at any

level of the pyramid is less than a pixel. Then we choose ¶ S to be twice the largest allowable

motion. The maximum data error can be conservatively estimated from the images. First

assume that the flow is zero everywhere, so `u|)�eH`#vn+@eH`#x!%·`#x . Now we take as our estimate¶ I % ý � Àè�*` x � .
The minimization can begin with this convex approximation and the resulting coarse

flow field approximation will contain no flow discontinuities. In this sense it will be very

much like the least-squares flow estimate. Discontinuities can be gradually added by low-

ering the thresholds ¶ I and ¶ S and repeating the minimization. Figure 4.6 shows the error

function (Figure 4.6a) and the � -function (Figure 4.6b) for various values of ¶ . In practice,

we have found that a two-stage minimization works well. First the coarse convex approxi-

mation is used, followed by the original objective function.

To cope with motions larger than a single pixel we use the simple coarse-to-fine gradient-
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based strategy described in Chapter 2.

4.3.5 Experimental Results

This section presents a number of experiments using synthetic data that illustrate the behav-

ior of the robust-gradient formulation in the presence of noise and motion discontinuities.

In particular, we are interested in the effect of the robust data term on the final solution. We

also show the performance of the algorithm on two real image sequences and compare the

results with other approaches.

The robust-gradient technique is implemented using the GNC algorithm of the previous

section, and the current Connection Machine [Hillis, 1985] implementation fully exploits

the parallelism inherent in the formulation. There is a physical processor at each site in

the image and only simple North-East-West-South (NEWS) communication is required be-

tween processors.

All experiments were performed using 200 iterations W of each algorithm even though

200 iterations are not typically necessary in the case of SOR. The only parameters that need

to be empirically determined are ¶ S and Ñ . These were chosen to produce the best result for

each algorithm, and remained unchanged for all the experiments: ¶ S %��/�Ë�Ú� , ÑÏ%ð��� for the

robust-gradient approach, and ÑÂ%s��� for the least-squares approach \ . All other parameters

were determined as specified in the previous sections. The spatial and temporal derivatives�
`,u��`,v��`#x�� were estimated using the simple technique described by Horn [1986].

Synthetic Sequence

The first experiment involves a synthetic sequence containing two textured surfaces, one

which is stationary and one which is translating to the left (Figure 4.7a). The horizontal

and vertical components of the flow are shown with the magnitude of the flow representedX
An iteration is taken to mean the updating of every site in the flow field.^
The different values of Ö are due to the different · functionsused; that is, the quadratic for the least-squares

approach, and the Lorentzian for the robust-gradient method.
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a b c

Figure 4.7: Random Noise Example. a) First random noise image in the sequence. b) True
horizontal motion (black %c��� pixel, white %c� pixel, gray % � pixels). c) True vertical
motion.

by intensity, where black indicates motion to the left and up and, similarly, white indicates

motion to the right and down. The true horizontal and vertical motions are shown in Figures

4.7b and 4.7c respectively.

Figures 4.8a and 4.8b show the flow computed with the least squares formulation. No-

tice how the horizontal flow is smoothed across the motion boundary. ] The robust-gradient

technique does not suffer from this over-smoothing (Figures 4.8c and 4.8d).

Percentage of flow vectors with error:

Approach ¶ð��� ¶s���
Least Squares.

� ñ�� ñÚ���
Robust Gradient. × E�� EÚñ��

Table 4.1: Error statistics for the noiseless case.

The accuracy of the flow vectors is shown in Table 4.1. For problems such as structure_
Notice that the flow estimates are better in the left half of the image. This portion of the image did not

move while the right portion was displaced by one pixel. The poorer motion estimates on the right are a re-
sult of the formulation of the gradient constraint which assumes small motion; the larger the motion the less
accurate the estimates will be.
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a b

c d
Figure 4.8: Random Noise Sequence Results. a, b) Least-squares solution; horizontal and
vertical components of the flow. c, d) Robust-gradient solution; horizontal and vertical com-
ponents of the flow.
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a b

Figure 4.9: Random Noise Sequence Outliers. a) Motion discontinuities where the
smoothness constraint is violated. b) Data outliers.

from motion, the accuracy of the flow estimates is crucial; errors of greater than ��� may ren-

der the results useless for this purpose. In the noiseless case, the robust-gradient approach

finds EÚñ�� of the flow vectors to within ��� accuracy. This level of performance is achieved

by recovering the flow more accurately within the vicinity of the motion boundary.

We can detect outliers where the final values of the data coherence and spatial smooth-

ness terms are greater than the outlier thresholds ¶ I and ¶ S . Motion discontinuities are sim-

ply outliers with respect to spatial smoothness. These are shown in Figure 4.9a.

There are outliers for the data term as well which, in this noiseless example, occur only

at the motion boundary (Figure 4.9b). At this motion discontinuity the derivative estimates`#u , `#v , and `#x will be inaccurate as they pool information over a small neighborhood that

spans the boundary. Due to occlusion occurring at the discontinuity, the error in the intensity

constraint equation may be high. The robust data term allows these measurements to be

treated as outliers.

This example illustrates how, even when no noise is present, the least-squares approach



4.3. EXPLICIT SMOOTHNESS APPROACHES 101

a

b

c

Figure 4.10: Horizontal Displacement. The horizontal component of motion is interprated
as height and plotted. Figure a shows the plot for the true motion. Plotting the results illus-
trates the over-smoothing of the least-squares solution (b), and the sharp discontinuity which
is preserved by the robust-gradient technique (c).
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Figure 4.11: Convergence. Root mean squared error is plotted as a function of iterations for
the standard Horn and Schunck scheme and the robust-gradient scheme using simultaneous
over-relaxation on the random dot sequence shown in Figure 4.8. Notice that for an image of
size ����ñ>�è���Úñ that SOR, with Chebyshev acceleration, converges in less than 128 iterations.

can perform badly by smoothing across discontinuities. The contrast between the approaches

is vividly observable in Figure 4.10. Plotting the horizontal component of the flow field

graphically shows the behavior of the two algorithms at motion boundaries. Figure 4.10a is

the true horizontal motion while Figures 4.10b and 4.10c show the recovered motion using

the least-squares and the robust techniques respectively.

Figure 4.11 shows the convergence behavior of the two algorithms. The faster conver-

gence rate of the robust-gradient algorithm is due to the use of over-relaxation. This was

not used in the least-squares case. The least-squares approach, however, does not approach

the error of the robust-gradient technique. This is a result of errors due to over-smoothing

at the motion boundary.

The effects of noise are explored in Figures 4.12 and 4.13. The figures show the effects

of adding 5 percent, zero mean, uniform random noise to the second image in the sequence.

The discontinuity is still preserved by the robust approach (Figure 4.12c). With the standard

smoothness constraint there is a tradeoff between smoothing the noise and over-smoothing
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a b

c d

Figure 4.12: Random Noise Sequence. Computed flow in the case where 5 percent uniform
noise is added to the second image. a, b) Horizontal and vertical least-squares flow. c, d)
Horizontal and vertical robust flow.
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a

b

Figure 4.13: Horizontal Displacement (Noise added). The horizontal component of mo-
tion is plotted for the case where 5 percent, zero mean, uniform random noise is added to
the second image. a) The least-squares solution; smoothing to reduce noise over-smoothes
the motion boundary. b) The robust-gradient approach smoothes the data while preserving
the discontinuity.
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the motion boundaries. The robust-gradient approach allows us to smooth the data and pre-

serve the discontinuities (Figure 4.13b). The accuracy of the approaches is summarized in

Percentage of flow vectors with error:

Approach ¶ð��� ¶s���
Least Squares. E�� �Úñ��
Robust Gradient. ����� �Ú���

Table 4.2: Error statistics for the ��� noise case.

Table 4.2. While both approaches achieve significantly less accuracy, the robust gradient

approach still recovers half of the flow vectors to within ��� accuracy.

The Data Term

A significant difference between the robust approach described here and previous approaches

to computing optical flow with discontinuities is that here the data component of the objec-

tive function is made robust. A more traditional formulation of the problem would include

a line process or weak continuity constraint for the smoothness term [Blake and Zisserman,

1987; Geman and Geman, 1984; Harris et al., 1990] and leave a quadratic data term. What

advantage does the robust data term offer?

Consider the same random dot sequence as above but with the addition of �|��� uniform

noise. We compare the performance of three common approaches: a purely quadratic for-

mulation (Horn and Schunck), a version with a quadratic data term and robust smoothness

term (Blake and Zisserman), and the fully robust formulation described here.

The accuracy of the three approaches is summarized in Table 4.3. The results indicate

that adding just a robust smoothness term increases the percentage of accurate flow vectors.

Using both robust data and smoothness terms increases this percentage even more.

This is not the entire story. While the robust smoothness term by itself increases the

percentage of accurate flow vectors, the mean error in the flow field increases. Table 4.4



106 CHAPTER 4. ROBUST OPTICAL FLOW

Percentage of flow vectors with error:

Approach ¶·�k� ¶s���
Least Squares. ��� �����
Robust Smoothness. ñ�� �����
Robust Gradient. � � � û�×Ú�

Table 4.3: Error statistics for the �|��� noise case.

Approach RMS Flow Error RMS Intensity Error

Both terms quadratic. 0.1814 2.600

Quadratic data, robust smoothness. 0.2208 1.889

Both terms robust. 0.0986 2.653

Table 4.4: Behavior of data term. The table shows the effects of the robust data and
smoothness terms. The root mean squared errors in the flow estimate and the data term�
`,u�)Hew`#vn+�et`#x£� are shown for three common approaches.

further explores the effect of the robust terms. The purely quadratic solution attempts to

be faithful to both the smoothness model and the noisy data; the result is moderately high

errors in both the flow estimate and the intensity constraint.

Adding a robust smoothness term (for example by employing a line process) results in

lower errors in the intensity constraint equation but with higher error in the flow estimate.

With such a formulation, gross errors in the intensity data pull the solution away from the

true flow while the robust term compounds matters by allowing discontinuities to be intro-

duced. The result is that the accurate flow estimates are more accurate (as shown in Table

4.3) but that the the inaccurate flow estimates can be worse (as shown by the increase in the

mean flow error in Table 4.4.

The fully robust version appears to provide the best balance. The robust data term allows

the intensity constraint to be violated. Consequently, this version has the highest intensity

error and the lowest error in the recovered flow field.
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a b

c d

e f

Figure 4.14: Effect of robust data term, (10% uniform noise). a,b) Least-squares
(quadratic) solution. c,d) Quadratic data term and robust smoothness term. e,f) Fully ro-
bust formulation.
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a b

Figure 4.15: Outliers in the smoothness and data terms, (10% uniform noise). a) Flow
discontinuities. b) Data outliers.

These results are illustrated in Figure 4.14. Figures 4.14a and 4.14b show the noisy, but

smooth, results obtained by least-squares. Figures 4.14c and 4.14d show the result of intro-

ducing a robust smoothness term alone. The recovered flow is piecewise smooth, but the

gross errors in the data produce spurious motion discontinuities. Finally Figures 4.14e and

4.14f show the improvement realized when both the data and spatial terms are robust. Figure

4.15 shows where the spatial smoothness and data coherence terms are violated. Notice that

a large number of data points are treated as outliers by the data term; especially when the

motion is large.

The Pepsi Sequence

We next consider a real image sequence containing a Pepsi can in front of a textured back-

ground (Figure 4.16). The camera is translating to the right, resulting in the can being

displaced approximately one pixel to the left in each frame and the background being dis-

placed by approximately a third of a pixel between frames. Figures 4.17a and 4.17b show
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Figure 4.16: Pepsi Sequence. First and last images in the 10 image sequence.

the results of applying the least-squares algorithm and illustrate how the flow is smoothed

across the motion boundary.

The flow was also computed using Anandan’s coarse-to-fine SSD algorithm [Anandan,

1989], and the results are shown in Figures 4.17c and 4.17d. Errors in the data term cannot

be overridden by the smoothness term and consequently the results are noisy.

The results of the robust-gradient approach are shown in Figure 4.18. Figures 4.18a

and 4.18b show the results achieved using the convex approximation in the first stage of

the GNC algorithm. The results are similar to the smooth solution obtained with the least-

squares approach. Figures 4.18c and 4.18d show the result of introducing spatial and data

robustness. From the figure it is clear that the approach does an excellent job of preserving

sharp motion discontinuities.

Figure 4.19b shows the locations where the smoothness constraint is violated (ie. the

motion discontinuity is greater than ¶ S ); the boundaries correspond well to the physical bound-

aries of the can.

Finally, the least-squares and robust-gradient solutions can be compared by examining
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a b

c d
Figure 4.17: The Pepsi Sequence. a, b) Horn and Schunck optical flow. c, d) Anandan’s
coarse-to-fine SSD correlation.
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a b

c d

Figure 4.18: The Pepsi Sequence. a, b) Convex approximation (first stage of GNC algo-
rithm). c, d) Robust gradient results: optical flow.
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a b

Figure 4.19: The Pepsi Sequence. Motion discontinuities. a) First image in sequence. b)
Motion boundaries detected using the robust-gradient approach. Boundaries correspond to
sites where the spatial coherence constraint is violated.

the plots in Figure 4.20. Here, the magnitude of the flow vectors is plotted. The sharp dis-

continuity present in the robust solution (Figure b) is lacking in the least-squares estimate

(Figure a).

The Tree Sequence

Finally, we consider a more complex example with many discontinuities and motion greater

than a pixel. The first two �Ú���6� ��� � images in the SRI tree sequence are seen in Figure 4.21.

Figure 4.22 shows the motion discontinuities where the outlier threshold is exceeded for the

smoothness constraint. As expected, the least-squares flow estimate (Figures 4.23 a and b)

shows a good deal of over-smoothing. The robust flow, shown in figures c and d exhibits

sharp motion boundaries, yet still recovers the smoothly varying flow of the ground plane.
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a

b

Figure 4.20: Pepsi flow magnitude. The magnituded of the flow vectors is plotted for a)
the least-squares solution, b) the robust-gradient solution.
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a b

Figure 4.21: SRI tree image sequence; first two images.

Figure 4.22: Tree Sequence discontinuities.
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a b

c d

Figure 4.23: Tree sequence results; � ¨ ��F�� least-squares estimates of horizontal and vertical
flow, � ï �,ü/� robust-gradient estimate.
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Chapter 5

Temporal Continuity

Until now, this thesis has addressed the problem of robustness in the estimation of optical

flow between two frames. Motion sequences, however, typically contain more than two

frames which means that motion algorithms should be capable of both processing long se-

quences in a reasonable way and exploiting the increased information available from mul-

tiple frames. While the remainder of this thesis will be devoted to the problems posed by

image sequences, the issues of robustness related to motion discontinuities remain present

and thus the robust estimation framework will be taken as a foundation on which to build a

new framework for incremental motion estimation.

The robust estimation formulation of the previous chapters resulted in a computation-

ally expensive non-convex minimization problem. Processing every pair of images in a se-

quence using such a technique is computationally infeasible given current hardware. In-

stead, we should be able propagate information from frame to frame in a principled way

and exploit this information to reduce the cost of estimating the flow between any pair of

frames.

Using long image sequences has another, possibly more significant, benefit; that is, it

allows us to exploit information over time to improve the estimation of optical flow. By

using information from a sequence of images, optical flow estimates can be refined as more

information becomes available.

117
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We start by formulating a new constraint which embodies our assumptions about the

motion of objects over time. This temporal continuity constraint has the important effect of

allowing us to predict the image motion at some future point in time based on the current

flow field. As with the data conservation and spatial coherence constraints, the temporal

continuity assumption is formulated in the image plane as a constraint that becomes a term

in the objective function. Since the constraint is treated in exactly the same way as the other

constraints, it fits naturally within the robust estimation framework. We next develop an in-

cremental minimization framework for recovering flow estimates over time. Finally, we de-

scribe how our framework relates to incremental techniques based on recursive estimation.

5.1 A Temporal Continuity Constraint

When we consider more than two frames we have additional information that can be brought

to bear on the estimation problem. In a stationary environment, the smooth motion of an

observer causes surfaces to move in a predictable way. Even the motion of independently

moving objects is often quite predictable due to the laws of physics.

This predictable motion of surfaces in the world gives rise to a predictable change in

image velocity over time which we call temporal continuity. Consider Figure 5.1a in which

a bar is moving to the right in the image plane. Since surfaces in the world tend to persist,

and their motion is predictable, the bar sweeps out a volume in space and time as shown in

Figure 5.1b. This property of images has been previously exploited, in a variety of ways,

by other authors, for the estimation of image motion.

Figure 5.2 shows an � – a -slice through the spatiotemporal cube. As noted by Adelson

and Bergen [1985] the orientation of the edges in the slice are determined by the horizontal

motion of the bar. Optical flow can be recovered by recovering orientation in space-time

using spatiotemporally oriented filters [Heeger, 1987].

Bolles, Baker, and Marimont [1987] use exactly the same information in their epipolar-
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Figure 5.1: Continuity in space and time [Adelson and Bergen, 1985]. In figure a a bar is
moving to the right in the image plane. In space and time, the bar produces a spatiotemporal
block (Figure b).
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Figure 5.2: Horizontal motion can be determined by computing the orientation of edges in
an � – a -slice of the space-time cube using oriented spatiotemporal filters.
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(i, j, t) (i, j, t-1)

(i, j-1, t)

(i+1, j, t)

(i-1, j, t)

(i, j+1, t)

Figure 5.3: The standard neighborhood system can be extended to a spatiotemporal neigh-
borhood by adding a neighbor in time [Murray and Buxton, 1987].

plane image analysis. In their case, they restrict camera motion to a horizontal plane so

that all motion can be determined by examining an � – a -slice of the space-time cube. Given

known camera motion, they recover the depth of scene features by examining the orientation

of edges detected in the � – a -slices.

An alternative approach is pointed out by Murray and Buxton [1987], who extend the

standard spatial neighborhood system to include neighbors in both space and time as illus-

trated in Figure 5.3. They then define a crude temporal continuity constraint,
� q , which

assumes that the flow at a site remains constant over time:� q � u ���!�#"E�ba#�#� u ���!�#"E�ba°�à�k�±�6% I ��Þè� u � �.�,"-�ba#��% u ���!�#"E�ba°�à�k�,�Þ�� otherwise, (5.1)

for a positive weight Þ . Murray and Buxton introduced spatial discontinuities using a line-

process formulation, but found that, given their approach, adding a temporal line process

had an overall detrimental effect on the estimation.

We take a different approach which extends our robust formulation of the two frame es-

timation problem. We treat temporal continuity as a constraint on image velocity, formulate

it to be robust, and incorporate it into the robust estimation problem. For example, consider
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the simple assumption that the image velocity of a surface patch is constant over time. While

this is not a realistic assumption, it is illustrative. If we know the flow u ���!�#"E�ba#� at a partic-

ular instant in time, then we can predict what the flow will be at the next instant, a°ejg�a , as

follows:

u » � �.�,"-�ba#�°% u � ���j)Egkan�#"��j+ogkan�ba©�jgka#�#� (5.2)

where u » is the “predicted” flow field. This equation corresponds to a backwards warp of

the flow field by our current estimate of the flow. I
A more realistic assumption would be one of constant acceleration in the image plane,

which can be formulated as:

u » � �.�,"-�ba#�c% u ��� �j)Egkan�#"��j+ogkan�ba!�jg�a{�;eúú a u �����j)Eg�a�,"��j+/g�a�±a!�jgka#��g�an� (5.3)

where the acceleration is approximated by:úú a u � �.�,"-�ba#�Mr(� u � �.�,"-�ba#�©� u » ���!�#"E�ba#�b�#� (5.4)

This is still an idealization of the temporal evolution of image motion even for simple scenes

and observer motions. For example, at an occlusion boundary the occluded surface abruptly

disappears and, hence, temporal continuity is lost. There is, however, psychophysical ev-

idence to suggest that humans do represent constant acceleration, as opposed to constant

velocity, under appropriate conditions [Freyd, 1983].

The temporal continuity constraint is formulated here in terms of image motion and not

scene motion. As with the other constraints, choosing the correct model is important for

both accuracy and robustness. Constant image-plane acceleration is only an initial approx-

imation. There needs to be more study of what constitutes a good temporal model, and howJ
As we saw in Chapter 2, backwards warping of the intensity image is commonly used in coarse-to-fine

approaches. The use here is slightly different. The flow estimate is being used to warp itself, and in doing so
predict what the motion will be in the future.
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the appropriate temporal model can be adaptively chosen, from among a continuum of mod-

els, to best capture the temporal evolution of the sequence.

Given a prediction of image motion we can formulate a temporal continuity constraint:

u � �!�#"-�±a{�c% u » ���!�#"E�ba#�#� (5.5)� q � u � u » �§% �E� u ���!�#"E�ba#�;� u » ���!�#"E�ba#�b�,� (5.6)

which states that the current estimate u should not differ from the predicted flow u » . Since

we expect the constraint to be violated, and we have no statistical model for how these vi-

olations will occur, we choose � to be a robust estimator. This allows our estimate to differ

from the prediction in cases where the motion is not predicted by the model.

We now formulate our objective function as a combination of the data, spatial, and tem-

poral constraints: � � u � u » �>%U� � � � � u �!e�� Ð � Ð � u �!e�� q � q � u � u » �#� (5.7)

where the � Ó control the relative importance of the terms, and where u » is determined by

the constant acceleration assumption. Once again, this function may be non-convex and in

the next section we examine how it can be minimized more efficiently.

The objective function is composed of three separate terms, each of which is formulated

to account for violations. This approach assumes that violations of the constraints are in-

dependent; for example, image noise might cause the data term to be violated, but the best

flow field is achieved when the spatial and temporal constraints are still enforced. This inde-

pendence is crucial for robust recovery, since it allows any one term to be violated without

removing the effect of the other constraints.

5.2 Incremental Estimation

Most previous approaches to exploiting long image sequences, including spatiotemporal fil-

tering and epipolar-plane analysis, involve local batch computations; a number of images
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are collected and then processed. In contrast, we are interested in incrementally processing

a sequence of images to achieve the goals of anytime access, temporal refinement, com-

putation reduction, and adaptation. It is entirely possible that the locally batch approaches

can be made incremental as is demonstrated by Baker’s extension of epipolar-plane analy-

sis over time using an incremental process called the “Weaving Wall” [Baker, 1989; Baker,

1988]. The focus of this chapter, however, is on how temporal continuity can be exploited

to extend a minimization scheme over time.

First, consider the two frame motion estimation problem. Between every pair of frames

we compute the optical flow using the data conservation and spatial coherence terms. But,

since the robust estimation problem is non-convex such an approach involves a computa-

tionally expensive, iterative minimization procedure between each frame and does not meet

the goals of incremental estimation.
Now consider a simple incremental strategy based on the assumption of Murray and

Buxton [1987] that the flow at a site does not change over time. This leads to the following
algorithm:

Algorithm 1:
u � u » ! '*�/�,�k0
for each image

u ! ý¸þrÿ u
� � u � u » � ; minimize

�
beginning at u »

u » ! u ; Murray and Buxton assumption
end,

where the objective function
�

contains the data, spatial, and temporal constraints. For

each new image we begin minimizing the objective function starting with the flow estimate

u » from the previous time instant. The idea is that u » provides a good initial estimate of

the flow and, hence, whatever minimization strategy is used should converge quickly to a

global minimum. Faster convergence, however, is not guaranteed and, hence, the goal of

computation reduction is not met. The estimate u » also provides a prediction of the flow

which is used in the temporal continuity constraint.
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The most obvious problem with this approach is that the assumption that the flow at a
site does not change over time is rarely satisfied. Such a simple assumption does not pro-
vide a useful prediction of the flow at the next time instant. The approach can be improved
by employing a more realistic model of temporal continuity. For example, consider the fol-
lowing algorithm which assumes constant acceleration:

Algorithm 2:
u � u » ! '*�/�,�k0
for each image

u ! ý¸þrÿ u
� � u � u » � ; minimize

�
beginning at u »

u ! u eà� u � u » � ; constant acceleration
u » ���!�#"��! u � �f�j)!�#"è�j+�� ; warp flow by current estimate

end.

The constant acceleration assumption allows us to warp the flow field given the current

estimate. This has two advantages: first, it provides a better initial starting position for the

minimization process and, second, it provides a better estimate for use in the temporal con-

straint.

Even though we have an initial estimate, minimizing
�

may still be a computationally

expensive proposition. Assume that a continuation method like GNC or a stochastic tech-

nique like simulated annealing is employed. Either choice requires a control parameter, 9 ,

which is updated as the objective function is minimized. In the case of Algorithm 1 and

Algorithm 2, a complete minimization is performed for each new image. This is infeasible

for real-time applications because the amount of computation is not known a priori. In or-

der to maintain a fixed amount of computation between frames Algorithm 2 is modified as

follows:
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Algorithm 3:
u � u » ! '*�/�,�k09s! initial value×�! fixed, small number of iterations
for each image

for × iterations
u ! minimize � � � u � u » �#9³� ; one-step minimization9�!Ø"°��9�� ; update the continuation parameter

end
u ! u eà� u � u » � ; constant acceleration
u » � �.�,"$�B! u � ���å)!�#"��å+�� ; warp flow by current flow

end,

where we have now made the control parameter explicit. The new algorithm restricts the

number of iterations of the minimization routine performed for each new image. Addition-

ally, the control parameter is now updated over time, resulting in a minimization that pro-

ceeds over the image sequence.

This new algorithm meets all but one of our requirements for incremental estimation.

First, a motion estimate is always available. Second, the estimate improves over time as

more iterations of the minimization strategy are performed and as the continuation param-

eter is adjusted. Third, we have limited the amount of computation between frames to a

constant amount.

This leaves the requirement of adaptability unaddressed; that is, the algorithm assumes

that the flow estimate is monotonically improving over time and is unable to respond to

sudden changes in the scene which are reflected in sudden changes to the objective function.

As a result, it is possible for the algorithm to get “stuck” in a local minimum. In locations

where a violation occurs, the algorithm should ignore its previous estimates and, essentially,

start over. We modify Algorithm 3 to be adaptive to the most common violation; motion

discontinuities:
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Algorithm 4:
u � u » ! '*�o�#�k0
T ! initial value at every site×�! fixed, small number of iterations
for each image

for × iterations
u ! minimize � � � u � u » � T � ; peform × iterations
T ���!�#"��!Ù"�� T ���!�#"��b� ; update the continuation parameter

end
u ! u eà� u � u » � ; constant acceleration
u » ���!�#"��! u ��� �å)!�#"��j+�� ; warp flow by current flow
T � �!�#"$�?! T � ���j)!�#"è�j+$� ; warp control parameter
if location ���!�#"�� is occluded or disoccluded then

T ���!�#"��! initial value
u � u » ! '1�/�#��0

end if
end.

When a motion boundary is detected, the continuation parameter is reset and the flow es-

timate is reinitialized. Thus, the value of the continuation parameter, T, at each site in the

image varies independently, whereas before, there was a single value of 9 , for all of the

sites. Since the new control parameters are associated with particular sites, it is necessary

to warp these values along with the flow field.

We have implemented two different algorithms within this framework. The first is an in-

cremental version of simulated annealing, and the second is an incremental version of GNC.

We will explore the details of these implementations in the following chapters.

What can be said about the global convergence of the incremental minimization algo-

rithm? First, the optimization schemes required for minimizing a non-convex objective

function are typically not guaranteed to converge to the global minimum even in the static

case. S Not surprisingly, the incremental version cannot hope to do better.U
This includes simulated annealing, since, despite theoretical convergence in the limit with a logarithmic

cooling schedule, practical applications typically rely on faster, linear, cooling schedules and do not have the
luxury of infinite computation.
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Figure 5.4: Incremental Model.

While no theoretical convergence results exist, numerous experiments have been per-

formed with two different incremental algorithms. When presented with synthetic sequences

containing noise, the algorithms converge rapidly to the true motion. In real scenes, the ap-

proaches converge to results that are qualitatively equivalent, or superior, to the published

results of standard two-frame algorithms.

5.2.1 The Computational Model

One way to view the incremental minimization scheme is illustrated in Figure 5.4. Imag-

ine a grid of processors where there is a processor at each site responsible for tracking the

projected motion of a small surface patch in the image. As the patch moves, the processor

estimates its motion using the three constraints we have described. When all the processors

have decided where their patch is moving, they communicate with their neighbors to pass

along all the information about the patches to the appropriate processor; that is they warp
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and resample the flow field.

A number of algorithms have been implemented within the incremental minimization

framework. The implementation was performed on a Connection Machine (CM-2) [Hillis,

1985] which is a massively parallel SIMD machine. By configuring the machine’s proces-

sors as an array, it is possible to have a physical processor at every site in the image. The

simple neighborhood communications required by the model are extremely efficient when

implemented on an array of processors. For the first-order neighborhood system, minimiz-

ing the objective function only requires nearest neighbor communication. Image warping

may involve slightly more distant communication, but is only performed once per image.

In fact, the Connection Machine is a much more flexible architecture than is required.

A simple fixed array of processors would suffice, and given the simple regular structure,

special purpose hardware could be developed. For example, the robust minimization prob-

lem may be mapped onto analog resistive networks [Harris et al., 1990; Koch et al., 1988],

where the minimum of the objective function is determined by the stationary voltage distri-

bution of the network.

As we will see in Chapter 8, the incremental minimization model is quite general, and

each processor can maintain more information about the scene than simply motion vectors.

For example, they may maintain information about the depth, orientation, intensity, or cur-

vature of the surface patch. The effective tracking of surface patches by the model allows

many common vision algorithms to be formulated and solved in an incremental fashion.

5.2.2 Large Motions

To account for large motions within this framework we need to extend the coarse-to-fine

strategies developed in Chapter 2. The most obvious approach is to take the current flow

estimate and use it to construct a pyramid of flow fields. The coarse-level flow field can

then be used to initialize the coarse-to-fine strategy at the next time instant.

This is a particularly poor approach. A great deal of computational effort goes into re-
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Figure 5.5: Coarse-to-fine “flow through” strategy. The motion at the finest level of the
pyramid is determined by the coarsest level at which the motion is greater than half a pixel.
This coarse motion then “flows through” to the fine levels, being appropriately scaled, but
not refined.

fining a flow estimate in the coarse-to-fine scheme. In the simple approach above, most of

that work is abandoned by using a coarse version of the flow estimate when a new image is

acquired. Instead what is needed is a way to combine information across levels in the pyra-

mid without undoing work that has been performed at the fine levels. Experiments have

been performed with two hierarchical schemes: a flow-through strategy and a coarse-to-

fine-when-changed approach.

In the flow-through scheme, each level in the pyramid is processed in parallel. One way

to view this is as a pyramid of spatiotemporally tuned motion detectors, where at coarse lev-

els of the pyramid large motions are detected and at fine levels small motions are detected.

Unlike the coarse-to-fine approach, there is no refinement of motions detected at the coarse
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level. The final motion estimate at a site is determined by the level best suited to computing

the motion. With this scheme, small motions are known with greater absolute accuracy, but

relative accuracy is the same across levels. The approach is illustrated in Figure 5.5.

The flow-through algorithm can be summarized in three steps:

1. Given a current flow estimate, create a pyramid of flow estimates,

2. At each level in the pyramid perform, in parallel, incremental minimization to im-

prove the flow estimate at those sites for which the horizontal and vertical components

of the flow are less than one pixel. Hold the estimate at all other sites fixed.

3. Combine estimates across levels using a flow through strategy:

Coarse-to-Fine-Flow-Through:� ! coarse-level
u ! u�
for � from coarse-level e�� to fine-level do

u ! project � u � � � ; project multiplying by 2
if �3)!� �.�,"$�|��õ·� and �3+E���!�#"����Úõ·� then

u ���!�#"��! u�Ú� �!�#"$�
end

The parallel nature of flow-through approach is appealing, but it may not be appropriate

for applications like structure from motion, in which the accuracy of the flow estimates is

critical. In cases like this, we want to have the benefits of the refinement approach while

maintaining the benefits of incremental estimation. We propose a limited coarse-to-fine ap-

proach in which information flows from coarse levels to finer levels only when the levels

disagree significantly: TV
Heeger has dubbed this the “coarse-to-fine-sanity-check” method.
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Coarse-to-Fine-When-Changed:
u » I+! '*�o�#�k0
for � from coarse-level to fine-level do

if � u�8� project � u � » In� � ���5�à�/��� then ; check if changed
u�3! project � u � » In� � � ; reset from above

end
u�Ú! refine � � � u ���b�

end

If the motion is changing rapidly in an area, the algorithm will use coarse information to

detect the motion and then refine it. In areas of the image that are moving predictably, no

information flows from above, but, rather, the estimates are continually improved at the ap-

propriate level in the pyramid.

5.3 Relationship to Recursive Estimation

To better understand the incremental estimation framework this section examines its rela-

tionship to more traditional incremental techniques. In particular, we examine the Kalman

filter (see [Gelb, 1974] for an overview) which is an optimal filtering technique for esti-

mating the state of a linear system. While the Kalman filter has been used extensively in

motion and structure estimation in feature based approaches [Faugeras et al., 1987], we will

focus here on computing dense flow estimates. Such a Kalman filter based flow algorithm

has recently been implemented by Singh [1992a] and based on work in incremental depth

estimation [Heel, 1991; Matthies et al., 1989; Szeliski, 1988].

5.3.1 The Kalman Filter

We begin by reviewing the basic discrete Kalman filter. The filter exploits three explicit

probablistic models: the system model, the measurement model, and the prior model. The

algorithm works in two phases. The prediction phase extrapolates the current state to the
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next time instant, while the update phase integrates predicted estimates with new measure-

ments.

Given a dynamical system with state u ¼ , at time Û , we describe the changes in state over

time by a system model:

u ¼ %sÜ ¼ u ¼{» I e q ¼ � q ¼ ®·µí���o� Q ¼ �,� (5.8)

where Ü ¼ is a known transition matrix which maps state variables at one time instant to state

variables at the next time instant with the addition of Gaussian noise having covariance, Q ¼ .

In the case of motion estimation, these state variables are the flow vectors.

The measurement matrix, H ¼ , relates noisy measurements, d ¼ , to the current state with

the addition of Gaussian noise having covariance, R ¼ :

d ¼ % H ¼ u ¼ e r ¼ � r ¼ ®·µí���o� R ¼ �#� (5.9)

This defines the measurement model.

A prior model describes the system state and covariance before any measurements have

been made:

u � ®ðµë� û � � P � �#� (5.10)

where P � is the prior covariance matrix. Additionally, we assume that the measurement

noise r ¼ and the system noise q ¼ are uncorrelated.

Our goal is to estimate u ¼ given our knowledge of the system’s behavior over time as

defined by the above models and given some measurement d ¼ . Given a current estimate

û
Õ¼{» I we obtain a predicted estimate û »¼ and a new prior covariance matrix P »¼ at the next

time instant using the prediction equations:

û »¼ % Ü ¼{» I û Õ¼{» I (5.11)

P »¼ % Ü ¼{» I P Õ¼{» I Ü q ¼#» I e Q ¼{» I � (5.12)



5.3. RELATIONSHIP TO RECURSIVE ESTIMATION 133

t-1u

Mathematical Model Discrete Kalman Filter

+

+ +

+

+

- +

+
+

+-

t

t-1t

t

t

t

t-1

t-1t

tt

t-1 ΦΦ DelayDelay

q r

u

H

K

u u

ud
H

Figure 5.6: System Model and Discrete Kalman [Gelb, 1974].

The update phase integrates a new measurement into the current state while accounting

for the measurement noise:

û
Õ¼ % û »¼ e K ¼ � d ¼ � H ¼ û Õ¼ �#� (5.13)

This updates the estimate by adding to the prediction, the difference between the prediction

and the measurement scaled by the Kalman filter gain matrix which is defined as:

K ¼ % P »¼ H q ¼ � H ¼ P »¼ H q ¼ e R ¼ � » I � (5.14)

Finally, the covariance of the new estimate is updated:

P
Õ¼ %ð� I � K ¼ H ¼ � P »¼ � (5.15)

These two equations can be simplified to [Gelb, 1974]:� P Õ¼ �b» I % � P »¼ �±» I e H q ¼ R » I¼ H ¼ � (5.16)

K ¼ % P
Õ¼ Hq ¼ R » I¼ � (5.17)

The filter can now be summarized by the block diagram in 5.6. The left portion of the fig-

ure describes the system model and is purely a mathematical abstraction of the true system

and measurement processes. The portion on the right is essentially a flow chart describing

the implemented portion of the discrete Kalman filter.



134 CHAPTER 5. TEMPORAL CONTINUITY

5.3.2 Measurements

For motion estimation, measurements will be estimates of the image flow between a pair

of images in an image sequence. This estimate can be computed using any number of tech-

niques. All that is required is that for each new frame, we compute a new flow measurement

and that this measurement have an associated covariance matrix. This covariance matrix

R ¼ is estimated from the data which corresponds to using an adaptive Kalman filter [Gelb,

1974].

For example, in Chapter 2 we showed the correlation-based approach of Singh [1992a]

in which he computes a least-squares estimate of the motion and its covariance matrix from

the SSD surface. Likewise, Anandan’s confidence measures [Anandan, 1989], or Simon-

celli et al.’s [1991] probability distributions might be used to estimate the covariance. Heel

[1989] proposes a related method based on the SSD surface. Recall that the SSD surface is

defined as: ��� � u �>% �� u�� vb����� '²`d���!�#"E�ba#�@�j`�� �feh)-g�an�#"iej+ogkan�ba@ehgka#��0 S �
If u Ý is the best displacement, then Heel defines the variance in ) and + as:

C S¿ % ��� � u Ý �� � � u Ý ��u#u and C SÀ % �D� � u Ý �� � � u Ý ��v�v �
where the subscripts indicate the second partial derivatives of the error surface with respect

to � and " respectively. With these measures, the variance is high when the error
� � � u Ý�

is high or the curvature at the minimum is low. Low curvature occurs when there is little

texture and hence the measurements are unreliable.

5.3.3 Prior Model

The prior model should express the assumption of spatial coherence. This can be done by

modeling spatial smoothness in terms of the prior covariance matrix P. In the first-order, or
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membrane, case the smoothness energy is defined as:� � � u �>% �� ��ËÓ � Ô�� 'Î��) ÓÖÕ I � Ô&�j) Ó � Ôn� S eà� + Ó � Ô Õ I �j+ Ó � Ôn� S 0�� (5.18)

Collecting all the ) Ó � Ô into a vector u we can rewrite the smoothness energy as [Szeliski,

1988]: � � � u �6% �� u q A � u � (5.19)

The prior covariance is defined as: P � % A » I� .

With no other knowledge, it may be reasonable to begin with a prior model which states

that the world is smooth. But as information about discontinuities becomes available, the

prior model should change to take them into account. This corresponds to using an adaptive

Kalman filter [Gelb, 1974].

5.3.4 Prediction

The constraint of temporal continuity is embodied in the state transition matrix Ü ¼ . The

current flow estimate is used to predict the location that a site has moved to and, hence,

the flow at that new location at the next instant in time. Since it is unlikely that the flow

components are integers, the new location of a site will fall somewhere between the regular

pixel-grid locations. To keep a fixed grid of sites, the flow field must be interpolated and

resampled after the state update is performed. This means that the state transition matrix Ü ¼
is not a simple linear operation which is known in advance. The process can be implemented

as a warping operation that takes a flow estimate and produces a predicted flow field. We

must also specify how the state covariance matrix is updated. This algorithmic approach

is the one taken in all current implementations [Heel, 1991; Matthies et al., 1989; Singh,

1991; Szeliski, 1988] which implement a warping procedure similar to those presented in

Chapter 2.
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5.3.5 The Kalman Filter and Estimation

The above discussion has presented one way of viewing the Kalman filter. An alternative

view is to begin with the underlying objective function and derive the optimal closed-form

estimate. In particular, the update stage of the Kalman filter finds the u
Õ

that minimizes the

following objective function [Gelb, 1974]:� � u Õ �>% �� � u Õ � u » � q � P » � » I � u Õ � u » �!e �� � d � Hu
Õ � q R » I � d � Hu

Õ �,� (5.20)

This can be seen by examining where this function is minimized. We differentiate with re-

spect to u
Õ

and set the result to zero:ú �ú
u
Õ %ð�b� P » � » I e Hq R » I H � u Õ �à� P » � » I u » � H q R » I d %s�/� (5.21)

If we take � P Õ � » I %ð� P »;� » I e H q R » I H, then substituting into equation (5.21), we have:� % �±� P Õ � » I � H q R » I H e H q R » I H � u Õ�à�b� P Õ � » I � H q R » I H � u » � H q R » I d �
Simplifying and multiplying through by P

Õ
we get:� % � P Õ �b» I u Õ �w� P Õ �±» I u »�e H q R » I Hu » � H q R » I d �% u

Õ � u » e�� P Õ � H q R » I � Hu » � d �#�
This is simply:

u
Õ % u » e P

Õ
H q R » I � d � Hu » �,�% u »�e K � d � Hu »;�#� (5.22)

since from equation (5.17), we have K %(� P Õ � H q R » I . Thus we have derived the Kalman

filter update equation (5.13) from the objective function. Viewed in this way, the Kalman

filter update is simply minimizing the objective function (5.20).
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Figure 5.7: Kalman Filter Implementation [Matthies et al., 1989; Szeliski, 1988].

The first term of this objective function specifies the temporal continuity constraint, while

the second expresses data conservation. The minimum u
Õ

is the estimate that minimizes the

combined data error � d � Hu
Õ � and the temporal continuity error � u Õ � u » � weighted by the

appropriate covariance matrix. But the covariance matrix P » I is simply the prior smooth-

ness term A � . Hence, the minimum u
Õ

is found subject to the first-order smoothness con-

straint.

5.3.6 Implementations

In the Kalman filter formulation of optical flow, the measurement covariance depends on

the data, the prior smoothness model must be adaptive to cope with discontinuities, and the

prediction phase requires a warping of the flow field. With these constraints, devising an

optimal filter is difficult and computationally expensive, if possible at all.

Therefore current implementations typically rely on approximations which result in al-

gorithms that fall outside the strict Kalman filtering framework. One approach that has been

widely used [Heel, 1991; Matthies et al., 1989; Singh, 1991; Szeliski, 1988] is to treat spa-

tial smoothness as a separate regularization process applied to the current estimates. While

outside the traditional Kalman filter framework, this approach works well in practice as it

is simple and efficient and can be made sensitive to motion discontinuities [Singh, 1991].

Consider, for example, the approach of Matthies, Szeliski, and Kanade [1989] for in-
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crementally estimating dense depth. Figure 5.7 is an adaptation of their incremental depth

algorithm to the flow estimation problem. When a new image is acquired, the best estimate

and its variance are found by an SSD approach. This measurement is then integrated with

the previous estimate using the Kalman filter update equation and the variance estimate is

revised. The current estimate is then smoothed using a standard regularization technique

which could take into account motion discontinuities. The smoothed estimate is then used

to warp the flow field to derive a predicted motion estimate.

Singh’s [1992a] approach is based on this model, but uses a unique smoothing phase

that takes into account the distribution of flow vectors in a local neighborhood. By com-

puting a weighted least-squares estimate of the image velocity and a covariance matrix for

the estimate, Singh is able to optimally combine the data conservation and spatial coher-

ence information. W While the approach performs better at motion boundaries than standard

regularization techniques, it still suffers from over-smoothing.

5.3.7 Comparison and Discussion

At first glance the Kalman filter and ISM approaches seem radically different. While they

share the same goal of incremental and adaptive computation, they rest on different assump-

tions and make different implementation choices. This section highlights these differences

to bring to light the relative advantages and disadvantages of each approach. Despite these

differences, however, there are fundamental similarities in the approaches and each repre-

sents an instantiation of a general incremental paradigm.

The Kalman filter paradigm is computationally simple and is based on well developed

estimation theory. We have also seen that a strict implementation of the filter has computa-

tional problems and, hence, practical approximations are made. First, the implementation

of the spatial coherence assumption in the Kalman filter framework can result in expensive

matrix inversions. Typically a separate regularization stage is used instead. Second, it is notX
Optimality depends on the assumptions of Gaussian noise and smooth motion being met.
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clear how to incorporate motion discontinuities into the framework. If they are dealt with

in the smoothing process in the standard way by adding line processes, the simplicity of the

Kalman filter is lost. The compromise approach of Singh exploits the covariance estimate in

the smoothing process and achieves better results at motion boundaries that straightforward

regularization. Third, the prediction stage does not involve a predetermined linear opera-

tion, therefore, current approaches rely on a separate phase that warps the flow field based on

the current flow estimates. Hence implementations of the approach can differ significantly

from theory. Also, in interesting scenes, we have seen that the Gaussian noise assumption of

the filter is violated at motion discontinuities. Yet, despite these simplifications and viola-

tions of the assumptions, the Kalman filter approach performs well in practice and achieves

the goals of incremental estimation.

The incremental minimization approach was developed to specifically cope with the

non-convex optimization problems resulting from the robust estimation framework. A key

difference between the approaches is the treatment of the various constraints. In the Kalman

filter framework, the data measurement takes place as a separate process which does not re-

ceive information about the state of the system. It therefore cannot be influenced by the

current motion estimate or by the other constraints. This can be a serious problem in the

case of multiple motions where there may be multiple peaks in the correlation surface and

where each peak may have fairly high confidence (or low variance). It may not be possible

to determine the “best” peak from the data measurements alone. The reason being, that the

best interpretation is dependent on the other constraints.

In contrast, the incremental minimization approach takes the view that all the constraints

are jointly minimized, hence the “best” motion is the one which, not only is a minimum in

the SSD surface, but also minimizes the other constraints. In this way, all the constraints

receive a unified treatment that allows the application of the robust estimation framework.

Despite their different motivations, the approaches have a great deal in common. Both
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the incremental minimization framework and the recursive estimation framework share the

same components: data conservation, spatial coherence, and temporal continuity. They dif-

fer in how these components fit together. Consider, for example, the simplified block dia-

gram of the Kalman filter in figure 5.8. This is very similar to the diagram in figure 5.9 that

captures the basic flow of the incremental minimization framework.

More significantly, the update stage of both approaches can be seen as minimizing an

objective function. In the case of the Kalman filter, the least-squares formulation of the ob-

jective function results in a closed form solution. As we have seen, a least-squares approach

can have problems in practice. If we replace that objective function with our robust objec-

tive function, and adopt an appropriate minimization strategy, we can essentially convert

the Kalman filter framework into the incremental minimization framework. In the process,

we loose the simplicity and efficiency of the simple discrete Kalman filter, while gaining

the benefits of the robust minimization scheme.

Comparing the objective functions of the two approaches reveals another difference. In

the Kalman filter framework, the spatial coherence constraint is applied to the difference
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between the estimated flow and the predicted flow:� u Õ � u » � q � P » � » I � u Õ � u » �,�
This is a different notion of spatial coherence than that employed in this thesis where the

constraint is appled to the flow estimate u
Õ

. This difference may be significant if the detec-

tion and preservation of motion boundaries is important.
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Chapter 6

Incremental Stochastic Minimization

To make concrete the framework of the previous chapter, this chapter considers the incre-

mental recovery of optical flow given the robust formulation proposed by Black and Anan-

dan [1990b; 1991b]. We begin by reviewing this robust, correlation-based, formulation of

the problem. Given this formulation, it is not possible to directly apply the GNC technique

that was used for the robust gradient-based formulation. Instead we pose the problem in the

context of Markov random fields and develop a stochastic minimization technique that is

capable of recovering sub-pixel motion estimates. We then recast the stochastic minimiza-

tion problem in the incremental minimization framework and demonstrate its performance

on real and synthetic image sequences. We call this new algorithm Incremental Stochastic

Minimization (ISM) [Black and Anandan, 1990b; Black and Anandan, 1991b].

6.1 Robust Formulation

As before, we pose the following minimization problem:� � u � u » �>%U� �6��� � u �!e�� Ð/�8Ð � u �!e�� q � q � u � u » �#� (6.1)

where the data conservation term is formulated as robust correlation,� � � u �>% �� u�� v±����� � � �
`d���!�#"E�ba#�;�w`�� ��ej)!�#"�eh+-�ba;eà�k�,� 2 � �#� (6.2)

143
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with the following robust estimator:� � � �.� 2 � �>% ����De ¯ uÞ ¾ ° S � (6.3)

We adopt a first order smoothness term:� Ð � u æ{�>% �x���� � � Ð � )-æ°�j)�x�� 2 Ð �!e � Ð ��+Úæ��j+kx � 2 Ð �#� (6.4)

where � Ð
is the Geman and Reynolds robust estimator:� Ð � �!� 2 Ð �>% ����DeÙß u ßÞáà � (6.5)

The temporal persistence term assumes constant acceleration and is formulated as:� q � u � u » �§% � q ��)��j) » � 2 q �!eå� q ��+è�j+ » � 2 q �#� (6.6)

where � q %w� Ð
, with a possibly different value for

2 q .

To efficiently minimize this function, the correlation surface is first computed over a

range of displacements, thus avoiding the cost of recomputing the correlation during the

minimization process. The range of displacements is kept small by use of a coarse-to-fine

flow-through approach, so that at each level in the pyramid, we need only estimate motions

of one pixel or less. Sub-pixel motion estimates are computed by interpolating the error

surface with bi-cubic splines [Press et al., 1988].

To estimate motions of one pixel or less using bi–cubic spline interpolation requires

computing the correlation for displacements within a ����� pixel search area centered about

zero displacement; this produces a ��� � correlation surface. First a spline is fit to each row

in the correlation surface, which requires that the first and second derivatives of the surface,

along the row, be computed. These values can be stored. Then computing the value of the

surface at any sub-pixel displacement involves first computing the interpolated value for

each row, then fitting a spline to the new sub-pixel column.



6.2. MARKOV RANDOM FIELDS 145

6.2 Markov Random Fields

To minimize the above objective function, it is convenient to pose the problem as a Markov

random field (MRF). MRF’s have been used extensively in computer vision particularly for

modeling texture [Derin and Elliott, 1987] and in the restoration of images [Geman and

Reynolds, 1992; Geman and Geman, 1984]. More recently they have been used in recover-

ing dense disparity maps from stereo images [Barnard, 1989] and optical flow from image

sequences [Black and Anandan, 1991b; Black and Anandan, 1990b; Konrad, 1989; Konrad

and Dubois, 1988; Murray and Buxton, 1987; Tian and Shah, 1992].

The MRF representation derives its popularity from its ability to model the expected spa-

tial properties of image data in a Bayesian framework with a prior distribution. This ability

to model expected spatial dependencies allows MRF’s to be used in segmentation [Chou

and Brown, 1990; Cohen and Nguyen, 1988; Derin and Elliott, 1987; Dubes et al., 1990;

Geman et al., 1990], classification [Szeliski, 1988], and surface reconstruction [Geiger and

Girosi, 1991; Marroquin et al., 1987; Szeliski, 1988].

We will briefly review the foundations of MRF’s and then recast the robust optical flow

problem in this framework. Let 2 % Ù�2Âæ��E�¸ç Ç ã be a set of random variables indexed

by the sites in the graph. The state space, âiæ , of a variable 2Âæ defines the possible values

that 2�æ can take on and is denoted as â<æ+ã�äuå , where 2 æBç�âBæ . I The configuration space,A , defines the set of all possible configurations of the variables in the graph:Aà%ÁÙ�Át%ð� � æGæ �����|��#� æ`ç Í �<��� æ`è çlâ<ão�
We say that 2 is a MRF with respect to a neighborhood system ä , as defined in Chapter

2, if: ���y2Ä%éÁB���à�/� for all ÁàçëA�� (6.7)���y2 æ8%��Eæi��2Hx�%s��x��#� ê%àa#��%·���y2 æ8%��-æ<��2Hx�%à��x��ba�çëä!æb� (6.8)J
In the case of optical flow the êë¹ are random vectors and ìá¹áíïî ð3*Qî ð . This extension is straightforward.
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for all ��ç Ç
and ���-æGæn�������n�#�Eæ ç Í ��çëA . The power of this concept is that any joint probabil-

ity ���y2Ä%éÁB� satisfying (6.7) is uniquely determined by the local characteristics ���y2�æD%�Eæf�o2HxB% ��x��#�ëê%(a#� [Geman and Geman, 1984]. For vision applications, like surface re-

construction, the prior models used involve small neighborhoods. Thus the probability of

a site having a particular value depends only on its neighbors’ values. For small neighbor-

hoods, efficient computational methods can be devised.

6.2.1 Gibbs Distributions

It is convenient to specify prior expectations about the data as an energy function
�

defined

over small neighborhoods: � �~ÁB�>% �ñ �q�7ò ñ �óÁB�,� (6.9)

ò ñ depends only on those sites �tç ò and represents the potentials contributed to
�

by

the sites in the cliques ò ç�ô . In the case of our optical flow problem,
� �

and
� q have

trivial neighborhoods which are just a single site, and the prior smoothness term
�³Ð

has the

first-order neighborhood defined in Chapter 2.

The energy function,
�

, can be converted into a probability measure ô on A using the

Gibbs distribution:

ô��~ÁB��%·7 » I ¹ »�½ �]õ � � q � (6.10)

where 7 , called the partition function, is the normalizing term:7à%s� õ ¹ »�½ �]õ � � q � (6.11)

and where 9 is a temperature constant that serves to sharpen (or flatten) the distribution.

When 9 is made large, ô becomes flat, but low values of 9 sharpen the mode(s) of ô .

This Gibbs distribution is a powerful modeling tool, but before it becomes useful to us,

we need the following theorem due to Hammersley and Clifford [Geman and Geman, 1984]:
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Theorem 1 A random variable 2 is a Markov random field with respect to a
neighborhood system ä if and only if ô��óÁ8��%·���£2 %öÁB� is a Gibbs distribution
with respect to ä .

This theorem, stating the equivalence of MRF’s and Gibbs distributions, means that if a

problem can be defined in terms of local potentials then there is a simple way of formulating

the problem in terms of MRF’s. There is still a problem however. Notice that the partition

function 7 is defined by summing over all possible configurations ÁºçjA . This renders 7
intractable for any problem of interesting size.

This is easily fixed by exploiting the equivalence theorem. If ô��óÁB�<% ���y2 %�ÁB� is a

Gibbs distribution then:���£2 æD%��-æ<�k2Hx°%s��x��#�Âê%àa#�§% 7 » Iæø÷ À5ùè� �9 �Ã£� ñ ò Ãb�óÁB�,� (6.12)7&æ % �u���ú ÷ À5ù�� �9 �Ã£� ñ ò Ã#�~Á u �#� (6.13)

where Á u denotes the configuration which agrees with � everywhere except possibly at site� . Since these equations depend only on the local neighbors of a site, they are a practical

way of specifying MRF’s.

6.2.2 Optical Flow

Until now we have only looked at formalizing the prior model. Vision problems, however,

typically involve inverse problems; for example, finding the “best” flow estimate u given

the image data ` , temporal information u » , and prior smoothness model.

In the Bayesian approach this corresponds to maximizing the posterior distribution ��� u ��`d� u » � .
This is referred to as maximum a posteriori, or MAP, estimation. Applying Bayes’ rule, and

making the appropriate independence assumptions, gives:��� u ��`d� u » �6% ����`¸� u �b��� u » � u �±��� u ����
`o�b��� u » � � (6.14)
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Notice that ����`/� and ��� u » � are constant and do not involve u and, hence, are not of interest.

Also, ��� u � is the prior smoothness model defined earlier:��� u ��%º7 » IÐ ¹ » ¢ à ½ à � u � � q � (6.15)

The other two terms are simply:���
`Ï� u �§% 7 » I� ¹ » ¢ ¾o½-¾ � u � � q � (6.16)��� u »å� u �§% 7�» Iq ¹�» ¢qû ½ û � u �u ü � � q � (6.17)

Rewriting (6.14) in terms of the new posterior energy function combining the data, tem-

poral, and smoothness terms gives:��� u ��`d� u » �>% �7 ¹ »�½ � u �u ü � � (6.18)

where
�

is just the objective function from above:� � u � u » �>%Ó� � � � � u �!e�� Ð � Ð � u �!e�� q � q � u � u » �,�
which, as we have mentioned, typically has many local minima making the task of mini-

mizing it difficult.

Our goal is to recover the MAP estimate, or equivalently, the minimum of
�

. The fol-

lowing section describes stochastic sampling techniques for actually computing this esti-

mate.

6.3 Stochastic Minimization

When a problem is specified in terms of an energy function
� �óÁB� as described above, the

goal is to find the configuration Á for which
�

has the minimum energy. In analogy to

physics, we are looking for the ground state of the system. For interesting problems,
�

will

have many locally minimum energy states. This makes finding the ground state impossible
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Figure 6.1: Minimizing a non-convex objective function. Gradient-descent techniques may
become trapped in local minima.

with simple gradient based search techniques. Such techniques will typically get stuck in a

local minima (Figure 6.1).

In real physical systems, the ground state can be reached through a slow, controlled,

cooling of the system. By starting at high temperatures, where atoms are moving freely,

and by slowly cooling, or annealing, the system gradually reaches a stable global minimum

energy state without getting trapped in locally stable, but non-optimal, states.

6.3.1 Metropolis Algorithm

The Metropolis algorithm [Metropolis et al., 1953] is a standard stochastic technique for

finding a configuration, x %ð� � I �|�������#� Û � , that minimizes an energy function
� � x � . Starting

with a random configuration x � , at each step of the algorithm we choose a small perturbation2
x of x. This is chosen randomly, subject to constraints on acceptable state transitions.

We now compute the change in the system energy caused by the perturbation:2 � % � � x e 2
x �°� � � x �#� (6.19)

If
2 � ¶ó� then the perturbation is beneficial and should be accepted. If this is the case,
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then the state is updated and the process begins again.

On the other hand, if
2 � �t� then the move causes the energy to increase. In this case,

the new configuration is accepted with probability given by the Boltzman distribution:��� 2 � ��%·¹ » � Þ ½ � ¼�ý q � � (6.20)

where ÛDþ is the Boltzman constant and 9 is a temperature constant. This can be imple-

mented by generating a random number in the interval '1�/���n0 and testing it against ��� 2 � � .
If it is less than ��� 2 � � then accept the configuration, else reject it and reuse the old con-

figuration. The process is then repeated.

In the case of simulated annealing, the Metropolis algorithm is used with an initial high

temperature and then increasingly cooler temperatures. At high temperatures ��� 2 � � ap-

proaches unity and hence nearly all configurations are accepted. The temperature is then

gradually lowered in stages and the system is allowed to reach equilibrium. The procedure

stops when a ground state is reached and no more changes occur.

6.3.2 Gibbs Sampler

Geman and Geman [1984] describe a related stochastic minimization technique called the

Gibbs sampler which is more suited to our optimization problem. Suppose there is a pro-

cessor at each site � ç Ç
with the communication between processors determined by the

neighborhoods ä æ . Also, at each discrete time step a , the state of the processor is the random

variable 2�æn�£a#��çlâBæ . The value of 2�æ�ya{� is to be updated while the values of the neighboring

processors K�çëä.æ are kept fixed.

Given the energy function
�

construct the Gibbs distribution ô in the usual way. The

processor then chooses a new state value of �åç�â æ by sampling from the local character-

istics of ô . In other words:

Choose a state value �Ïçlâ according to the distribution ô given the values of

the neighbors.
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Figure 6.2: Gibbs Sampler; Monte Carlo sampling.

This sampling is performed using a Monte Carlo technique. Compute the cumulative den-

sity function of 2�æ�ya#� using the local characteristics of the probability density function ô .

Then generate a random number, K , in the interval '*�o���0 . Using the cumulative density func-

tion, find the value of �4çlâ æ that corresponds to the random number (see Figure 6.2 for an

illustration). This process can be repeated for each site using a fixed or random site visita-

tion strategy.

The annealing process is best illustrated by an example. Imagine that, at a site � , the

energy can be characterized by the surface shown in Figure 6.3. First we construct the lo-

cal characteristic of ô with a high temperature; say 9 % �/�¬� (see Figure 6.4). Notice that

the density function is nearly flat; this means that the cumulative distribution will be nearly

linear which will mean that the sampler will choose � ç�â randomly. As the temperature

is lowered, the modes of the distribution become more pronounced. At low temperature,9�%��/�Ë�Ú��� , a single peak stands out with probability approaching unity. As the temperature

is lowered this peak will be chosen by the sampler with increasing probability. At interme-

diate temperatures, there are multiple peaks. To avoid getting stuck in one of these false

minima, the Gibbs Sampler must follow a particular annealing schedule.

An annealing schedule specifies the rate at which the temperature is lowered. To guaran-

tee convergence the temperature must be lowered very slowly, particularly near the “freez-
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Figure 6.3: Initial error surface (inverted for display).

ing point” of the system. For convergence as the time aj± � , regardless of the starting

configuration of the system, a number of conditions must be met:9��ya{�B± � as an± �s� (6.21)9��ya{�?� µ 2efNhgDa for all a��àa � �yaÿ�s���,� (6.22)

Additionally, each site must be visited infinitely often. Here, µ is the number of sites in the

MRF and
2

is the difference between maximum and minimum energy states.

This logarithmic schedule is impractically slow given current hardware. In practice, the

initial temperature is chosen empirically and a more rapid, exponential or linear, cooling

schedule is chosen. For this increased efficiency, one gives up the global convergence re-

sults obtained with the logarithmic schedule.

The single-site replacement algorithm above can easily be parallelized in the same way

that the robust gradient method was parallelized. By dividing the sites into a checkerboard

of black and white sites, half the sites can be updated simultaneously while the other half

are held fixed.



6.3. STOCHASTIC MINIMIZATION 153

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

9à%s�/�¬� 9Á%à�o�Ë�Ú�

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

9�%s�o�Ë��� 9à%s�/�����

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

2

4

6

8

0

0.2

0.4

0.6

0.8

1

9�%s�o�Ë�o� 9Á%��/�Ë�Ú���
Figure 6.4: Example of annealing.
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6.3.3 Continuous Annealing

In the case of optical flow, the state space â of all possible flow vectors is infinite, but, as

defined, the Gibbs sampler requires a finite state space at any given time in order to effec-

tively compute the partition function. The idea that allows us to solve continuous problems

is that the state space can vary over time depending on the local properties of the function

being minimized. At a given time a , we have an estimate of the motion u x , and consider

making small changes
2

u x to the estimate. Vanderbilt and Louie [1984] define an exten-

sion to the standard Metropolis Monte Carlo technique which is adaptive in that the state

space (defined by the step size,
2

u x ) automatically adapts to the local shape of the function

being minimized. Here we extend their results to the Gibbs sampler.

The basic idea is to use the covariance matrix of a random walk to characterize the shape

of the function. We set the state space so that it best explores the function by making the

covariance matrix of the state space proportional to the covariance matrix of the random

walk. Intuitively, if the variance along a particular search direction is large, then we want

to increase the step size in that direction to get a coarse view of the function. When the

true minimum has been chosen at a coarse level, the variance will shrink. To explore the

minimum more finely, the area covered by the state space should shrink resulting in smaller

step sizes. The basic idea is illustrated in Figure 6.5.

At a given site and at a given time, the state space â is always a discrete �Ï� � neigh-

borhood of the current estimate, but the area covered by the neighborhood varies based on

the current step size
2

u x°%ð' 2 )�x�� 2 +�xr0 . Given a current estimate u x�% '*)�x��#+�xr0 , at time a the

state space â is defined as:

âà%sÙ u e 2
u � 2 u % Q � l � l %ð' � I � � S 0 q � � I � � S ç÷Ùo��� ������� æÍ �#�o����������� æÍ ã�ão� (6.23)

where Q is a �Ï�ë� matrix which controls the step size. Elements of the state space are all

examined with equal probability, so the choice of trial steps is governed by a uniform prob-

ability distribution g � l � which, over Ùo�������Ý��� æÍ��#�o����������� æÍ�ã , has zero mean and unit variance.
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Figure 6.5: This figure [Vanderbilt and Louie, 1984] illustrates the adaptive nature of the
continuous annealing process. The state space varies over time to best explore the function
being minimized.

Since the mean of â is u, the covariance matrix s, of the state space is simply:� Ó ÔB% �Þ u ��ú 2 uÓ 2 uÔ g � l �,� (6.24)

Vanderbilt and Louie [1984] note that this can be expressed as:

s % Q � Q q � (6.25)

Hence we can generate a state space with any desired covariance matrix s by solving for Q

using Cholesky decomposition [Strang, 1976] and then using Q to generate the state space

in equation 6.23.

As mentioned, the covariance matrix of the actual steps that would be taken in a random

walk can be used as a measure of the local shape of the function. We want the covariance

matrix of the state space to be proportional to this covariance matrix of a random walk. The

actual step taken at a time a is determined by the probability distribution ô�� u x�e 2
ux£� defined

over the space of displacements. Using ô we can compute the mean Å at time a (note we
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drop a when it is constant across all terms):

Å Ó %c�
u �yú ô�� u � u Ó � (6.26)

The covariance matrix S of ô given the current step size is:Ç Ó Ô8% �
u �yú � u Ó ��Å Ó �#� u Ôø��Å-Ô|��ô�� u �#� (6.27)

We make the covariance matrix of the state space at time a!eà� proportional to S
� x¬� :

s
� x Õ I � % � S

� x¬� � (6.28)

where � is a scaling factor. Now solving � � x Õ I � % Q � Q q for Q gives the Q for determining

the state space at the next time instant. Performing Cholesky decomposition involves using

Gaussian elimination to factor S into � � � q %�� � � � � � q , where � is lower triangular

and
�

is diagonal. For the simple �Ø��� case of optical flow we have:

S % ¤ Ç ��� Ç � IÇ � I Ç I
I ¥ and Q % ¤ � Ç ��� �Ç I � �D� Ç ��� Ò Ç I�I � Ç SI � � Ç ��� ¥ � (6.29)

We now need to choose the scale factor for � . Assume a step size
2

u and imagine the

case in which ô is uniform so s
� xr� % S

� xr� . No information is being gained with the current

step size so we should increase it. If � �s� then the step size will be increased by a factor of� � on the next iteration. Over time, as the the algorithm settles into the true minimum, the

variance will decrease. The result will be decreasing step sizes which allow the minimum to

be explored more precisely. In all our experiments we take � %�� as suggested by Vanderbilt

and Louie.

To prevent the state space from growing or shrinking too rapidly, we control the rate at

which new information from S overwrites the previous information:

s
� x Õ I � %¡
 � S

� x¬� eà�±�i��
�� s � x¬� �
where 
 can be viewed as a damping factor. In our experiments 
 %ð�o�Ë� . Additionally, to

prevent the state space from going to zero, or growing larger than the maximum expected

motion, we set a lower and upper bound on the state space.
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Figure 6.6: Incremental Stochastic Minimization (see text).

6.4 Incremental Stochastic Minimization

The obvious disadvantage of using simulated annealing is that its computational expense is

prohibitive. So, we pose the stochastic minimization problem in the incremental framework

with the continuous Gibbs sampler as the minimization procedure and the temperature as the

control parameter. The algorithm is summarized in the block diagram in Figure 6.6.

When a new image is acquired, the current motion estimate at a given site (representing a

particular surface patch) is used as the starting point for the continuous annealing algorithm

and to refine the predicted motion used in the temporal coherence constraint. The current

temperature at each site is used as the initial temperature, which is then lowered according

to the annealing schedule.

After a fixed (usually small) number of iterations of the annealing process, each site has

a new motion estimate and temperature. The various properties of the associated surface

are then propagated to the new site where the patch has moved. The flow, temperature, and

adaptive state space information are warped along with the sites of the MRF by the flow es-

timate. The propagation algorithm described below also detects occlusion and disocclusion

boundaries.
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Figure 6.7: Forward Warping

6.4.1 Prediction (Warping)

We use a forwards warping strategy as illustrated in Figure 6.7 in which each level of the

pyramid is warped simultaneously. Using a coarse-to-fine flow-through approach we can

assume that, at any level, all motions are less than a pixel, since larger motions will be dealt

with by combining information across levels. Each site � determines which of its neighbors

are moving towards it. This is done by examining its own motion and the motion of its eight

immediate neighbors to identify those sites whose new location is estimated to be within a

pixel of the site � . Let this set of neighbors be denoted as ¬E����� . New estimates of image

properties at each site are obtained by a weighted sum of the properties stored at the sites

belonging to this refined neighborhood. Examples of properties belonging to a site are its

motion, temperature, and state space. Additional properties like image intensity or higher

level information about surface membership may also be present.

This propagation can be viewed as a forward warping of the sites according to the motion

estimate [Black and Anandan, 1991b]. Since the motion is not discrete, the field is resam-
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pled using a weighted interpolation. When doing this resampling, it is necessary to resolve

conflicts that arise in the forward warp. This is done by weighting the motion estimates byô .

Let � be a property of � . Then the new estimate of �E����� is given by:�E� �ö� % �Þè����� �x��y¥ � æy� ô�� u �ya{�±�#�±�B�jü������ba#�b� �E�£a#� (6.30)Þ�� �ö� % �x��y¥ � æy� ô�� u �£a#�b�,�b�B�jü������ba#�±�#� (6.31)

where Þ is a normalizing term, and ü������ba#� is the distance between the projection of site a
and the location of site � .

6.4.2 Occlusion and Disocclusion

The propagation algorithm outlined above can be made sensitive to the presence of occlu-

sion and disocclusion around each site. To understand how this is done, observe that the

normalizing factor Þ roughly measures the total flow into a site. In the absence of mo-

tion discontinuities this should be approximately unity. However, if occlusions are present

within the neighborhood of a site, we may expect multiple sites to move towards it, thereby

increasing the total in-flow. Similarly, if there is a disocclusion, we may expect the total

flow to be less than unity.

The current version of our algorithm includes a simple implementation of the idea de-

scribed above for occlusion/disocclusion detection. The net flow, which is measured by the

quantity Þ , is estimated and compared against two thresholds, one above and one below

unity, in order to categorize a site as occlusion, disocclusion, or single motion. This is ob-

viously too simple to handle complex situations and may fail even in simple situations. For

example, if there is significant divergence (or convergence) present within the neighborhood

of a site, net flow will differ from unity, even if there are no motion discontinuities. Despite

these shortcomings, the simple approach performs well in our experiments.
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In the current algorithm no special processing is done at occlusion sites, other than to

simply indicate them as such. A more sophisticated approach would involve modifying the

propagation scheme to take contributions from processors which correspond to the occlud-

ing surface. If this information were available from higher level processes as a property of

the site, it could easily be incorporated.

A disoccluded site indicates a new patch of the environment which was previously hid-

den from view. For this new patch, there is no prior motion estimate, hence the annealing

process should be initially uncommitted about the motion. This is achieved by initializing

the site to have a high temperature and initializing the motion estimate and state space. Note

that even if false disocclusions are detected in areas which do not correspond to our motion

model, increasing the temperatures may still be useful to extend the search space at that site.

In many cases it is also desirable to reinitialize occluded sites since there is ambiguity as to

the correct motion estimate near the occlusion boundary.

It should be clear that unlike standard annealing, our algorithm uses different tempera-

tures for the different sites and dynamically modifies the temperature according to the in-

formation available at a site. As a patch is tracked, its temperature will decrease over time.

Hence, the temperatures of patches that have been tracked over many frames, and whose

motion is precisely known, tend to be lower than those of more recently disoccluded (i.e.,

new) patches.

Convergence

Unlike simulated annealing, our new algorithm, which uses the continuous annealing scheme,

incremental minimization, and a linear cooling schedule, is not guaranteed to converge.

Empirical results, however, indicate that the approach does, in practice, converge to near-

optimal sub-pixel motion estimates. Obviously, the degree to which the constraints accu-

rately reflect the physics of the world will affect both the convergence and the accuracy of

the algorithm.
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a b

Figure 6.8: Moving square sequence (30 images). a) Intensity image. b) ���D�C��� pixel patch
translates one pixel up and to the left per frame. Notice that the stationary patch is not visible
in the intensity image. When the patch moves its boundaries are distinctly visible.

6.5 Experiments

The incremental algorithm has been tested on real and synthetic image sequences. Experi-

ments with controlled synthetic data illustrate the performance of the algorithm, while real

image sequences, demonstrate the algorithm’s ability to achieve qualitatively good motion

estimates in the presence of noise. Without ground truth, no quantitative analysis of the real

motion sequences is possible.

6.5.1 Synthetic Moving Square

The first example involves a synthetic image sequence with a �Ú��� ��� pixel textured square

moving across a
� û�� � û pixel stationary textured background. The random noise texture of

the foreground and background patches is uniformly distributed between 0 and 255 (Figure

6.8a). The sequence consists of thirty frames; in each frame the foreground patch moves

one pixel up and to the left (Figure 6.8b). Uniform random noise over the range 'Î�1¬-�|¬�0 was



162 CHAPTER 6. ISM

added to each image in the sequence. For the example in Figure 6.8, ¬ is taken to be five

percent of the intensity range; so ¬�%ð�|�/��×�� .

The results of the motion algorithm applied to the sequence are shown in Figure 6.9.

Only a single iteration of the temporal annealing algorithm was performed for each pair of

images in the sequence. The following weights were used:

Discontinuities Weights2 � %s�/��� 2 Ð %s�o�Ë� 2 q %à�o�Ë� � � %s�/��� � Ð %º����� � q %ð�����
A rapid, nearly linear, cooling schedule was employed with a starting temperature for each

site � of 9@æ�% �o�*û . For this simple example, the state space was kept fixed, resulting in a

discrete estimation problem.

Each row of images in the figure represents a snapshot of the algorithm at an instant in

time. The first and second images in each row show the current estimate of the horizontal

and vertical motion respectively. Dark areas correspond to a negative motion (left or up) and

bright areas correspond to positive motion (right or down); stationary areas appear gray. The

third image in each row shows the location of motion discontinuities. Occlusion boundaries

are displayed as white, and disocclusion boundaries appear black.

Since the algorithm works on a sequence of images, results are always available, and

the quality of the information increases with time. Row a shows the current motion and

discontinuity estimates after only two frames. By the sixth frame (row b), the errors in the

initial estimate are being corrected and the system is beginning to settle into a global in-

terpretation. The results at the end of the thirty frame sequence are shown in row c. The

motion estimates are accurate everywhere, with the exception of recently disoccluded ar-

eas, and the discontinuity estimates correspond well to the actual boundary of the moving

patch. Recently disoccluded areas with high temperatures have not yet settled into a sta-

ble interpretation and are hence less accurate. Increasing the number of iterations per frame

would permit these areas to settle more quickly to the correct interpretation, but would di-

minish the dynamic nature of the processing.
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a:

b:

c: ) + discontinuities

Figure 6.9: Random Dot Image Sequence. Each row shows the state of the model at an
instant in time. a) state after two frames; b) after six frames; c) after 30 frames.
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Figure 6.10: Temperature at each site at the end of the sequence.

Figure 6.10 shows the temperature at each site at the end of the image sequence. Lighter

areas correspond to higher temperatures. The stationary background and the patch itself are

dark, indicating that by the end of the sequence, the motion of these areas is known accu-

rately. The brightest areas correspond to recently disoccluded portions of the background.

As time progresses, the motion of these areas becomes known with more accuracy and the

temperature decreases. This phenomenon can be observed in the figure as a fading “vapor

trail” left by the moving square.

6.5.2 Convergence Experiments

While no theoretical proof of convergence exists, in practice the ISM algorithm converges

to the correct solution even in the presence of noise. For this and all future experiments we

will use the continuous annealing strategy. To illustrate the convergence properties of the

algorithm a synthetic image sequence was generated. The sequence consists of a
� û¦� � û

pixel uniform random signal over the range '*�/�,������0 which is undergoing a uniform transla-

tion of one half pixel to the right and down per frame.
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Figure 6.11: ISM Convergence Experiments. Mean Squared Error (MSE) (in pixels) as a
function of the number of frames in a 25 image sequence. The results are plotted for tests
involving varying numbers of iterations of the annealing algorithm per frame (from 2 to 7).

The initial experiments consider a noiseless signal and examine the convergence of the

algorithm over time. Error is computed as the mean squared error (MSE) of the motion

estimate in an ×÷��× region ¡ of the image which is visible for the entire sequence:

� Ç � % �× S �æ���� � ux R ¿�� � u æ,� q � u x R ¿�� � u æ#�#�
Error in recently disoccluded regions, corresponding to the left and top edges of the image,

will be higher than those regions which have been tracked over the length of the sequence.

Figure 6.11 plots mean squared error of the motion estimate as a function of the number of

images examined in the sequence. The error is plotted for trials using 2, 3, 4, 5 and 7 itera-

tions per frame. Increasing the number of iterations per frame increases the rate of conver-

gence but, even with only three iterations per frame, the algorithm converges to the correct

solution within approximately 25 frames.

The next experiment addresses the effect of noise on the convergence of the algorithm.

Uniform random noise over the range 'Ö���!���o�	�!����0 was added to each image in the sequence,

where � is a percentage of the total intensity range. Figure 6.12 shows the effect of zero to
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Effect of Noise on Error
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Figure 6.12: Noise Experiments. Mean squared error as a function of noise (from 0% to
50%) is plotted plotted for a 10 frame sequence with 5 iterations per frame.

50 percent noise on the error of the motion estimate. The experiment is performed with

only a 10 frame image sequence with five iterations per frame. The results indicate the the

algorithm is tolerant to fairly large amounts of noise (up to about 30%). Above that, longer

sequences or more iterations per frame would be required to reach acceptable levels of error.

6.5.3 Sub-Pixel Motion and Discontinuities

The following experiment involves an image sequence consisting of eight
� û�� � û square im-

ages; the last image in the sequence is shown in Figure 6.13a. The images contain a soda can

in the foreground; the motion of which is slightly less than one pixel to the left between each

frame. The can is moving in front of a textured background that is also undergoing a slight

motion to the left; there is no vertical motion. Since all the motion is less than a pixel, this

sequence tests the sub-pixel accuracy of the algorithm independently of the multi-resolution

strategy. The flow field, computed to sub-pixel accuracy, is shown in Figure 6.13b.

These results can be compared with those obtained using the hierarchical SSD algorithm

of Anandan [1989] shown in Figures 6.14a and 6.14b. The horizontal and vertical compo-
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a b

Figure 6.13: Pepsi can image sequence (results after eight frames): a) Intensity image; b)
Flow field.

nents of the flow field computed by the ISM approach are shown in Figures 6.14c and 6.14d

respectively. Notice that over-smoothing does not take place and flow discontinuities are

maintained. Also notice that the errors in the vertical motion estimate correspond to areas

of low image contrast. A longer image sequence or more iterations per frame would likely

reduce the errors further. Overall, the performance is significantly improved over the two

frame algorithm.

Occlusion and disocclusion boundary estimates are shown in Figure 6.15. The brighter

the area, the more likely it is to be an occlusion boundary. Similarly, dark areas indicate

disocclusion. It is important to remember that, while these results show only the final frames

in the image sequence, both flow and discontinuity estimates are available at all times.

Figure 6.16 illustrates the adaptive state space used by the continuous annealing algo-

rithm at the end of the image sequence. Recall, from equation (6.23), that the state space,

at a site, � , is determined by:

âà%·Ù u e 2
u � 2 u % Q � l � l %(' � I � � S 0 q � � I � � S ç÷Ùo��� ���Ý��� æÍ �#�o����������� æÍ ã�ão�
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a b

c d

Figure 6.14: Pepsi can image sequence. a, b) Anandan’s SSD algorithm, horizontal and
vertical flow. c, d) ISM algorithm after eight frames, horizontal and vertical flow.
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Figure 6.15: Pepsi can image sequence: Discontinuities

where,

Q æ %§¤ 
 ��� � æ �
 � I � æ 
 I�I � æC¥ �
and where


 ��� � æ , 
 I
I � æ , and

 � I � æ refer to the image pixel values in the respective images in

Figure 6.16. Bright areas correspond to large values, dark to small. Figure 6.16a shows that

the horizontal component of the state space. The area covered by the state space is largest

at the can boundaries due to the local uncertainty in the motion estimate.

The values represented in the figure range from �/����� to �/��ñ�� which means that the state

space for ) ranges from �o�Ë� � to ���Ë� pixels. The values in Figure 6.16b show the vertical

component of the state space and range from �/����� to �o� ×�û . The largest vertical uncertainty

is in the homogeneous region of the can. The values for the off diagonal component shown

in Figure 6.16 ï range from �C�/����� to �/���DE , where grey is zero, black is negative, and white

is positive. Although it is difficult to see in images �vFÝ� and � ï � due to a lack of contrast, the

search area is also somewhat larger near the can boundary.

These figures illustrate a number of properties of the adaptive state space. First, across

the motion boundary of the can, there is difference in the horizontal flow. For points within
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(a)

 ��� (b)


 I
I

(c)

 � I

Figure 6.16: Pepsi can image sequence: State space (see text).



6.5. EXPERIMENTS 171

the vicinity of the boundary, the shape of the objective function reflects the presense of mul-

tiple motions and contains multiple minima. The uncertainty in the horizontal motion at the

boundary is then reflected in the increased size of the horizontal search direction. Since there

is little uncertainty in the vertical direction, the search in that direction remains relatively

small.

Second, the lower center portion of the can contains a nearly homogeneous region. The

lack of texture in this region means that the objective function contains no clearly defined

minimum, but rather is a relatively flat surface. This results in a high variance for a random

walk and, hence, the state space grows to explore this region more effectively.

6.5.4 SRI Tree Sequence

We now consider a more complex sequence containing 63 images (numbered 32–95) of size���Úñ6�è�|��ñ pixels. Figure 6.17 shows six images in the sequence. The translational motion of

the camera is parallel to the image plane and the maximum pixel motion between frames is

less than one pixel. This sequence offers more challenges than the Pepsi sequence in that it

is much longer, there is significant image noise, and there are many closely spaced disconti-

nuities (fragmented occlusion). Additionally, the image motion of the ground plane violates

the assumption of piecewise constant flow underlying our formulation of spatial coherence.

In the Pepsi sequence, on the other hand, the flow is essentially piecewise constant, and

hence, a first order smoothness constraint is appropriate.

For this experiment, we used ten iterations of the annealing algorithm per frame with an

initial temperature of 9à%s�/��� and a linear cooling schedule. The other parameters were as

follows:

Discontinuities Weights2 � %��/�Ë� 2 Ð %à�o�Ë�Ú� 2 q %s�/�¬� � � %ð�Ú�Ë� � Ð %s�/��� � q %º�����
A small, �¸��� , region was used for computing the robust correlation.
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33 43

53 63

73 83

Figure 6.17: SRI tree sequence (images); (numbers 33, 43, 53, 63, 73, 83).
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Running on an 8K processor Connection Machine, the algorithm took three seconds to

update every site using the continuous Gibbs Sampler. That meant that it took 30 seconds to

process each new image, and approximately 30 minutes to process the entire sequence. Of

that computation, approximately ����� was actually performed on the Connection Machine.

The results are summarized in Figure 6.18 which shows the horizontal component of the

flow after every ten frames in the sequence. The estimate starts out coarse and noisy and

becomes smoother and less noisy over time. The vertical motion is nearly zero everywhere

and is shown in Figure 6.19.

For this experiment ���Úñ4�å�|��ñ smoothed and subsampled versions of the original SRI

images were used due to Connection Machine memory limits which precluded using the

full sized images. This had two effects on the results. First, all the motions were less than

a pixel so a multi-resolution scheme was not required. Second, the branches of the tree in

the subsampled sequence are very narrow, making precise recovery of the branch bound-

aries difficult. One can compare these results with those of the robust gradient algorithm in

Chapter 4 which used the full sized images and achieved better resolution with respect to

the motion of the branches and their boundaries.

The motion discontinuities are shown in Figure 6.20 and the temperature at an interme-

diate stage is shown in Figure 6.21. Notice that areas of high temperature correspond to

motion discontinuities.

We mentioned above that the assumption of piecewise constant image motion is violated

by the ground plane. In the results presented, only motions greater than
2 Ð % �/�Ë�Ú� pixels

were considered violations of the spatial smoothness term. The effect of reducing this to2 Ð % �/�¬� pixels is demonstrated in Figure 6.22. In this case, the more strict smoothness

term causes the ground plane to be split into two piecewise constant regions. What this

example illustrates is the need for higher order models for recovering general motion. In

particular, we might first recover the piecewise constant flow in Figure 6.22b and then apply
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33 43

53 63

73 83

Figure 6.18: SRI tree sequence (horizontal flow); (numbers 33, 43, 53, 63, 73, 83).
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Figure 6.19: SRI tree sequence (vertical flow.)

Figure 6.20: SRI tree sequence (thresholded discontinuities at image 73).
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Figure 6.21: SRI tree sequence (temperature at image 53).

a second order smoothness model [Geman and Reynolds, 1992].

6.5.5 Nap-Of-the-Earth Experiment

The final experiment tests the full algorithm, including the multi-resolution flow-through

strategy. The test sequence consists of 100 images of size �|��ñë�w�|��ñ pixels. The images

were acquired from a camera mounted on a helicopter in Nap-Of-the-Earth (NOE) flight.

The sequence is challenging in many respects. First the range of motion in the images is

wide; from 0 to approximately 4 pixels. To cope with motions of up to 4 pixels, a three level

pyramid was used. Second, there are areas in the images of low contrast where good data

estimates are not available. Finally, the motion is complex and changing; there is pitch, yaw

and rotation in addition to translation. The actual motion is corrupted by jitter introduced

by the camera mounting and turbulence.

Unfortunately, it is impossible to convey the dynamic behavior of the algorithm over

the 100 image sequence in a static format for presentation here. Figures 6.23, 6.24, and

6.25 shows six snapshots of the processing after 15, 30, 45, 60, 75 and 90 frames. The data
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a

b

Figure 6.22: Tree sequence: smoothness assumption violated. Figure (a) shows the hori-
zontal flow at image 70 using the same parameter settings as in Figure 6.18 (in particular2 Ð %s�o�Ë��� ). The horizontal flow in figure (b) was obtained with the same parameters except
with

2 Ð %s�/�¬� (the same as was used in the Pepsi sequence). See text for an analysis.
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Image: 11185 Flow: 11185

Image: 11200 Flow: 11200

Figure 6.23: Nap-Of-the-Earth Helicopter Sequence. Snapshots of images and associated
flow fields in a 100 image sequence.
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Image: 11215 Flow: 11215

Image: 11230 Flow: 11230

Figure 6.24: Nap-Of-the-Earth Helicopter Sequence. Snapshots of images and associated
flow fields in a 100 image sequence.
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Image: 11245 Flow: 11245

Image: 11260 Flow: 11260

Figure 6.25: Nap-Of-the-Earth Helicopter Sequence. Snapshots of images and associated
flow fields in a 100 image sequence.
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conservation constraint used a EÏ��E window with band-pass filtered images. Seven itera-

tions of the annealing algorithm were used per frame with a linear cooling schedule. The

various parameters mentioned previously were set as follows:

Discontinuities Weights2 � %º���o�Ë� 2 Ð %s�o�Ë��� 2 q %s�o�Ë� � � %s�o�Ë� � Ð %s�/��� � q %ð�����
Even after only 15 frames, noise in the motion estimate is small. In Figure 6.23 a ro-

tation to the right, in addition to the translation, can be seen. Figure 6.24 spans a largely

translational sequence. Throughout this portion of the sequence however, the aircraft is un-

dergoing significant pitching fore and aft which causes the temporal coherence constraint

to be violated between frames. In the final portion of the image sequence (Figure 6.25) the

helicopter is banking while rotating to the left.
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Chapter 7

Incremental GNC: Algorithm and
Implications

The previous chapter developed an incremental stochastic algorithm for minimizing a correlation-

based objective function. Given the formulation of the problem, this stochastic approach

was appropriate, but if the objective function is differentiable, then more efficient minimiza-

tion procedures may be used. As we saw in Chapter 4, the GNC algorithm provides a deter-

ministic minimization scheme that can be applied to the robust gradient-based formulation

of optical flow. In this Chapter, the incremental minimization framework is applied to the

robust gradient-based problem and an Incremental Graduated Non-Convexity (IGNC) al-

gorithm is developed. Details of the algorithm are provided and it is used to illustrate the

psychophysical implications of temporal continuity.

7.1 Incremental GNC

To illustrate the IGNC approach we adopt the robust gradient-based formulation of optical

flow presented in Chapter 4, but here we add a temporal continuity term:� � u � u » �>%U� � � � � u �!e�� Ð � Ð � u �!e�� q � q � u � u » �#� (7.1)

183
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Recall that the data conservation, spatial coherence, and temporal continuity constraints are

formulated as follows:� � � u � % � � ��`#u�)fet`#vn+�ew`#x���C � �#� (7.2)� Ð � u æb� % �Û � � � � Ð � )-æ°�j) Û �|C Ð �!e �Û ��� � � Ð � +�æ°�j+ Û ��C Ð �#� (7.3)� q � u � u »@� % � q ��) �j)©»©��C q �!eå� q � +��j+�»!��C q �,� (7.4)

where � is taken to be the Lorentzian estimator.

The ISM algorithm used the Gibbs sampler as the minimization procedure and the tem-

perature parameter was annealed over the length of the image sequence. For the IGNC

algorithm we replace the stochastic minimization procedure with the Simultaneous Over-

Relaxation (SOR) algorithm from Chapter 5. For the robust-gradient algorithm there is no

temperature parameter, but rather there are three control parameters ( C �
, C Ð

, and C q ) which

controlled the convexity of the objective function. It is these values that will be decreased

over time in the same way that the temperature parameter was annealed.

The overall structure of the incremental algorithm remains the same as the ISM case

and is sketched in Figure 7.1. When a new image is acquired, × iterations of a hierarchical

SOR algorithm are performed, beginning with the current estimate. When the estimate has

been refined, the constant acceleration assumption is applied to predict the flow at the next

time instant. Since the continuation parameters are associated with particular sites, the flow

estimate is used to predict their values at the next time instant. Unlike the ISM algorithm,

here we choose to implement prediction using the computationally simpler backwards warp.

After warping, the flow and continuation parameters are reset at motion discontinuities.

One significant difference between ISM and IGNC is in the type of hierarchical scheme

employed. For ISM, we used the flow-through approach, but with IGNC we adopt the coarse-

to-fine-when-changed method that is implemented by the recursive function “Pyramid-

SOR” in Figure 7.2. In the ISM approach the flow-through strategy was used to efficiently

implement the forwards warp by restricting the maximum motion at any level of the pyra-
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;;;
;;; Incremental Minimization using:
;;; 1. Robust gradient-based formulation,
;;; 2. Coarse to fine when changed,
;;; 3. Simultaneous Over-Relaxation.
;;;
u � u » ! '1�/�#��0C � ��C Ð ��C q ! initial value at every site×�! fixed, small number of iterations
for each image

;; perform × iterations of SOR
u ! Pyramid-SOR �
`#x » I �`#x � max-level � min-level �#×�� u » � u » �
;; Constant acceleration assumption
u ! u eà� u � u » �
;; prediction: warp flow and continuation parameters
u » � �!�#"$�?! u ���H�j)!�#"è�j+$�C Ó � �!�#"$�?!ØC Ó �����j)!�#"è�j+��#�åß�ç Ù � � Ç �,9³ã
;; reset flow and control parameters at motion boundaries
if location � �!�#"$� is occluded or disoccluded thenC � �|C Ð �|C q ! initial value

u � u » ! '1�/�#��0
elseC Ó ���!�#"��! "°�GC Ó � �.�,"$�±�#� ß6ç Ù � � Ç �,9³ã
end if

end.

Figure 7.1: Incremental Graduated Non-Convexity Algorithm.
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;;;
;;; “Coarse-to-Fine-When-Changed” Method.
;;;
Pyramid-SOR ��`{x » I �`,x�� max-level � min-level � iters � u � u �è�

if max-level ¶ min-level theng u ! u
u ! '*�o�#�k0
u ! SOR �
`#x » I �n`#x��#g u � u � u » � iters �

else

;;
;; recursively call Pyramid-SOR
;;
u � » I ! Pyramid-SOR � reduce ��`{x » I �#� reduce �
`#x��#� max-level �à�Ú�

min-level � iters ��� reduce � u �b�����#��� reduce � u » �b�Ý���b�
u �Ú! project � u� » In� max-level �à�k�
;;
;; Coarse to fine when changed, u,v are updated by coarse level
;;
when � )H�j)@�o�J�à�o�Ë� or �3+è�j+P���5�à�o�Ë�

u ! u �
;;
;; warp image `{x » I by ��)!�#+��
;;`#x » I ���!�#"��! `#x » I ���H�j)!�#"�� +$�g u ! '1�/�#��0
u ! SOR �
`#x » I �n`#x��#g u � u � u » � iters �

end

return u
end

Figure 7.2: Coarse-to-Fine-When-Changed Algorithm.
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mid. The flow-through approach also permitted increased parallelism which helped offset

the computational expense of the stochastic algorithm.

In the case of IGNC, the coarse-to-find-when-changed strategy is made feasible by re-

placing the forwards warping scheme with a backwards warp. Additionally, the determin-

istic relaxation strategy employed in the IGNC approach results in faster convergence than

stochastic algorithm. As a result of this increased efficiency, we are willing the pay the price

of sequentially processing each level in the pyramid to gain the benefits of refinement across

scales.

The SOR procedure for the robust gradient-based estimation problem is sketched in Fig-

ure 7.3, where: ú �ú )-æ % � � `#uÝ�i�b��`#u|g�)Eæ@ew`#v|g�+Úæ©et`#x��#�|C � �!e� Ð �Û � � � �i� )Eæ��å) Û ��C Ð �!e�� q �i� )Eæ.�j) »æ ��C q �ú �ú +�æ % � � `#v|�i�±�
`#u|g�)Eæ@ew`,vng�+�æ!ew`#xy�#��C � �!e� Ð �Û � � � �i� +�æ!�j+ Û ��C Ð �!e�� q �i��+Úæ��j+ »æ ��C q �,�
and �i� �.�|C���% �Ú��hC S eh� S �
Given an image `{x » I which has already been warped by the current flow estimate u, the

algorithm computes the g u which refines the estimate. Sites are divided in a checkerboard

pattern into black and white sites and each group is updated in parallel.

The IGNC algorithm has a number of advantages over the ISM approach. First, IGNC is

computationally much simpler than ISM. Second, sub-pixel estimates are naturally recov-

ered given the gradient-based formulation and they can be refined across levels. Finally,

since the approach is deterministic, it starts with a coarse solution and refines it across scale

and time. With the stochastic approach, the results at high temperatures are, by design, ran-

dom and hence do not provide useful coarse descriptions at early stages of the processing.
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;;;
;;; Simultaneous Over-Relaxation
;;;
SOR �
`#x » I �`#x �#g u � u�Ú� u » � iters �

;; compute derivatives by convolving with masks �èu and �iv` u ! � u �<` x`,v3! �<vD�<`#x`,xp! `#xE�w`#x » I
;; compute bounds on second derivatives of

�Ç ¿ ! ¢ ¾� Í¦d Í ¾ e W ¢ àd Í ¾ e ¢qûd ÍûÇ À1! ¢ ¾ � Í�dnÍ¾ e W ¢ àdnÍ à e ¢ ûdnÍû
for iters iterations do

for sites ç÷Ù black, white ã do
u ! u � ejg ug�) ! g�)H�ÂÁ IÐ È ´ ½´ ¿u ! u ��ejg ug�+A! g�+��ÂÁ IÐ É ´ ½´ Àend

end

u ! u ejg u
return u

end

Figure 7.3: Simultaneous Over-Relaxation (SOR) Algorithm.



7.2. PSYCHOPHYSICAL IMPLICATIONS 189

Test321

Figure 7.4: Rotation Experiment, (Freyd and Finke [1985])

Two experiments with the IGNC algorithm are presented in the following section and

are used to explore the implications of the temporal continuity assumption.

7.2 Psychophysical Implications

This thesis has demonstrated the computational advantages that a temporal continuity as-

sumption can provide. The development of the constraint has been based on two goals: 1)

to more accurately model the motion of surfaces over time, and 2) to extend motion estima-

tion over time for improved efficiency. From an engineering standpoint, these are sensible

goals, particularly given limited computational resources. Given the computational benefits

of temporal continuity, it is natural to ask whether humans, likewise, exploit the temporal

continuity of moving bodies.

This issue has been explored in the work of Freyd and her collaborators in their studies

of representational momentum. Freyd [1987] observed that a subject’s memory of the final

position of a moving object was distorted in the direction of motion. Consider the exper-

iment in Figure 7.4. Subjects were shown three images of a rectangle rotating � × degrees

per frame and told to remember the final image. They were then presented with a number of

test images that were either identical to the last frame or in which the rectangle was rotated

a few degrees in either direction.

Subjects were required to indicate whether the test image was the same as, or different

from, the final image. Their responses are plotted in Figure 7.5. Positive values indicate
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Figure 7.5: Representational Momentum Effect.

degrees of rotation in the same direction as the inducing motion. The experiment indicates

that subjects experienced a slight shift in the remembered location of the rectangle in the

direction of motion.

The findings of Freyd and Finke [1985] indicate that the effect is dependent on coherent

implied motion and is not a result of the subjects guessing the next logical orientation of the

block in the image sequence. This effect occurs very rapidly (10-100 ms) and is viewed as a

small, continuous, shift in memory of the remembered position of the object. The amount of

shift increases with the implied velocity of the object and as the retention interval between

the last image and the test pattern increases.

Finke and Freyd [1985] attribute this shift to a cognitive internalization of the physi-

cal properties of time and momentum in the world. In particular, they argue that the effect
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cannot be accounted for by low-level, sensory processes, but is rather due to an inherent

dynamic property of mental representations. The justification for this assertion is derived

from the fact that strong momentum effects are observed even for long retention intervals

(up to two seconds between the third image and the test image). Finke and Freyd suggest

that, because of the persistence of the effect over long retention intervals, the effect is due

to cognitive processing and not “triggered motion detectors.” Freyd [1987] further argues

that the results suggest that mental representations are intrinsically dynamic.

As noted by Tarr and Black [1992], the properties of representational momentum bear

a strong resemblance to the properties exhibited by our incremental flow algorithms. Our

algorithms, however, do not contain high-level cognitive representations of objects or the

physical properties of momentum. Rather, they contain a simple temporal continuity con-

straint that is formulated in terms of motion in the image plane. We ask whether this sort

of early-vision constraint can account for the effects of representational momentum with-

out appealing to dynamic cognitive representations. To explore the relationship between the

temporal continuity constraint and the results in representational momentum, we repeat the

psychophysical experiments but with the IGNC algorithm as the “subject”.

7.2.1 Methodology

Our goal is to explore whether our temporal continuity constraint can account for the kinds

of systematic distortions observed in humans. We begin by constructing image sequences

similar to those used by Freyd and Finke in their psychophysical studies. Given our for-

mulation of the optical flow problem, accurate flow estimates are only possible in textured

areas, so our stimuli are constructed of textured regions moving over a textured background

as in Figure 7.6. The background and foreground textures are constructed by convolving

uniform random noise over the ranges '*�/�|���%×|0 and 'Ö���Úñ/�#�Ú���k0 respectively with a Gaussian

filter. For each trial a new randomly textured image sequence was generated to avoid pos-
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Figure 7.6: Rotation Experiment, test images.

sible systematic errors due to accidental properties of a particular random sequence. I
The images were �|��ñH�4�|��ñ pixels in size and there were 8 degrees of rotation between

frames which is less rotation than the 17 degrees used by Freyd and Finke. The first order

optical flow model does not account for rotations, and a rotation of more than about 8 de-

grees per frame proved too much for reliable flow estimation. S The test images were rotated

by +4, +3, +2, +1, 0, -1, -2, -3, -4 degrees from the final position.

The IGNC algorithm was applied to each test sequence of four images (three inducing

images and one test image). Due to the large rotation, a three level pyramid was used where

the coarse level images were ���å�j�Ú� pixels. The experiments were run with between 5

and 10 iterations of the SOR algorithm at each level and the combination across levels was

achieved using the coarse-to-fine-when-changed method. As in Chapter 4, the Lorentzian

was chosen as the robust estimator. The only parameters that were varied were the weight,�Ex , associated with the temporal term and the amount of temporal disparity, C©x , that consti-

tuted a violation of the constraint. The parameters for the other terms were as follows for

all experiments:J
The texture requirement is simply a byproduct of our formulation of the data and smoothness terms and

is unrelated to the temporal continuity constraint. We might, for example, compute optical flow using only
image features like lines [Faugeras et al., 1987]. The constraint of temporal continuity is equally applicable
to such a formulation.U

Once again this issue is separate from the issue of temporal continuity and we could reformulate the data
conservation term to account for rotations.
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Discontinuities Weights2 � %s�/��� 2 Ð %s�o�Ë� � � % ���/��� � Ð % ���Ë�
The IGNC algorithm computes optical flow, but cannot answer the question, “Is this im-

age the same as the previous image?” To perform experiments analogous to the psychophys-

ical trials we require a way of answering this question. It is reasonable to assume that the

test image that minimizes the error in the intensity constraint equation is most likely to be

perceived as the “same”. Thus, after estimating the optical flow over the image sequence,

we compute a measure of “sameness” by taking the inverse of the data conservation term

summed over the entire image:

“same” ® �Å ��`#u|)few`,vn+�ew`#xy� S � (7.5)

Experiments were performed with four different “subjects”. The parameters controlling

the relative importance of the temporal continuity constraint and the outlier rejection thresh-

old for temporal constraint violations were varied for each subject. The results were then

averaged across subjects.

In the psychophysical trials each of the first three images was displayed for 250 ms while

the final image stayed visible until the subject responded. The interstimulus interval (ISI)

between images was varied from 100 to 900 ms in increments of 100 ms. The smaller the

ISI, the greater the implied velocity. Time is not explicitly represented in the IGNC algo-

rithm, but velocity is, so instead of varying the ISI, we vary the implied velocity which is

determined by:
� % �Ú��� ms

ISI
�

which means the that:

� ç÷ÙÚ�/���/�<���Ë�Ú�/�B�o�ËñÚ���/�8�/� � ���o�D�o�Ë�/���/�1û�� ×��B�o�Ë���J×��B�o�Ë�o�����o�B�/���%×Ýñ�ão�
After processing three images, we have a predicted flow � ) æ �#+ æ � at every site in the image

which is computed using the constant acceleration assumption. We take the predicted esti-
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Figure 7.7: Rotation Experiment, optical flow.

mate and multiply it by the implied velocity:��)��æ �,+��æ �>%ð� � )Eæ#� � +Úæb�#�
which gives the predicted velocity between the third and test images. This estimate is then

used in the warping process to predict the flow at the next time instant.

Each “subject” was run with each ISI and the results were averaged. In the psychophys-

ical trials reaction times above 2000 ms were removed from the data. In our case reactions

times were, in a sense, held fixed by performing a fixed number of iterations of the algo-

rithm. An alternative would have been to set a threshold on the maximum error and report

sameness as the inverse of the number of iterations required to reach the threshold.

7.2.2 Rotation Experiment: Results

In the case of the rotation experiment, the parameter settings for the four subjects were:
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Figure 7.8: Optic Flow Simulation: Rotation condition.

Subject � q C q Iterations
1 3.0 0.5 10
2 4.0 0.5 10
3 4.0 0.6 10
4 4.0 0.4 10

where all other parameters were held fixed. The optical flow estimated after the three in-

ducing images is shown in Figure 7.7. T
This flow is scaled by � before warping the estimates and processing the test image. Af-

ter 10 iterations of the incremental algorithm are performed with the test image, the “same-

ness” measure is computed using the current flow estimate. The average response acrossV
For simplicity, the version of the IGNC algorithm used did not detect motion boundaries and reset the

control parameter in disoccluded regions. For this region, the flow estimates at the boundaries of the object
are recovered less accurately than they might have been.
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Figure 7.9: Optic Flow Simulation: Incoherent motion condition.

subjects and ISI’s is shown in Figure 7.8. The graph shows a systematic distortion in the

direction of the rotation that is consistent with the psychophysical data.

For the rotation experiment, we observe the maximum shift at approximately 2 degrees

past the actual final position. Relative to the amount of rotation in the sequence, this is

roughly twice the shift observed by Kelly and Freyd [1987]. The amount of shift, however,

can be controlled by changing the settings of �!x and C q . We have not attempted to choose

parameter settings to match our results to the psychophysical data, but merely illustrate how

temporal continuity can produce the same kinds of systematic distortions.

7.2.3 Incoherent Motion Condition

Freyd and Finke [1985] demonstrated that the representational momentum effect depends

on coherent motion. They performed an experiment in which the first and second induc-



7.2. PSYCHOPHYSICAL IMPLICATIONS 197

Test PatternMemory Pattern

4

Inducing Patterns

321

Figure 7.10: Translation Experiment, [Finke and Freyd, 1985]

Figure 7.11: Translation Experiment, test images.

ing images were switched. With such a sequence, no significant momentum effect was ob-

served.

We performed an analogous experiment with our “subjects” and the results are plotted

in Figure 7.9. The forward distortion has vanished, but there is a slight distortion in the

backwards direction. Since the first two images were reversed, the motion is initially in the

backwards direction. Given the subjects’ weighting of the temporal continuity constraint

above, there was still a slight shift in the direction of this initial motion, however, the overall

effect was markedly reduced both in the amount of shift and the magnitude of the response.

7.2.4 Translation Experiment

Finke and Freyd [1985] also performed a series of experiments using translating dots as seen

in Figure 7.10. We constructed an analogous experiment using the image sequence in Figure
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Figure 7.12: Translation Experiment, optical flow.

7.11 in which the foreground and background textures were created in the same way as in

the rotation experiment. In our sequence of �|��ñ��¸�|��ñ images, the highest dot moved down

two pixels per frame, the dot below it translated to the right by two pixels per frame, and

the dot in the lower left moved up by two pixels per frame.

The experiment was carried out using the same methodology as the rotation experiment

with the following parameter settings for the three “subjects”:

Subject � q C q Iterations
5 4.0 0.25 5
6 4.0 0.4 10
7 4.0 0.4 5

For this experiment, fewer iterations of the minimization strategy were required to achieve

acceptable flow estimates due to the fact that the translational motion of the dots corresponds

to our model of optical flow. And, since the motion between frames was at most two pixels,

a two level pyramid was used so that motion at the coarse level would be no more than one

pixel. The optical flow estimate after the inducing frames is shown in Figure 7.12.

The test images contained dots that were offset from the final positions by +3, +2, +1,

0, -1, -2, -3 pixels in the direction of their original motion. The the average response across
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subjects and ISI’s, after five iterations of the minimization procedure, is shown in Figure

7.13. Once again we find a systematic distortion in the direction of motion that, in this case,

is less than a pixel. Note that this distortion is not the same as jumping to the next “logical”

position. If that were the case, a two pixel displacement in the positive direction would be

optimal.

7.2.5 Analysis

The IGNC algorithm was developed to meet our goals of incremental estimation: anytime

access, temporal refinement, computation reduction, and adaptation. While our goal was

to compute optical flow over time, our experiments indicate that the introduction of a tem-

poral continuity constraint can produce momentum effects very similar to those exhibited

by humans. In particular, we have observed similar shifts in the “remembered” position of

objects which depend on coherent motion. This shift is purely the result of local processes

in the image plane with no higher level knowledge about objects or their motion.

As Freyd and her collaborators suggest, temporal continuity is an important constraint.

As such, it would not be surprising to find the constraint exploited at multiple levels of vi-

sual processing. At cognitive levels, dynamic representations, with a temporal dimension,

may help explain effects such as mental rotation [Cooper, 1976]. Unlike mental rotation

however, the representational momentum effect is cognitively impenetrable [Freyd, 1987];

that is, it is not affected by beliefs, expectations, or intentions.

Our results suggest is that the explanation for the phenomenon of representational mo-

mentum may exist at early stages in the processing of motion, without appealing to cog-

nitive internalizations of physical momentum. That is not to say that the representational

momentum effect in humans is due to an optical flow-like computation, merely that, from a

computational viewpoint, it may be accounted for by sensory processes. Additionally, our

results underscore the importance of exploiting temporal continuity in early vision.



Chapter 8

Incremental Feature Extraction

The incremental minimization framework was developed to meet the demands of optical

flow estimation and, in the case of motion, there was a clear need, and advantage, to per-

forming the recovery over time. Motion estimation, however, is just one aspect of computer

vision. There are many other problems such as object recognition, segmentation, percep-

tual grouping, shape recovery, and stereo analysis. Most of the work on these problems has

focused on the analysis of a single image or multiple static views.

For real-time dynamic systems requiring visual scene analysis, especially for navigation

related applications, the view of the world is constantly changing. In such an environment

it is unlikely that the system has the luxury of processing each image to recover a complete

description of the scene. To do so would further imply that the system effectively has no

visual memory, but rather “sees” each image as a new scene which must be interpreted. In

addition to being computationally infeasible, such an approach sacrifices robustness that can

be gained by integrating information over time.

In general, it would be desirable to recover scene descriptions over time in the same way

that we recover motion over time. In this chapter, we show that our approach to incremental

motion analysis can be generalized to other vision problems as well. The key idea is to

formulate the problem in terms of objective function minimization, with suitable spatial and

temporal constraints [Black, 1992a].

201
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A similar idea is described by Heel for surface reconstruction using the Kalman filter

framework, which he calls “Dynamic Motion Vision” [Heel, 1989]. Singh [1992b] also uses

such a framework to estimate both motion and image intensity over an image sequence in

order to enhance noisy intensity image sequences. Such an approach has medical applica-

tions for problems involving low-dosage X-ray sequences in which the cumulative amount

of radiation the patient receives over the sequence must be kept low. These low dosages,

however, result in a low signal to noise ratio. Singh has shown that, by incrementally es-

timating intensity along with motion, that the quality of the images can be enhanced over

time.

In this chapter, we show that our framework allows static objective function minimiza-

tion problems to converted to incremental estimation problems. To illustrate the generality

of our approach we consider the problem of recovering image features that are both physi-

cally significant and perceptually salient. A more complete description scene description

might include a representation of the surfaces present, surface boundaries, surface proper-

ties relevant to the task, and relationships between surfaces, but we limit the scope of our

present goals in order to show that the applicability of the incremental estimation framework

is not limited to motion estimation.

The goal of this process is to simultaneously extract and track image features over time.

The features we consider are intensity discontinuities; that is, edges. Simultaneous extrac-

tion and tracking allows the incremental improvement and refinement of the features. Ad-

ditionally, by combining motion and intensity information, discontinuities can be classified

as surface markings or actual surface boundaries.

For illustration, we formulate discontinuity extraction via a simple model of image re-

gions using local constraints on intensity and motion. These regions correspond to surface

patches of constant intensity. The constraints model patch boundaries as discontinuities in

intensity, motion, or both intensity and motion. The recovery problem is then modeled as a
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Markov random field in which patch boundaries are represented as line processes. Feature

extraction is performed dynamically over a sequence of images by exploiting the techniques

of incremental stochastic minimization (ISM) described in Chapter 6.

8.1 Previous Work

Previous approaches to feature extraction, using energy minimization formulations, have

focused on either static boundary detection, image segmentation, or motion segmentation.

Static approaches that attempt to recover surface boundaries from the 2D properties of a

single image are usually not sufficient for a structural description of the scene. These tech-

niques include the recovery of perceptually significant image properties; for example seg-

mentation based on intensity [Blake and Zisserman, 1987; Chou and Brown, 1990] or tex-

ture [Derin and Elliott, 1987; Geman et al., 1990], location of intensity discontinuities, and

perceptual grouping of regions or edges. While there are serious limitations to using these

techniques alone to recover structure, their results can be used heuristically as cues to pos-

sible surface boundaries due the fact that different surfaces often have different material

properties and, hence, may have different texture or intensity.

Structural information about image features can be gained by analyzing their behavior

over time. Attempts to deal with image features in a dynamic environment have focused

on the tracking of features over time [Navab et al., 1990; Viéville and Faugeras, 1990]. A

notable exception to the tracking approach detects moving intensity edges over time by ob-

serving the space-time behavior of the edge moving across a fixed detector array [Kahn,

1988; Kahn, 1985].

Motion segmentation, on the other hand, attempts to segment the scene into structurally

significant regions using image motion. Early approaches focused on the segmentation and

analysis of the computed flow field [Thompson et al., 1985]. Other approaches have at-

tempted to incorporate discontinuities into the flow field computation [Black and Anan-
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dan, 1991b; Murray and Buxton, 1987; Tian and Shah, 1992], thus computing flow and

segmenting simultaneously. There has been recent emphasis on segmenting and tracking

image regions using motion, but without computing the flow field [Bouthemy and Lalande,

1990; Bouthemy and Rivero, 1987; François and Bouthemy, 1991; Peleg and Rom, 1990].

While these approaches are promising since they provide structural information, they typi-

cally provide only a coarse segmentation of the scene.

In attempt to improve motion segmentation a number of researchers have combined in-

tensity and motion information. Thompson [1980] describes a region merging technique

that uses similarity constraints on brightness and motion for segmentation. Heitz and Bouthemy

[1990] combine gradient based and edge based motion estimation and realize improved mo-

tion estimates and the localization of motion discontinuities. In the context of stereo recon-

struction, Luo and Maı̂tre [1990] use a segmented intensity image to correct and improve

disparity estimates.

8.2 Joint Modeling of Intensity and Motion with Disconti-
nuities

To model our assumptions about the intensity structure and motion in the scene we adopt a

Markov random field approach [Geman and Geman, 1984] in which we formalize our prior

model in terms of constraints, defined as energy functions over local neighborhoods our grid

of sites
Ç

. As we did in Chapter 2, we add a dual lattice,
� �����ba#� , of line variables between

all sites � and their neighbors a�çëä�æ .
This line process defines the boundaries of the image patches. If

� �����ba#��% � then the

sites � and a are said to belong to the same image patch. In the case where
� � ���ba#�D%(� , the

neighboring sites are disconnected and hence a discontinuity exists.

Associated with each site � is a random vector 2 �£a#�B% ' u �#ßb� � 0 that represents the hori-

zontal and vertical image motion u %·� ).�,+$� , the intensity ß , and the discontinuity estimates
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�
at time a . A discrete state space â<æn�£a#� defines the possible values that the random vector

can take on at time a .
To model surface patches we formulate three energy terms,

���
,
���

, and
���

that ex-

press our prior beliefs about the motion field, the intensity structure, and the organization of

discontinuities respectively. The energy terms are combined into an objective function that

is to be minimized:� � u � u » �,ßb�#ß » � � � � » ��% ��� � u � u » � � �!e ��� ��ßb�#ß » � � �!e ��� � � � � » �#� (8.1)

The terms u » , ß » , and
� » are predicted values obtained by the incremental minimization

process.

We convert the energy function,
�

, into a probability measure ô by exploiting the equiv-

alence between Gibbs distributions and MRF’s:

ô��£2 �£a#�b�>%·7 » I ¹ »�½ � : � xr�¬� � q � x¬� � (8.2)

where 7 is the normalizing constant:7s% �: � x¬����ú � x¬� ¹ »ö½ � : � x¬�¬� � q � x¬� � (8.3)

Minimizing the objective function is equivalent to finding the maximum of ô .

8.2.1 The Intensity Model

We adopt a piecewise constant, or weak membrane, model of intensity [Blake and Zisser-

man, 1987]. This first order approximation to image intensity can easily be extended to

higher order approximations [Blake and Zisserman, 1987; Geman and Reynolds, 1992] or

to more complex texture models [Geman et al., 1990]. The current formulation differs from

previous formulations in that we add a temporal continuity term to express the expected

change in the image over time.
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The prior model of image intensity is formulated as the energy term:��� �
`d�#ßb�#ß » � � �#����%ÓÁ ��� ��� �
`d�#ßb�#���EeÂÁ q � 9 � � ßb�#ß » �#���!eÂÁ Ð�� Ç � ��ß±� � �,�ö�,� (8.4)

where the Á Ý are constant weights that control the relative importance of the constraints, and

where the data conservation term is defined as:��� �
`d�#ßb�,�ö�§% �
`d�����!�jß±�����b� S � (8.5)

This expresses the constraint that the current estimate ß should be close to the current inten-

sity image ` .

The temporal continuity term expresses the notion that the current estimate should not

differ from the predicted value ß » :9 � � ßb�#ß » �#��� % � ßb�����°�åß » �����b� S � (8.6)

Finally, the spatial coherence term expresses an expectation of piecewise constant image

patches with discontinuities:Ç � � ßb� � �#���§% �Û � � � � � ���,×.�#� ßb�����©�jßb��×!�b� S � (8.7)

When no discontinuity is present between sites � and × (
� � ���#×.��% � ) we expect the differ-

ences in neighboring intensity values to be similar. If, however, a discontinuity is present

(
� �����#×!��%s� ) the difference between neighbors does not contribute to the energy term.

8.2.2 The Boundary Model

We want to constrain the use of discontinuities based on our expectations of how they occur

in images. For example, we expect discontinuities to be rare and particular combinations to

be more likely than others. Hence, discontinuities that do not conform to expectations are

penalized. The boundary model can then be expressed as the sum of a temporal continuity
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Figure 8.1: Examples of local surface patch discontinuities. Configuration ò � (no disconti-
nuities) is preferred to the situation, ò I , where a discontinuity is introduced. A corner, ò S , is
deemed less likely than a single discontinuity. Cliques ò T , ò W , and ò \ , are highly penalized
as they do not admit plausible physical interpretations.

term and a penalty term defined as the sum of clique potentials ò ñ over a set of cliques ô :� � � � � � » �#���>%öÁ q � �Û � ��� � � � ���,×.�!� � » � ���#×.�±� S eÂÁ � � �ñ ���Bò ñ � � �,� (8.8)

where Á q � and Á � � are constant weights.

One component of the penalty term expresses our expectation about the local config-

uration of discontinuities about a site. Figure 8.1 shows the possible local configurations

up to rotation. We also express expectations about the local organization of boundaries;

for example we express notions like “good continuation” and “closure” that correspond to

assumptions about surface boundaries (Figure 8.2). The values for these clique potentials
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Figure 8.2: Examples of local organization of discontinuities based on continuity with
neighboring patches. The lack of continuation in ò ] is penalized, while good continuation,ò 6 is rewarded. Corners, ò ! , and steps, ò " , are also rewarded.

were determined experimentally and are similar to those of previous approaches [Chou and

Brown, 1990; Murray and Buxton, 1987].

8.2.3 The Motion Model

The motion model we adopt is similar to that already considered in the ISM framework in

that we express our prior assumptions about the motion in terms of three constraints: data

consistency, temporal continuity, and spatial coherence. This prior motion model is formu-

lated as an objective function:� � ��` Û �` Û Õ I � u � u »°� � �#����%Á �$# �%� ��` Û �` Û Õ I � u �#���!eÂÁ q # 9 � � u � u » �#���!e²Á Ð&# Ç � � u � � �#���#� (8.9)

where the Á Ý are constant weights, and where the spatial term is analogous to that of the

intensity model: Ç � � u � � �#���§% �x���� � � �����ba#��� u � �ö�°� u �ya{�y� S � (8.10)
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We could formulate separate line processes for intensity and motion discontinuities, but pre-

fer to have a single line process that represents a discontinuity either due to intensity or mo-

tion. If a motion discontinuity is present, this prevents smoothing the intensity values across

the surface boundary. Intensity discontinuities can be viewed as providing evidence for a

possible surface boundary and hence we do not want to smooth the flow field across them.

For the temporal term we assume constant acceleration, and formulate the term without

discontinuities as: 9 � � u � u » �#��� % � u �����°� u » ������� S � (8.11)

We have not incorporated temporal discontinuities into the model for simplicity. They could

be added either explicitly by introducing a temporal outlier process or implicitly by using a

robust estimator.

For the data conservation constraint we adopt the robust correlation approach from Chap-

ter 6: �%� � u �6% �� u�� v±� ��� � � ��`�� �!�#"-�±a{�;�j`�� �fej)!�#"�ej+E�ba!eà���#� 2 � �,� (8.12)

with the following robust estimator:� � � �.� 2 � �>% ����De ¯ uÞ ¾ ° S � (8.13)

where
2 �

is a constant scale factor (
2 � %s�o�Ë� in our experiments). Sub-pixel motions are

computed as before.

8.3 The Computational Problem

We have seen how to use the Gibbs sampler to minimize non-convex objective functions like

the one presented here. As mentioned earlier, each site contains a random vector 2 �£a#�è%' u �#ßb� � 0 that represents the motion, intensity, and discontinuity estimates at time a . The dis-

continuity component of this state space is taken to be binary, so that
� ç ÙÚ�o���kã . While
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Figure 8.3: Incremental feature extraction within the ISM framework.

this works well in practice, it does not allow sub-pixel localization of the discontinuities. It

may be possible to represent and recover sub-pixel discontinuity estimates by allowing real

valued connections between sites [Ballard, 1987; Szeliski, 1988].

The intensity component ß can take on any intensity value in the range '*�/�,������0 . For ef-

ficiency, we can restrict ß to take on only integer values in that range. This, however, still

results in a large state space. We make the further approximation that the value of ß at site� is taken from the union of intervals of intensity values about ßb����� , the neighbors ßb�£a#� of � ,

and the current data value ` Û ����� . Small intervals result in a smaller state space without any

apparent degradation in performance. I
The motion component u %ð� )!�#+$� is defined over a continuous range of displacements) and + and hence we use the adaptive state space presented in Chapter 6 for the continuous

annealing problem.

Incremental Minimization

To minimize our new objective function over time we pose the problem as one of incremen-

tal minimization as shown in Figure 8.3. The minimization stage involves updating each

of the current motion, intensity, and line-process estimates while holding the neighboringJ
A similar approach is taken by Geman and Reynolds [1992] in the context of image restoration.
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estimates fixed. After a new estimate, ' u �#ßb� � 0 , has been computed, the properties of the as-

sociated surface are then propagated to the new site where the patch has moved. Instead

of simply warping the properties associated with the flow estimates we now also warp the

intensity and discontinuity information to get new estimated values ' u » �#ß » � � » 0 . This for-

wards warping is performed using the same prediction scheme as the ISM approach. S
Motion Discontinuities

Given a current estimate, ' u �,ßb� � 0 , the line-process values
�

can be analyzed to determine

whether they are motion boundaries or intensity boundaries. We set a threshold, ¶ � , that

determines the maximum allowable disparity in local motion estimates. A pixel is classified

as a motion boundary if a discontinuity is present and the disparity in the motion estimates

between neighbors is greater than ¶ � :

¶ � õ ý �$Àx ��� � � � � ���ba#�$� ý � ÀE��3)Eæ°�å)�x#�Ë��� +�æ°�å+kx#�1�b�,�
All other discontinuities are classified as surface markings. The motion discontinuities are

further classified as occluding or disoccluding using the technique that measures the total

flow into a site.

8.4 Experimental Results

A number of experiments have been performed using real image sequences. For these ex-

periments, the parameters of the model were determined empirically and then used for all

experiments. The intensity model parameters were: Á ��� %ÓÁ q � %ð�k�|û��ÚS and Á Ð�� %º�k�Ý���ÚS .

For the boundary model, we set the weights as follows: Á q � %��/�Ë� and Á � � %º����� . Finally,

for the motion model, we have: Á � # %��/��� , Á q # %s�/�¬� , and Á Ð # %ð�Ú�Ë� , with a �8�C� corre-

lation window. An initial temperature of 9�� ���>%s�/��� was chosen with a annealing schedule

of 9��ya.e��k�>%s9è�£a#�!�j�o�Ë�Ú����� .U
This warping may result in non-integer estimates for ')( and non-binary values for *+( .
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a b

Figure 8.4: Can and Canny: a) First image in the soda can sequence. b) Edges in the image
extracted with the Canny edge operator.

8.4.1 The Pepsi Sequence

The first experiment uses the Pepsi-can image sequence consisting of ten
� û÷� � û square

images. As an example of traditional, intensity-based, feature extraction techniques, the

Canny edge operator was applied to the image. T The edges are shown in Figure 8.4b. For

comparison, Figure 8.5a shows intensity-based feature extraction using a piecewise con-

stant intensity model with no motion, or temporal, information. The figure shows the esti-

mate for a single static image after 25 iterations of the Gibbs sampler. As with the Canny

edges, the results correspond to intensity markings.

Figure 8.5b shows the results for the same image when a joint intensity and motion

model is used. The results are from a two image sequence after 25 iterations. Compare

the boundaries corresponding to the right and left edges of the can. In Figure 8.5a the simi-

larity of intensity between the can and the background results in smoothing across the objectV
The quality of the features is not very good, but the image is only ,.-+*�,.- pixels in size.
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a b

c

Figure 8.5: Feature extraction. a) Intensity-based feature extraction without motion. b)
Features extracted using a joint intensity and motion model. c) Structural features in the
scene.
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boundary. When motion information is added in Figure 8.5b the object boundary is detected

and smoothing does not occur across it.

Not only does the joint intensity and motion model improve the extraction process, it

provides additional information about the scene. In particular, it allows us to classify dis-

continuities as structural properties of the scene or purely surface markings. Figure 8.5c

shows the motion boundary detected with the joint model.

The power of the approach, however, does not lie in the ability to recover features using

one or two frames, but rather in the ability to perform the recovery incrementally over an

image sequence. Figure 8.6 shows the results of processing the full ten image sequence. For

this experiment, no sub-pixel motion estimation was used and five iterations of the annealing

algorithm were performed between frames.

Figure 8.6a shows the last image in the sequence. Figure 8.6b shows the reconstructed

intensity image that reflects the piecewise constant intensity estimates in the image patches.

The horizontal and vertical motion is shown in Figures 8.6c and d respectively. Dark areas

indicate leftward or upward motion and similarly, bright areas indicate motion to the right

and down. Notice that motion estimates are available in homogeneous areas where mo-

tion estimates are typically poor. Also, the modeling of discontinuities allows sharp motion

boundaries and prevents over-smoothing.

Figure 8.7a shows the values of
� �����ba#� that were classified as motion boundaries, while

Figure 8.7b shows the classification of these motion boundaries as occluding (bright areas)

or disoccluding (dark areas).

Figure 8.8 illustrates the evolution of the features over the ten image sequence. The

estimates start out noisy and are refined over time. Only five iterations of the annealing al-

gorithm were used between each pair of frames. By carrying out the minimization over the

sequence, the amount of computation between frames is kept constant without sacrificing

the quality of the recovered features. The processing time for each frame was approximately
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a b

c d

Figure 8.6: Incremental Feature Extraction. Results for a ten image sequence. a) Last im-
age in the sequence. b) Reconstructed intensity image. c) Horizontal component of image
motion. d) Vertical component of image motion.
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a b

Figure 8.7: Incremental Feature Extraction. Results for a ten image sequence. a) Motion
boundaries. b) Occlusion and disocclusion boundaries.

30 seconds with approximately û�ûo� of the computation performed on the Connection Ma-

chine.

The knowledge of motion boundaries along with the first-order flow estimates may pro-

vide enough information for many purposive vision tasks. One could also compute other

properties of the image patches including the depth, orientation, and curvature of the patches.

If such a description were available, the scene could be reconstructed from the patch data.

We use the disparity estimates to construct a pseudo depth map that is then used to illustrate

such a reconstruction. In Figure 8.9a the disparity data and patch boundaries are used to re-

construct a piecewise smooth version of the � IS dimensional scene. W Motion discontinuities

correspond to depth discontinuities, while intensity discontinuities appear as surface mark-

ings. In Figure 8.9b the intensity estimates were used to construct a realistic rendering of

the original scene.X
For this experiment, sub-pixel motion estimates were not computed. For this reason the surface of the

can appears flat when it is, in fact, curved.
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Figure 8.8: Incremental Feature Extraction. The images show the evolution (left to right,
top to bottom) of features over a ten image sequence.
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a b

Figure 8.9: Reconstructed views of the scene: a) intensity discontinuities, b) estimated in-
tensity.

8.4.2 The Coke Sequence

The second image sequence contains 38 images of size ���Úñ÷�t����ñ pixels. The camera is

translating along the camera axis with the focus of expansion centered on the Coke can.

Figures 8.10a and b show the first and last images in the sequence. Figure 8.10c shows

the image features recovered at the end of the image sequence. Unlike standard boundary

detection, these features have been tracked over the length of the sequence. Figure 8.10d

shows only features that are classified as motion discontinuities and are, hence, likely to

correspond to surface boundaries. The pencils and metal bracket are correctly interpreted
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a b

c d

Figure 8.10: The Coke Sequence. Figures a and b are the first and last images in the se-
quence respectively. Figure c shows the image features recovered at the end of the sequence.
Figure d shows only those features that are likely to have a physical interpretation.
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as physically significant while the sweater is interpreted as purely surface marking.

The wire strung between the pencils has not been detected at all. The �|��ñ4�å�|��ñ pixel

image sequence used here is a smoothed and subsampled version of the original images due

to the memory limitations of the Connection Machine used to run the experiments. At the

reduced resolution, the wire is not a salient perceptual feature.

Notice that the Coke-can boundary is incorrectly interpreted as surface marking. This

is a result of small interframe displacements and the location of the can at the focus of ex-

pansion; the motion of the can boundary is not significant enough to classify it as structural

with the current scheme. This suggests the need for a different classification scheme that

takes into account the behavior of features over a longer time span.

Figure 8.11 shows the evolution of the image features over time. Five iterations of the

annealing algorithm were used between frames with a processing time of approximately one

minute per frame; approximately �Úñ�� of the computation was performed on the Connection

Machine. The estimates improve as the features are tracked over the image sequence. Due

to the relatively large homogeneous regions in the image, the dense motion estimates are

poor. Accurate dense flow however is not required for incremental feature extraction. All

that is required is that the motion estimates at the discontinuities be accurate.

8.5 Issues and Future Work

There are a number of issues to be addressed regarding the approach described. First, the

current implementation employs only simple first order models of intensity and motion.

While such a model may produce useful qualitative results in many situations, it is clearly

not sufficient. In particular, to cope with textured surfaces more complicated image forma-

tion models will be required. There are a number of texture models formulated in terms

of Markov random fields [Derin and Elliott, 1987; Geman et al., 1990]. Our incremental

minimization approach could readily be applied to these MRF texture models.
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Figure 8.11: Incremental Feature Extraction. The sequence shows the evolution (left to
right, top to bottom) of features at every third image in the 38 image sequence.
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A second issue that must be addressed is one shared by many minimization approaches;

that is the parameter estimation problem. The construction of an objective function with

weights controlling the importance of the various terms is often based on intuition or em-

pirical studies. The problem becomes more pronounced as the complexity of the model in-

creases. In the model proposed here there are eight weights, ten clique energies, one scaling

factor, an initial temperature, and a cooling rate that must be determined. Experiments with

the current model indicate that it is relatively insensitive to changes in the parameters. The

general problem, however, remains open.

Finally, the local optimization approach to recovering surface patches is only the first

step in recovering the structure of the scene. If our goal is to recover environmental struc-

ture, or the layout of a scene [Gibson, 1979], then we must recover the surfaces present,

their properties, and their relationships to each other. For this, more powerful surface mod-

els will be required; for example 3D parameterized surface models [Hung et al., 1991; Hung

et al., 1988] or oriented particles [Szeliski and Tonnesen, 1991]. Non-local properties of

the patches will need to be computed and additional perceptual organization processes will

likely be needed to group patches that are consistent with the surface models.

The surface patch segmentation can be viewed as a coarse surface approximation. Given

patches, we might formulate higher order models of surface properties; for example, sec-

ond order smoothness of motion. Additionally, we might compute the depth, orientation,

and curvature within each patch. These, and other, properties of patches might be used to

organize them into surfaces.

Once surfaces have been extracted from the scene and their boundaries analyzed, in-

ferences may be made about the relationships between the surfaces. In particular the rela-

tive depth, occlusion, or attachment relationships of surfaces may be determined. This in

conjunction with the recovery of persistent properties (such as material, texture, shape, and

reflectance) would constitute the layout of the scene.
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8.6 Summary

In this chapter we have demonstrated the usefulness of the incremental minimization frame-

work by applying it to the problem of feature extraction. We have presented an incremen-

tal approach for extracting stable perceptual features over time. The approach formulates

a model of image regions in terms of constraints on intensity and motion while account-

ing for discontinuities. The incremental stochastic minimization scheme is used to recover

boundaries over a sequence of images.

The approach has advantages over traditional feature extraction and motion estimation

techniques. In particular, it is incremental and dynamic. This allows feature extraction and

motion estimation to be performed over time, while reducing the amount of computation

between frames and increasing veracity.

Additionally, the approach provides information about the structural properties of the

scene. While intensity based segmentation alone provides information about the spatial

structure of the image, motion provides information about object boundaries. Motion seg-

mentation alone, however, provides fairly coarse information. Combining the two types of

information provides a richer description of the scene.



224 CHAPTER 8. INCREMENTAL FEATURE EXTRACTION



Chapter 9

Conclusion

There have been two main themes running through this thesis. The first is the problem of

robustness: “How can we remain insensitive to violations of our assumptions, particularly

at motion discontinuities?” And the second is the issue of incremental processing: “How

can we exploit and integrate information over time to improve the quality of optical flow

estimates and reduce the computational overhead associated with computing them?”

These themes have led us to explore the use of robust statistical techniques and to de-

velop a new framework for incremental estimation. This chapter will summarize the main

contributions of the thesis and examine some open questions and future directions.

9.1 Contributions

9.1.1 Robust Estimation

1. We pointed out how motion discontinuities result in violations of the data coherence,

spatial conservation, and temporal continuity assumptions and have shown how ro-

bust estimation techniques can be used to make the recovery of optical flow relatively

insensitive to these violations.

2. A robust estimation framework for optical flow was developed. The approach pro-

vides a direct way to improve the performance of standard least-squares estimation.
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3. The framework reduced the problem of smoothing across motion boundaries.

4. By detecting outliers, the location of motion discontinuities and violations of the data

conservation constraint were recovered. These outliers provide useful information

and may be used in further processing.

5. We introduced the notion of an outlier process as a generalization of the traditional

line process and showed how the outlier-process formulation of the optical flow prob-

lem can be converted into an equivalent robust estimation problem. For certain robust

estimators, we showed how the robust estimation problem can be expressed in terms

of outlier processes.

6. The robust estimation framework was used to reformulate three common problems in

optical flow. First, robust estimation was applied to area regression approaches, mak-

ing them less sensitive to multiple motions. Next, peak detection in a correlation sur-

face was enhanced by using the robust formulation. Finally, a robust gradient-based

algorithm was developed for estimating dense flow fields.

7. Blake and Zisserman’s Graduated Non-Convexity algorithm was generalized to effi-

ciently minimize our non-convex robust estimation problem. A hierarchical version

was also developed to estimate large motions.

8. An important aspect of our framework is that all the constraints are handled uniformly.

This leads to the robust formulation of the data conservation term which results in

improved flow estimates in the presence of noise.

9.1.2 Incremental Estimation

1. We introduced an explicit temporal continuity constraint, which embodies the assump-

tion of constant image-plane acceleration.
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2. An incremental estimation framework for minimizing non-convex objective functions

over time was developed. The approach uses the constraint of temporal continuity to

compensate for the effects image motion on the objective function. Motion estimates

are always available and are refined over time. The approach is adaptive and amor-

tizes the cost of minimization over the length of an image sequence.

3. To recover large motions over time, two hierarchical strategies were developed. The

flow-through strategy can be viewed as a pyramid of spatiotemporally tuned motion

detectors in which motion is combined across levels without refinement. An efficient

coarse-to-fine approach to incremental estimation was also developed in which coarse

estimates are propagated to the finer levels only when they disagree with the refined

estimates.

4. The relationship between the incremental minimization framework and Kalman fil-

tering was explored.

5. An incremental stochastic minimization algorithm was developed and its performance

was illustrated on real and synthetic image sequences. The correlation-based approach

is formulated as a Markov random field and the minimization is performed using a

Gibbs sampler which has been extended to adaptively recover sub-pixel motion esti-

mates.

6. An incremental version of the Graduated Non-Convexity algorithm was also imple-

mented.

7. The algorithm was used to illustrate the effect of the temporal continuity constraint

and to show how the incremental flow algorithm produces results similar to those ob-

served in psychophysical studies of representational momentum.

8. The generality of our approach to incremental minimization was illustrated by for-
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mulating feature extraction as objective function minimization and by extending the

recovery over time. Features are extracted and tracked over the image sequence and

are classified as structural properties or surface markings.

9.2 Open Questions

The work presented in this thesis advances the state of the art in optical flow estimation by

providing new tools for approaching the problems of optical flow. This thesis has only be-

gun to explore the issues of robustness and incremental estimation, and our endevour opens

a number of avenues for further exploration.

Choice of Estimator

Although we have identified some criteria for choosing one robust estimator over another,

the choice generally remains heuristic and specialized to the particular problem at hand. In

some situations, the choice is dictated by external factors like the minimization framework

(for example, the mean field function). In still other situations we may have a model for the

kinds of outliers that can be expected and, when statistical models of outliers are available,

they should be used.

Other Robust Techniques

The comparison of our formulation of robust estimation to other formulations of the prob-

lem remains an open issue. For instance, the least-median-of-squares approach has recently

gained popularity in computer vision. The relative advantages of these other approaches

have to be weighed against the simplicity of the robust estimation approach. An interesting

approach, which we have not pursued, is the iteratively reweighted least-squares formula-

tion. Such an approach might fit naturally within the recursive estimation framework.
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Parameter Estimation

The estimation of model parameters is an ever-present problem which remains to be ad-

dressed in a systematic fashion. In some cases, we can automatically estimate parameters

from the data. Where this is not possible, they have been determined empirically.

An interesting possibility of using “training” to address this problem was introduced in

Chapter 7. There we had numerous “subjects”, each of which had a slightly different pa-

rameter setting. By varying the settings it may be possible to match the performance of the

algorithm to the performance of humans in a related task. It may also be possible to use

neural-network algorithms to “learn” the appropriate parameter settings. The general prob-

lem, however, is shared by most minimization approaches and remains open.

Higher-Order Constraints

Our experiments have focused on first-order data and spatial constraints. There are a number

of unanswered questions about how to best employ higher-order constraints, particularly in

the context of incremental estimation. In the same way that the coarse-to-fine approach is

inappropriate for incremental processing so is the most common approach to dealing with

higher-level models in which a coarse, first-order, estimate is found first and then refined by

applying higher-order models (see for example, [Geman and Reynolds, 1992]). In the case

of incremental processing we want to refine our models over time and adaptively choose the

appropriate constraints at a given instant in time.

With higher-order models, the number of parameters that need to be estimated increases.

Unfortunately, the breakdown point of a robust estimator decreases as the number of model

parameters increases [Li, 1985]. It is unclear what impact this fact will have in practice.
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Translucency and Reflections

The robust formulation of the data conservation term deals with multiple motions which oc-

cur at surface boundaries, be they extended or fragmented. The extension to handle multiple

motions resulting from translucency or reflection remains open.

Real-Time Flow

We have addressed the issue of efficiency in the context of computation reduction between

frames but have not attempted to deal with the issues of real-time optical flow estimation.

Hardware has been built which implements smoothness constraints with spatial discontinu-

ities using functions similar to our robust estimators [Harris et al., 1990; Hutchinson et al.,

1988; Koch et al., 1988]. The implementation of robust data and temporal constraints in

hardware remains an open issue.

Dynamic Environments

One of our goals for an incremental algorithm is that it be dynamic; that is, it should adapt to

changes in the scene. The incremental minimization framework is adaptive in that patches

of the world are tracked over time and, when the temporal constraint is violated at motion

boundaries, the algorithm adapts by reseting the flow and control parameters.

This simple approach to controlling the algorithm may be improved. In general, the al-

gorithm can be made more adaptive by relaxing the strict “annealing” schedule applied to

the control parameters. For example, consider the ISM approach. In a loose sense, the tem-

perature at each site reflects the uncertainty in the flow estimate at that site. Our current ap-

proach uses the heuristic that portions of the scene that are changing quickly, or have been

recently disoccluded, have a higher temperature, while those portions of the scene that have

been stably tracked over many frames have a lower temperature.

This idea can be further extended. For instance, in highly textured areas of the image
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where the motion corresponds to our assumptions, a faster annealing schedule might be ap-

propriate. In other areas we may wish a slower schedule and, over time, if the motion does

not correspond well to the temporal predictions, we may want to increase the temperature

to reflect an increased uncertainty in the flow estimates.

Such an adaptive regime might be realized by using the specific heat of the system (see

Kirkpatrick et al. [1983] for details). The result would be a self-regulatory system that is

appropriate for dynamic applications.

We can define the local expected cost of the system at a temperature 9 :

/ � ��9��	0>% �æ�� ��� � ����� ô������#9��#� (9.1)

and the expected square cost as:

/ � S � 9³�10�% �æ�� � � � S � ����ô�� ���,9³�,� (9.2)

The variance is then defined as the difference between the expected square cost and the

square of the expected cost:

C S % / � S ��9��	0°� / � � 9³�10 S � (9.3)

The specific heat of the system, òH� 9³� is given by [Huang et al., 1986]:òH� 9³�c% úú 9 / � ��9��	0% �9 S C S ��9��% �9 S / � S � 9³�10°� / � ��9��	0 S � (9.4)

When òH� 9³� is large the system is at a critical point or phase transition [Laarhoven and

Aarts, 1988]. In analogy to physical systems, a maximum in the specific heat of a fluid

indicates the transition to a solid. In the case of simulated annealing, it indicates that the

system is becoming frozen in a minimum and in order to avoid becoming trapped in a local

minimum the system should be cooled more slowly at this point.
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A number of authors have developed adaptive cooling schemes based on this notion

[Huang et al., 1986; Kirkpatrick et al., 1983; Laarhoven and Aarts, 1988]. While these an-

nealing schemes, based on specific heat, may be more efficient, they are still monotonic.

Such schemes are not adaptive to unexpected scene changes; this is critical for dynamic es-

timation.

Confidence Measures

We have not specifically addressed the issue of assigning confidence measures to our flow

vectors. In situations where the estimates are poor it may be useful to report the confidence

in the flow estimate so that the information can be appropriately weighed by processes that

rely on optical flow as input.

As mentioned above, the inverse temperature can be thought of as one measure of con-

fidence. More interestingly, consider the adaptive state space scheme developed for contin-

uous annealing. Given a flow estimate, we computed a covariance matrix, S, which repre-

sented the local shape of the error surface.

We can take the inverse of the minimum eigenvalue of S as a measure of confidence.

Figure 9.1 shows this confidence measure for the SRI tree sequence at frame 42. Areas of

low confidence appear as dark regions and correspond to the occluding and disoccluding

tree branches and the lower left portion of the image which contains new image regions due

to the rightward motion of the ground plane.

While this measure need further study, it shows promise. The confidence measures of

Anandan [1989] only take into account the shape of the SSD surface. The approach here

takes into account all three constraints by computing the shape of the objective function at

the current estimate. This is more similar to the approach of Singh [1992a] who uses the

covariance matrix of the Kalman filter to compute the confidence.
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Figure 9.1: SRI Tree sequence, confidence measure.

Minimization Schemes

In this thesis we have explored two schemes for minimizing non-convex objective func-

tions; one stochastic and the other deterministic. The stochastic approach provides a good

way of exploring the energy landscape at a coarse scale without becoming trapped in local

minima. It is not, however, an efficient scheme for exploring local minima which may be

better explored with a gradient-based scheme.

The Graduated Non-Convexity algorithm overcomes this problem and allows the use

of gradient-based schemes like simultaneous over-relaxation. The approach requires that

a sequence of approximations to the objective function be defined. Blake and Zisserman

define such a sequence when the truncated quadratic estimator is used for the spatial term.

We defined a sequence of approximations using the Lorentzian estimator for the data and

spatial constraints. For other estimators, developing such a sequence may not be as easy.

When neither of the above approaches is appropriate, we may be able to combine the two
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to derive a new algorithm which performs global changes stochastically and local changes

deterministically. Such an approach is in the same spirit as work on large-step Markov

chains [Martin et al., 1991] for the Traveling Salesman Problem in which deterministic local

search techniques are combined with stochastic sampling methods.

Accuracy

One of the main uses for dense optical flow has been the recovery of 3D structure in the form

of a depth map. I Such a processes requires accurate flow measurements and the failure of

structure from motion algorithms to robustly recover depth has been used to argue that the

endevour is seriously flawed. Aloimonos, for example, has argued that flow errors of even�k� can destroy the computation of 3D structure and has further argued that “only multiple

frame algorithms have the potential of leading to robust structure from motion modules”

[Aloimonos, 1990, page 351].

The simple models presented here have been used to illustrate the issues surrounding,

and our solutions to, the problems of robustness and temporal integration in the estimation

of optical flow. For increased accuracy, more powerful models can readily be implemented

in our framework. With higher-order models, the use of confidence measures, and integra-

tion over multiple frames, there is the real possibility for useful measurements about 3D

structure.

9.3 Future Directions

In addition to the open questions above, there are a number of related problems that deserve

future attention.J
The phrase “structure from motion” is unfortunate for it typically refers only to the recovery of dense

depth from motion. Such a definition is too narrow, since motion discontinuities are also structural properties
of the scene. And, there are numerous other structural properties like surface orientation and curvature that
one might recover from motion information.
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Local Intensity Models

There has been recent interest in using regression-based techniques with affine and quadratic

flow models [Bergen et al., 1992]. These approaches are typically applied to a large area of

an image (or the entire image). Such an approach is valid in only a very restricted set of

situations. In particular, the approaches are not valid when multiple motions are present. In

such situations, a small number of parameters cannot describe the complex motion within

the region. Hence, applying these region-based techniques alone produces flow fields that

do not capture the structural information available at motion boundaries.

A local application of the affine model would be more appropriate. Unfortunately, small

image regions may not contain enough information to reliably estimate the increased num-

ber of parameters. This means that a smoothness constraint will be needed.

In the robust correlation-based formulation of the optical flow problem we assumed a

constant flow model which led to the use of correlation for the data term and to a first-order

smoothness constraint. If we assume affine flow then we are led to a locally affine regression

model for the data term and a second order smoothness constraint.

The problem of reliably recovering the affine parameters in a small region still remains.

One possible approach is to use the flow estimates in a neighborhood to estimate the affine

parameters. Recall the affine flow model:) % ¨ I e ¨ S ü��He ¨ T ü�"-�+ % ¨ W e ¨ \ ü��He ¨ \ ü�"-�
For a local motion estimate centered at a point we are only interested in estimating ¨ I and ¨ W
since ü�� and ü�" at that point are zero. To do this accurately, we could compute the estimates

for ¨ S , ¨ T , ¨ \ , and ¨ ] from the neighborhood flow, and use them in the data conservation

term. Holding the estimated parameters fixed, we can minimize at each site:ý¸þ¬ÿ2 æ�� 2 S � � �E��}Ï` q u � a �!et`#x��!eå�E� u � a ��u#uÚ�!ej�k�E� u � a ��u#v��!eå�E� u � a ��v�v��#�



236 CHAPTER 9. CONCLUSION

where the subscripts �E� , "/" , and �-" indicate second partial derivatives of the flow field. If

the local image flow provides a good estimate of the affine parameters, this approach should

result in more accurate, and reliable, sub-pixel motion estimates from the data conservation

term.

Early Discontinuity Detection

We mentioned briefly how multiple peaks in the correlation surface could be used to de-

tect motion boundaries before the estimation of a dense flow field. In [Black and Anandan,

1990a] we combined this idea with a spatial coherence constraint implemented by controlled

continuity splines (or snakes) [Kass et al., 1987]. We also described, but did not implement,

a temporal continuity constraint.

This approach should be reconsidered in the light of the incremental minimization and

Kalman filter frameworks. If discontinuities can be reliably detected at early stages of mo-

tion processing it could greatly simplify the later stages. For example, if a motion-based

segmentation of the scene is available, then area regression techniques could be applied to

each region independently. Least-squares techniques could then be used to rapidly, and re-

liably, recover the motion within these regions.

Recursive Estimation

We pointed out that there is a relationship between the incremental minimization framework

and the Kalman filter, and that the Kalman filter can be viewed in the context of energy

minimization. This points to a number of different research directions.

First, a quantitative comparison of the techniques needs to be performed. Such a com-

parison between Kalman filtering and incremental minimization should include their com-

putational costs, sensitivity to model violations, accuracy, convergence rates, and perfor-

mance at motion boundaries.

Second, the theoretical relationship between the approaches needs to be examined more
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fully. In particular, the iteratively reweighted least-squares formulation of the robust esti-

mation problem may provide a link between the approaches. In the case where the statistics

of the noise are unknown, the minimum variance estimation criterion of the Kalman filter

can be dropped in favor of a robust weighted least-squares criterion. The filter derived for

this robust objective function would likely be very similar to our incremental minimization

approach.

The differences in the implementation of the approaches will likely prove less significant

to performance than the temporal model employed. The exact form of this constraint is as

crucial as how it is used, and we have just begun to study the problem.

It is also important to understand the relationships between these two approaches and

other optimization schemes. There is a strong similarity between the two approaches we

have described and techniques in physically-based modeling [Metaxas and Terzopoulos,

1991]; for example, deformable spline models [Kass et al., 1987] attempt to minimize an

objective function composed of an external data term, an internal smoothness term, and a

temporal term related to physical models of momentum. As opposed to seeing these tech-

niques as isolated algorithms it is important to understand the relationships between them

and, hence, place them in the appropriate context.

Dynamic Vision

Vision is becoming more dynamic; the term dynamic has been used in many ways to de-

scribe current vision systems. For instance, Heel talks of “Dynamic Motion Vision” [Heel,

1989] to describe the incremental recovery of structure from motion. Burt et al. [1989] talk

of dynamic analysis techniques for focusing processing resources to achieve real-time mo-

tion estimation and tracking. The field of active vision is dedicated to dynamic vision tasks

and the interaction between “seeing” and “doing”.

These ideas are all important parts of a dynamic vision system. The goal of “dynamic

vision”, however, can be stated more generally:



238 CHAPTER 9. CONCLUSION

Recover information about the world from a non-stationary sequence of im-

ages.

The active vision paradigm specializes this general goal to problems in which the camera

is intentionally moved to gather more information. The purposive approach [Aloimonos,

1990] restricts the the goal further in recovering qualitative information that can be deter-

mined quickly and robustly.

The general statement of dynamic vision includes the problems of static computer vision

extended over time. The previous chapter took a small step in this direction by extending

feature extraction over an image sequence. More generally, the techniques for incremen-

tal motion estimation may provide the tools to begin extending other algorithms over time

as well. This should be a promising area for research as the demand for real-time image

processing on mobile platforms increases.

9.4 Discussion

Our two themes of robustness and temporal integration are driven by a more basic goal. That

is the desire to make the recovery of optical flow practical, fast, and accurate. This thesis

has developed new tools which we believe will bring us closer to this goal by addressing

two of the crucial issues in flow estimation. Are we on the threshold of a new era in motion

estimation? And if so, what does that future promise?

A number of recent advances, in addition to our own, hold out promise for the future of

motion estimation. In particular, advances in real-time flow computation are making appli-

cations of optical flow realizable. The possibilities for practical real-time motion estimation

have been improved by research on visual attention and selective processing. The result of

this trend is that applications of visual motion are being made in the contexts of robotics,

communications, and home entertainment. The approaches to robustness and temporal in-

tegration presented in this thesis are complementary with work on real-time estimation and
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will improve the reliability and accuracy of these systems.

The problem of optical flow, however, is not solved and there are still many important

issues to be addressed, some of which have been described above. The open questions and

future directions above are primarily concerned with early stages of visual processing, for

this is where the majority of the emphasis, and the success, has been.

There is a largely unexplored world that exists between our current models of motion and

the cognitive domain of representation, reasoning, and awareness. The current active vision

systems are analogous to humans who experience “blindsight” as the result of damage to

their visual cortex. These patients have no conscious sight, but they can locate and point to

visual targets and can even track moving objects with their eyes. To move beyond this point

will require the integration of motion, and vision in general, with the traditional domains

of artificial intelligence. Given our currently impoverished theories of knowledge, action,

and reasoning, researchers may still be working on the recovery and interpretation of visual

motion at the Greek calends.

In this gap between our human awareness of motion, and our current theories of optical

flow, lies the essential conundrum of motion estimation. Detecting and representing motion

is fundamental to human perception for it allows us to understand a changing world and

discern its structure. It is a sea of motion in which we are immersed, and we wish to provide

our robots with an awareness of this predictably protean world.
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A qualitative approach. In G. Sandini, editor, Proc. of Second European Conference
on Computer Vision, ECCV-92, volume 588 of LNCS-Series, pages 497–510. Springer-
Verlag, May 1992.

[Aloimonos and Rosenfeld, 1991] Y. Aloimonos and A. Rosenfeld. A response to “Igno-
rance, myopia, and naivete in computer vision systems” by R. C. Jain and T. O. Binford.
CVGIP: Image Understanding, 53(1):120–124, 1991.

[Aloimonos et al., 1987] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision.
In Proceedings of the First International Conference on Computer Vision, pages 35–54,
London, England, June 1987. IEEE Computer Society Press, Los Alamitos, California.

[Aloimonos, 1990] J. Aloimonos. Purposive and qualitative active vision. In
Proc. Int. Conf. on Pattern Recognition, volume 1, pages 346–360, Atlantic City, NJ,
June 1990.

[Anandan, 1984] P. Anandan. Computing dense displacement fields with confidence mea-
sures in scenes containing occlusion. SPIE Intelligent Robots and Computer Vision, 521,
1984.

241



242 BIBLIOGRAPHY

[Anandan, 1987a] P. Anandan. Measuring visual motion from image sequences. PhD the-
sis, University of Massachusetts, Amherst, 1987. COINS TR 87-21.

[Anandan, 1987b] P. Anandan. A unified perspective on computational techniques for the
measurement of visual motion. In Proc. First Int. Conf. on Computer Vision, ICCV-87,
pages 219–230, London, England, June 1987.

[Anandan, 1989] P. Anandan. A computational framework and an algorithm for the mea-
surement of visual motion. International Journal of Computer Vision, 2:283–310, 1989.

[Ancona, 1992] N. Ancona. A fast obstacle detection method based on optical flow. In
G. Sandini, editor, Proc. of Second European Conference on Computer Vision, ECCV-
92, volume 588 of LNCS-Series, pages 267–271. Springer-Verlag, May 1992.

[Baker and Braddick, 1982] C. L. Baker and O. J. Braddick. Does segregation of differ-
ently moving areas depend on relative or absolute displacement? Vision Research,
7:851–856, 1982.

[Baker, 1988] H. H. Baker. Surface reconstruction from image sequences. In Proc. Second
Int. Conf. on Computer Vision, pages 334–343, Tampa, Florida, December 1988.

[Baker, 1989] H. H. Baker. Building surfaces of evolution: The weaving wall. Interna-
tional Journal of Computer Vision, 3:51–71, 1989.

[Ballard, 1987] D. H. Ballard. Interpolation coding: A representation for numbers in neu-
ral models. Biol. Cybern., 57:389–402, 1987.

[Ballard, 1989] D. H. Ballard. Reference frames for animate vision. In Proc. IJCAI-89,
pages 1635–1641, Detroit, Michigan, 1989.

[Barnard, 1989] S. T. Barnard. Stochastic stereo matching over scale. International Jour-
nal of Computer Vision, 3:17–32, 1989.

[Barron, 1984] J. Barron. A survey of approaches for determining optic flow, environ-
mental layout and egomotion. Technical Report RBCV-TR-84-5, University of Toronto,
1984.

[Battiti et al., 1991] R. Battiti, E. Amaldi, and C. Koch. Computing optical flow across
multiple scales: An adaptive coarse-to-fine strategy. International Journal of Computer
Vision, 6(2):133–145, 1991.



BIBLIOGRAPHY 243

[Beaton and Tukey, 1974] A. E. Beaton and J. W. Tukey. The fitting of power series, mean-
ing polynomials, illustrated on band-spectroscopic data. Technometrics, 16:147–185,
1974.

[Beaudet, 1978] P. R. Beaudet. Rotationally invariant image operators. In Proc. IEEE Int.
Conf. on Pattern Recognition, pages 377–384, 1978.

[Bergen et al., 1990a] J. R. Bergen, P. J. Burt, R. Hingorani, and S. Peleg. Computing two
motions from three frames. In Proc. Int. Conf. on Comp. Vision, ICCV-90, pages 27–30,
Osaka, Japan, December 1990.

[Bergen et al., 1990b] J. R. Bergen, P. J. Burt, R. Hingorani, and S. Peleg. Multiple compo-
nent image motion: Motion estimation. Technical report, David Sarnoff Research Cen-
ter, January 1990.

[Bergen et al., 1992] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierar-
chical model-based motion estimation. In G. Sandini, editor, Proc. of Second European
Conference on Computer Vision, ECCV-92, volume 588 of LNCS-Series, pages 237–252.
Springer-Verlag, May 1992.

[Bertero et al., 1988] M. Bertero, T. A. Poggio, and V. Torre. Ill-posed problems in early
vision. Proceedings of the IEEE, 76(8):869–889, August 1988.

[Besl et al., 1988] P. J. Besl, J. B. Birch, and L. T. Watson. Robust window operators. In
Proc. Int. Conf. on Comp. Vision, ICCV-88, pages 591–600, 1988.

[Bilbro and Snyder, 1988] G. Bilbro and W. Snyder. Image restoration by mean field an-
nealing. In D. Touretzky, editor, Advances in Neural Information Processing Systems 1,
pages 594–601. Morgan Kaufman, San Mateo, CA, 1988.

[Bilbro et al., 1988] G. Bilbro, W. Snyder, R. Mann, D. Van den Bout, T. Miller, and
M. White. Optimization by mean field annealing. In D. Touretzky, editor, Advances in
Neural Information Processing Systems 1, pages 91–98. Morgan Kaufman, San Mateo,
CA, 1988.

[Black and Anandan, 1990a] M. J. Black and P. Anandan. Constraints for the early detec-
tion of discontinuity from motion. In Proc. National Conf. on Artificial Intelligence,
AAAI-90, pages 1060–1066, Boston, MA, 1990.



244 BIBLIOGRAPHY

[Black and Anandan, 1990b] M. J. Black and P. Anandan. A model for the detection of
motion over time. In Proc. Int. Conf. on Computer Vision, ICCV-90, pages 33–37, Osaka,
Japan, December 1990.

[Black and Anandan, 1991a] M. J. Black and P. Anandan. Dynamic motion estimation and
feature extraction over long image sequences. In Proc. IJCAI Workshop on Dynamic
Scene Understanding, Sydney, Australia, August 1991.

[Black and Anandan, 1991b] M. J. Black and P. Anandan. Robust dynamic motion esti-
mation over time. In Proc. Computer Vision and Pattern Recognition, CVPR-91, pages
296–302, Maui, Hawaii, June 1991.

[Black, 1992a] M. J. Black. Combining intensity and motion for incremental segmentation
and tracking over long image sequences. In G. Sandini, editor, Proc. of Second European
Conference on Computer Vision, ECCV-92, volume 588 of LNCS-Series, pages 485–493.
Springer-Verlag, May 1992.

[Black, 1992b] M. J. Black. A robust gradient method for determining optical flow. Tech-
nical Report YALEU/DCS/RR-891, Yale University, February 1992.

[Blake and Zisserman, 1987] A. Blake and A. Zisserman. Visual Reconstruction. The MIT
Press, Cambridge, Massachusetts, 1987.

[Blauer, 1991] M. Blauer. Image smoothing with shape invariance and � I curvature con-
straints. In Proceedings SPIE, Boston, Mass, November 1991.

[Bolles et al., 1987] R. C. Bolles, H. H. Baker, and D. H. Marimont. Epipolar-plane im-
age analysis: An approach to determining structure from motion. Internation Journal of
Computer Vision, 1(1):7–57, 1987.

[Bouthemy and Lalande, 1990] P. Bouthemy and P. Lalande. Detection and tracking of
moving objects based on a statistical regularization method in space and time. In
Proc. First European Conf. on Computer Vision, ECCV-90, pages 307–311, Antibes,
France, April 1990.

[Bouthemy and Rivero, 1987] P. Bouthemy and J. S. Rivero. A hierarchical likelihood
approach for region segmentation according to motion-based criteria. In Proc. First
Int. Conf. on Computer Vision, ICCV-87, pages 463–467, London, England, June 1987.

[Burt and Adelson, 1983] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a com-
pact image code. IEEE Transactions on Communications, COM-34(4):532–540, 1983.



BIBLIOGRAPHY 245

[Burt et al., 1982] P. J. Burt, C. Yen, and X. Xu. Local correlation measures for motion
analysis: A comparative study. IEEE Proc. PRIP, pages 269–274, 1982.

[Burt et al., 1989] P. J. Burt, J. R. Bergen, R. Hingorani, R. Kolczynski, W. A. Lee, A. Le-
ung, J. Lubin, and H. Shvaytser. Object tracking with a moving camera: An application
of dynamic motion analysis. In Proceedings of the Workshop on Visual Motion, pages
2–12, Irvine, CA, March 1989.

[Campbell, 1980] N. E. Campbell. Robust procedures in multivariate analysis I: Robust
covariance estimation. Appl. Statist., 29(3):231–237, 1980.

[Chen and Schunck, 1990] D. S. Chen and B. G. Schunck. Robust statistical methods for
building classification procedures. In Proc. Int. Workshop on Robust Computer Vision,
pages 72–85, Seattle, WA, October 1990.

[Chou and Brown, 1990] P. B. Chou and C. M. Brown. The theory and practice of
Bayesian image labeling. Int. Journal of Computer Vision, 4(3):185–210, 1990.

[Cipolla and Blake, 1992] R. Cipolla and A. Blake. Surface orientation and time to contact
from image divergence and deformation. In G. Sandini, editor, Proc. of Second European
Conference on Computer Vision, ECCV-92, volume 588 of LNCS-Series, pages 187–202.
Springer-Verlag, May 1992.

[Cohen and Nguyen, 1988] P. Cohen and H. H. Nguyen. Unsupervised Bayesian estima-
tion for segmenting textured images. In Proc. Second Int. Conf. on Computer Vision,
pages 303–309, Tampa, Florida, December 1988.

[Cooper, 1976] L. A. Cooper. Demonstration of a mental analog of an external rotation.
Perception & Psychophysics, 19:296–302, 1976.

[Cornelius and Kanade, 1983] N. Cornelius and T. Kanade. Adapting optical flow to mea-
sure object motion in reflectance and X-ray image sequences. In Proc. ACM Sig-
graph/Sigart Interdisciplinary Workshop on Motion: Representation and Perception,
pages 50–58, Toronto, Ont., Canada, April 1983.

[Darrell and Pentland, 1991] T. Darrell and A. Pentland. Discontinuity models and multi-
layer description networks. Technical Report 162, M.I.T. Media Lab Vision and Model-
ing Group, May 1991.



246 BIBLIOGRAPHY

[Derin and Elliott, 1987] H. Derin and H. Elliott. Modeling and segmentation of noisy and
textured images using Gibbs random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-9(1):39–55, January 1987.

[Dubes et al., 1990] R. C. Dubes, A. K. Jain, S. G. Nadabar, and C. C. Chen. MRF model-
based algorithms for image segmentation. In Proc. Int. Conf. on Pattern Recognition,
volume 1, pages 808–814, Atlantic City, NJ, June 1990.

[Durrant-Whyte, 1987] H. F. Durrant-Whyte. Consistent integration and propagation of
disparate sensor observations. International Journal of Robotics Research, 6(3):3–24,
1987.

[Eero and David, 1992] S. Eero and H. David. Vision and dynamic control for automated
milk frothing: An analysis of what went wrong. Cappuccino Quarterly, pages 384–375,
April 1 1992.

[Enkelmann, 1986] W. Enkelmann. Investigations of multigrid algorithms for the estima-
tion of optical flow fields in image sequences. In Workshop on Motion: Representation
and Analysis, pages 81–87, Charlston, SC, September 1986.

[Faugeras et al., 1987] O. D. Faugeras, F. Lustman, and G. Tocani. Motion and structure
form point and line matches. In Proc. IEEE First Int. Conf. on Computer Vision, ICCV-
87, pages 25–34, London, England, June 1987.

[Fennema and Thompson, 1979] C. L. Fennema and W. B. Thompson. Velocity determi-
nation in scenes containing several moving objects. Computer Graphics and Image Pro-
cessing, 9:301–315, 1979.

[Finke and Freyd, 1985] R. A. Finke and J. J. Freyd. Transformations of visual memory
induced by implied motions of pattern elements. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 11(4):780–794, 1985.

[François and Bouthemy, 1991] E. François and P. Bouthemy. Multiframe-based identifi-
cation of mobile components of a scene with a moving camera. In Proc. Comp. Vision
and Pattern Recognition, CVPR-91, pages 166–172, Maui, Hawaii, June 1991.

[Freyd and Finke, 1985] J. J. Freyd and R. A. Finke. A velocity effect for representational
momentum. Bulletin of the Psychonomic Society, 23(6):443–446, 1985.

[Freyd, 1983] J. J. Freyd. Apparent accelerated motion and dynamic mental representa-
tions. PhD thesis, Stanford University, Stanford, CA, 1983.



BIBLIOGRAPHY 247

[Freyd, 1987] J. J. Freyd. Dynamic mental representations. Psychological Review,
94(4):427–438, 1987.

[Gamble and Poggio, 1987] E. Gamble and T. Poggio. Integration of intensity edges with
stereo and motion. Technical Report Artificial Intelligence Lab Memo No. 970, MIT,
1987.

[Geiger and Girosi, 1991] D. Geiger and F. Girosi. Parallel and deterministic algorithms
from MRF’s: Surface reconstruction. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 13(5), May 1991.

[Gelb, 1974] A. Gelb, editor. Applied Optimal Estimation. The MIT Press, Cambridge,
Massachusetts, 1974.

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs distri-
butions and Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, November 1984.

[Geman and McClure, 1987] S. Geman and D. E. McClure. Statistical methods for tomo-
graphic image reconstruction. In Proceedings of the 46th Session of the ISI, Bulletin of
the ISI, 1987.

[Geman and Reynolds, 1992] D. Geman and G. Reynolds. Constrained restoration and the
recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 14(3):376–383, March 1992.

[Geman et al., 1990] D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detec-
tion by constrained optimization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):609–628, July 1990.

[Gibson, 1979] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, MA, 1979.

[Glazer, 1987] F. Glazer. Hierarchical motion detection. PhD thesis, University of Mas-
sachusetts, Amherst, MA, 1987. COINS TR 87–02.

[Hampel et al., 1986] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel.
Robust Statistics: The Approach Based on Influence Functions. John Wiley and Sons,
New York, NY, 1986.



248 BIBLIOGRAPHY

[Harris et al., 1990] J. G. Harris, C. Koch, E. Staats, and J. Luo. Analog hardware for de-
tecting discontinuities in early vision. Int. Journal of Comp. Vision, 4(3):211–223, June
1990.

[Heeger and Jepson, 1990] D. J. Heeger and A. Jepson. Simple method for computing 3D
motion and depth. In Proc. Int. Conf. on Comp. Vision, ICCV-90, pages 96–100, Osaka,
Japan, December 1990.

[Heeger, 1987] D. J. Heeger. Model for the extraction of image flow. J. Opt. Soc. Am,
4(8):1455–1471, August 1987.

[Heel, 1989] J. Heel. Dynamic motion vision. In Proc. Image Understanding Workshop,
pages 701–713, Palo Alto, CA, May 1989.

[Heel, 1990] J. Heel. Temporally integrated surface reconstruction. In Proc. IEEE
Int. Conf. on Comp. Vision, ICCV-90, pages 292–295, Osaka, Japan, December 1990.

[Heel, 1991] J. Heel. Temporal surface reconstruction. In Proc. IEEE Comp. Vision and
Pattern Recognition, CVPR-91, pages 607–612, Maui, Hawaii, June 1991.

[Heitz and Bouthemy, 1990] F. Heitz and P. Bouthemy. Multimodal motion estimation and
segmentation using Markov random fields. In Proc. IEEE Int. Conf. on Pattern Recog-
nition, pages 378–383, June 1990.

[Hildreth, 1983] E. C. Hildreth. Computing velocity fields along contours. In Proc. ACM
Siggraph/Sigart Interdisciplinary Workshop on Motion: Representation and Perception,
pages 26–32, Toronto, Ont., Canada, April 1983.

[Hildreth, 1984] E. C. Hildreth. The Measurement of Visual Motion. MIT Press, Cam-
bridge, Mass., 1984.

[Hillis, 1985] W. D. Hillis. The Connection Machine. The MIT Press, Cambridge, Mas-
sachusetts, 1985.

[Horn and Schunck, 1981] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, 17(1–3):185–203, August 1981.

[Horn and Weldon, 1988] B. K. P. Horn and E. J. Weldon. Direct methods for recovering
motion. Int. Journal of Computer Vision, 2(1):51–76, June 1988.

[Horn, 1986] B. K. P. Horn. Robot Vision. The MIT Press, Cambridge, Massachusetts,
1986.



BIBLIOGRAPHY 249

[Huang et al., 1986] M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An efficient
general cooling schedule for simulated annealing. In Proc. IEEE Int. Conf. on Computer-
Aided Design, pages 381–384, November 1986.

[Huber, 1981] P. J. Huber. Robust Statistics. John Wiley and Sons, New York, NY, 1981.

[Hung et al., 1988] Y. Hung, D. B. Cooper, and B. Cernuschi-Frias. Bayesian estimation
of 3-D surfaces from a sequence of images. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 906–911, April 1988.

[Hung et al., 1991] Y. Hung, D. B. Cooper, and B. Cernuschi-Frias. Asymptotic Bayesian
surface estimation using an image sequence. International Journal of Computer Vision,
2(6):105–132, 1991.

[Hutchinson et al., 1988] J. Hutchinson, C. Koch, J. Luo, and C. Mead. Computing motion
using analog and binary resistive networks. IEEE Computer, pages 52–63, March 1988.

[Inoue et al., 1992] H. Inoue, T. Tachikawa, and M. Inaba. Robot vision system with a cor-
relation chip for real-time tracking, optical flow and depth map generation. In Proc. IEEE
Int. Conf. on Robotics and Automation, volume 2, pages 1621–1626, May 1992.

[Irani et al., 1992] M. Irani, B. Rousso, and S. Peleg. Detecting and tracking multiple mov-
ing objects using temporal integration. In G. Sandini, editor, Proc. of Second European
Conference on Computer Vision, ECCV-92, volume 588 of LNCS-Series, pages 282–287.
Springer-Verlag, May 1992.

[Kahn, 1985] P. Kahn. Local determination of a moving contrast edge. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-7(4):402–409, July 1985.

[Kahn, 1988] P. Kahn. Integrating moving edge information along a 2D trajectory in
densely sampled imagery. In IEEE Proc. Comp. Vision and Pattern Recognition, pages
702–709, June 1988.

[Kanade and Okutomi, 1990] T. Kanade and M. Okutomi. A stereo matching algorithm
with an adaptive window: Theory and experiment. Technical Report CMU-CS-90-120,
Carnegie Mellon University, April 1990.

[Kass et al., 1987] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour mod-
els. In Proc. First International Conference on Computer Vision, pages 259–268, June
1987.



250 BIBLIOGRAPHY

[Kelly and Freyd, 1987] M. H. Kelly and J. J. Freyd. Explorations of representational mo-
mentum. Cognitive Psychology, 19:369–401, 1987.

[Kirkpatrick et al., 1983] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, May 1983.

[Koch et al., 1988] C. Koch, J. Luo, and C. Mead. Computing motion using analog and
binary resistive networks. IEEE Computer, pages 52–63, March 1988.

[Koenderink and van Doorn, 1975] J. J. Koenderink and A. J. van Doorn. Invariant prop-
erties of the motion parallax field due to the movement of rigid bodies relative to an ob-
server. Optica Acta, 22(9):773–791, 1975.

[Koffka, 1935] K. Koffka. Pinciples of Gestalt Psychology. Harcourt, Brace and World,
New York, 1935.

[Konrad and Dubois, 1988] J. Konrad and E. Dubois. Miltigrid Bayesian estimation of im-
age motion fields using stochastic relaxation. In Int. Conf. on Computer Vision, pages
354–362, 1988.

[Konrad, 1989] J. Konrad. Bayesian estimation of motion fields from image sequences.
PhD thesis, McGill University, Montreal, Canada, June 1989.

[Kumar and Hanson, 1990] R. Kumar and A. R. Hanson. Analysis of different robust
methods for pose refinement. In Proc. Int. Workshop on Robust Computer Vision, pages
167–182, Seattle, WA, October 1990.

[Laarhoven and Aarts, 1988] P. J. M. Laarhoven and E. H. L. Aarts. Simulated Annealing:
Theory and Applications. D. Reidel Pub. Co., Dordrecht, Holland, 1988.

[Lawton, 1983] D. T. Lawton. Processing translational motion sequences. Computer Vi-
sion Graphics and Image Processing, 22:116–144, 1983.

[Leclerc, 1989] Y. G. Leclerc. Constructing simple stable descriptions for image partition-
ing. International Journal of Computer Vision, 3(1):73–102, 1989.

[Li, 1985] G. Li. Robust regression. In F. Mosteller and J. W. Tukey, editors, Exploring
Data, Tables, Trends and Shapes. John Wiley & Sons, New York, 1985.

[Longuet-Higgins and Prazdny, 1980] H. C. Longuet-Higgins and K. Prazdny. The inter-
pretation of a moving retinal image. Proc. Roy. Soc. London, B, 208:385–397, July 1980.



BIBLIOGRAPHY 251

[Lowe, 1985] D. Lowe. Perceptual organization and visual recognition. Kluwer Aca-
demic Pub., Boston, MA, 1985.

[Lucas and Kanade, 1981] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. 7th IJCAI, pages 674–679, Van-
couver, B. C., Canada, 1981.

[Lui et al., 1990] L. Lui, B. G. Schunck, and C. C. Meyer. On robust edge detection. In
Proc. Int. Workshop on Robust Computer Vision, pages 261–286, Seattle, WA, October
1990.

[Luo and Maı̂tre, 1990] W. Luo and H. Maı̂tre. Using surface model to correct and fit dis-
parity data in stereo vision. In Proc. IEEE Int. Conf. on Pattern Recognition, pages 60–
64, June 1990.

[Lynch, 1960] K. Lynch. The Image of the City. The MIT Press, Cambridge, Mas-
sachusetts, 1960.

[Marr, 1982] D. Marr. Vision. W. H. Freeman and Company, New York, NY, 1982.

[Marroquin et al., 1987] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solution
of ill-posed problems in computational vision. J. of the American Statistical Assoc.,
82(397):76–89, March 1987.

[Marroquin, 1987] J. L. Marroquin. Deterministic Bayesian estimation of Markovian ran-
dom fields with applications to computational vision. In Proc. IEEE Int. Conf. on Com-
puter Vision, pages 597–601, London, England, June 1987.

[Martin et al., 1991] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains
for the Traveling Salesman Problem. Complex Systems, 5(3):299–326, 1991.

[Matthies et al., 1989] L. Matthies, R. Szeliski, and T. Kanade. Kalman filter-based algo-
rithms for estimating depth from image sequences. International Journal of Computer
Vision, 3(3):209–236, September 1989.

[Meer et al., 1990] P. Meer, D. Mintz, and A. Rosenfeld. Robust recovery of piecewise
polynomial image structure. In Proc. Int. Workshop on Robust Computer Vision, pages
109–126, Seattle, WA, October 1990.

[Meer et al., 1991] P. Meer, D. Mintz, and A. Rosenfeld. Robust regression methods for
computer vision: A review. International Journal of Computer Vision, 6(1):59–70, 1991.



252 BIBLIOGRAPHY

[Metaxas and Terzopoulos, 1991] D. Metaxas and D. Terzopoulos. Constrained de-
formable superquadrics and nonrigid motion tracking. In Proc. Computer Vision and
Pattern Recognition, CVPR-91, pages 337–343, Maui, Hawaii, June 1991.

[Metropolis et al., 1953] N. Metropolis, A. Rosenbluth, A. Teller M. Rosenbluth, and
E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys.,
21(6):1087–1092, 1953.

[Murray and Buxton, 1987] D. W. Murray and B. F. Buxton. Scene segmentation from vi-
sual motion using global optimization. IEEE Trans. on Pattern Analysis and Machine
Intelligence, PAMI-9(2):220–228, March 1987.

[Murray and Buxton, 1990] D. W. Murray and B. F. Buxton. Experiments in the Machine
Interpretation of Visual Motion. The MIT Press, Cambridge, Massachusetts, 1990.

[Murray et al., 1986] D. W. Murray, A. Kashko, and H. Buxton. A parallel approach to
the picture restoration algorithm of Geman and Geman on a SIMD machine. Image and
Vision Computing, 4(3):133–142, August 1986.

[Mutch and Thompson, 1988] K. M. Mutch and W. B. Thompson. Analysis of accretion
and deletion at boundaries in dynamic scenes. In W. Richards, editor, Natural Compu-
tation, pages 44–54. The MIT Press, Cambridge, Mass., 1988.

[Nagel and Enkelmann, 1986] H. H. Nagel and W. Enkelmann. An investigation of
smoothness constraints for the estimation of displacement vector fields from image se-
quences. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
8(5):565–593, September 1986.

[Nagel, 1983a] H. H. Nagel. Constraints for the estimation of displacement vector fields
from image sequences. In IJCAI, pages 945–951, Karlsruhe, West Germany, August
1983.

[Nagel, 1983b] H. H. Nagel. Displacement vectors derived from second order intensity
variations in image sequences. Computer Vision Graphics and Image Processing, 21:85–
117, 1983.

[Nagel, 1987] H. H. Nagel. On the estimation of optical flow: Relations between differ-
ent approaches and some new results. Artificial Intelligence, 33(3):299–324, November
1987.



BIBLIOGRAPHY 253

[Navab et al., 1990] N. Navab, R. Deriche, and O. D. Faugeras. Recovering 3D motion and
structure from stereo and 2D token tracking cooperation. In Proc. Int. Conf. on Comp. Vi-
sion, ICCV-90, pages 513–516, Osaka, Japan, December 1990.

[Nelson and Aloimonos, 1989] R. C. Nelson and J. Aloimonos. Obstacle avoidance using
flow field divergence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-11(10):1102–1106, 1989.

[Nishihara, 1984] H. K. Nishihara. Practical real-time imaging stereo matcher. Optical
Engineering, 23(5):536–545, 1984.

[Okutomi and Kanade, 1992] M. Okutomi and T. Kanade. A locally adaptive window
for signal matching. International Journal of Computer Vision, 7(2):143–162, January
1992.

[Papanikolopoulos and Khosla, 1991] N. P. Papanikolopoulos and P. K. Khosla. Feature
based robotic visual tracking of 3-D translational motion. In Proc. IEEE Conf. on De-
cision and Control, December 1991.

[Peleg and Rom, 1990] S. Peleg and H. Rom. Motion based segmentation. In Proc. IEEE
Int. Conf. on Pattern Recognition, pages 109–113, June 1990.

[Perona and Malik, 1990] P. Perona and J. Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629–639, July 1990.

[Poggio et al., 1985] T. Poggio, V. Torre, and C. Koch. Computational vision and regular-
ization theory. Nature, 317(26):314–319, September 1985.

[Potter, 1980] J. L. Potter. Scene segmentation using motion information. IEEE Trans. on
Systems, Man and Cybernetics, 5:390–394, 1980.

[Prager and Arbib, 1983] J. M. Prager and M. A. Arbib. Computing the optic flow: The
MATCH algorithm and prediction. Computer Vision, Graphics and Image Processing,
24:271–304, 1983.

[Pratt, 1979] W. K. Pratt. Image Transmission Techniques. Academic Press, Inc., New
York, 1979.



254 BIBLIOGRAPHY

[Press et al., 1988] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, 1988.

[Rangarajan and Chellapa] A. Rangarajan and R. Chellapa. A continuation method for im-
age estimation and segmentation. submitted, IEEE PAMI.

[Rangarajan and Chellappa, 1990] A. Rangarajan and R. Chellappa. Generalized gradu-
ated non-convexity algorithm for maximum a posteriori image estimation. In Proc. 10th
Int. Conf. on Pattern Recognition, Atlantic City, NJ, June 1990.

[Rangarajan and Chellappa, 1991] A. Rangarajan and R. Chellappa. Image estimation and
segmentation using a continuation method. In Proc. ICASSP ’91, IEEE Conf. on Acoust.,
Speech, and Signal Processing, 1991.

[Rockafellar, 1970] R. T. Rockafellar. Convex Analysis. Princeton University Press,
Princeton, NJ, 1970.

[Rousseeuw and Leroy, 1987] P. J. Rousseeuw and A. M. Leroy. Robust Regression and
Outlier Detection. John Wiley & Sons, New York, 1987.

[Schunck, 1983] B. G. Schunck. Motion segmentation and estimation. PhD thesis, MIT,
Department of Electrical Engineering and Computer Science, 1983.

[Schunck, 1989a] B. G. Schunck. Image flow segmentation and estimation by constraint
line clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(10):1010–1027, October 1989.

[Schunck, 1989b] B. G. Schunck. Robust estimation of image flow. In Proceedings SPIE,
November 1989.

[Schunck, 1990] B. G. Schunck. Robust computational vision. In Proc. Int. Workshop on
Robust Computer Vision, pages 1–18, Seattle, WA, October 1990.

[Shizawa and Mase, 1991] M. Shizawa and K. Mase. Principle of superposition: A com-
mon computational framework for analysis of multiple motion. In Proc. IEEE Workshop
on Visual Motion, pages 164–172, Princeton, NJ, October 1991.

[Simoncelli and Adelson, 1991] E. P. Simoncelli and E. H. Adelson. Computation of opti-
cal flow: Relationship between several standard techniques. Vision and Modeling Tech-
nical Report 165, MIT Media Laboratory, March 1991.



BIBLIOGRAPHY 255

[Simoncelli and Heeger, 1991] E. P. Simoncelli and D. J. Heeger. Relationship between
gradient, spatio-temporal energy, and regression models for motion perception. In In-
vestigative Opthamology and Visual Science Supplement, volume 32, March 1991.

[Simoncelli et al., 1991] E. P. Simoncelli, E. H. Adelson, and D. J. Heeger. Probability
distributions of optical flow. In Proc. Computer Vision and Pattern Recognition, CVPR-
91, pages 310–315, Maui, Hawaii, June 1991.

[Singh, 1990] A. Singh. An estimation-theoretic framework for image-flow computation.
In Proc. Int. Conf. on Comp. Vision, ICCV-90, pages 168–177, Osaka, Japan, 1990.

[Singh, 1991] A. Singh. Incremental estimation of image-flow using a Kalman filter. In
Proc. IEEE Workshop on Visual Motion, pages 36–43, Princeton, NJ, October 1991.

[Singh, 1992a] A. Singh. Incremental estimation of image flow using a Kalman filter. J. of
Visual Communication and Image Representation, 3(1):39–57, March 1992.

[Singh, 1992b] A. Singh. Optic Flow Computation: A Unified Perspective. IEEE Com-
puter Society Press, 1992.

[Sinha and Schunck, 1992] S. S. Sinha and B. G. Schunck. A two-stage algorithm for
discontinuity-preserving surface reconstruction. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 14(1):36–55, January 1992.

[Snyder, 1991] M. A. Snyder. On the mathematical foundations of smoothness constraints
for the determination of optical flow and for surface reconstruction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(11):1105–1114, November 1991.

[Spoerri and Ullman, 1987] A. Spoerri and S. Ullman. The early detection of motion
boundaries. In Proc. 1st ICCV, pages 209–218, London, UK, June 1987.

[Strang, 1976] G. Strang. Linear Algebra and its Applications. Academic Press, New
York, 1976.

[Swain et al., 1990] M. J. Swain, L. E. Wixson, and P. B. Chou. Efficient parallel estima-
tion for Markov random fields. In M. Henrion, R. D. Shachter, L. N. Kanal, and J. F.
Lemmer, editors, Uncertainty in Artificial Intelligence 5, pages 407–419. Elsevier Sci-
ence Publishers B. V., North-Holland, 1990.



256 BIBLIOGRAPHY

[Szeliski and Tonnesen, 1991] R. Szeliski and D. Tonnesen. Surface modeling with ori-
ented particle systems. Technical Report CRL 91/14, Digital Equipment Corporation,
Cambridge Research Lab, December 1991.

[Szeliski, 1988] R. S. Szeliski. Bayesian modeling of uncertainty in low-level vision. PhD
thesis, Carnegie Mellon University, 1988.

[Szeliski, 1991] R. Szeliski. Shape from rotation. In Proc. IEEE Comp. Vision and Pattern
Recognition, CVPR-91, pages 625–630, Maui, Hawaii, June 1991.

[Tarr and Black, 1991] M. J. Tarr and M. J. Black. A computational and evolution-
ary perspective on the role of representation in computer vision. Technical Report
YALEU/DCS/RR-899, Yale University, October 1991.

[Tarr and Black, 1992] M. J. Tarr and M. J. Black. Psychophysical implications of tempo-
ral persistence in early vision: A computational account of representational momentum.
In Investigative Opthamology and Visual Science Supplement, volume 33, page 1050,
May 1992.

[Terzopoulos et al., 1987] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking
models for 3D object recognition. In Proc. IEEE Int. Conf. on Computer Vision, ICCV-
87, pages 269–276, London, England, June 1987.

[Terzopoulos, 1983] D. Terzopoulos. Multilevel computational processes for visual sur-
face reconstruction. Computer Vision Graphics and Image Processing, 24:52–96, 1983.

[Terzopoulos, 1986] D. Terzopoulos. Regularization of inverse visual problems involv-
ing discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-8(4):413–424, July 1986.

[Thompson et al., 1982] W. B. Thompson, K. M. Mutch, and V. Berzins. Edge detection in
optical flow fields. In Proc. of the Second National Conference on Artificial Intelligence,
pages 26–29, August 1982.

[Thompson et al., 1985] W. B. Thompson, K. M. Mutch, and V. A. Berzins. Dynamic oc-
clusion analysis in optical flow fields. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-7(4):374–383, July 1985.

[Thompson, 1980] W. B. Thompson. Combining motion and contrast for segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2:543–549,
1980.



BIBLIOGRAPHY 257

[Tian and Shah, 1992] Y. Tian and M. Shah. MRF-Based motion estimation and segmen-
tation. Technical Report CS-TR-92-13, University of Central Florida, Orlando, FL, July
1992.

[Tirumalai et al., 1990] A. P. Tirumalai, B. G. Schunck, and R. C. Jain. Robust dynamic
stereo for incremental disparity map refinement. In Proc. Int. Workshop on Robust Com-
puter Vision, pages 412–434, Seattle, WA, October 1990.

[Tomasi and Kanade, 1990] C. Tomasi and T. Kanade. Shape and motion without depth.
In Proc. Int. Conf. on Comp. Vision, ICCV-90, pages 91–95, Osaka, Japan, December
1990.

[Vaina and Grzywacz, 1992] L. M. Vaina and N. M. Grzywacz. Testing computational the-
ories of motion discontinuities: A psychophysical study. In G. Sandini, editor, Proc. of
Second European Conference on Computer Vision, ECCV-92, volume 588 of LNCS-
Series, pages 212–216. Springer-Verlag, May 1992.

[van Doorn and Koenderink, 1983] A. J. van Doorn and J. J. Koenderink. Detectability of
velocity gradients in moving random-dot patterns. Vision Research, 23:799–804, 1983.

[Vanderbilt and Louie, 1984] D. Vanderbilt and S. G. Louie. A Monte Carlo simulated
annealing approach to optimization over continuous variables. J. of Comp. Physics,
56:259–271, 1984.

[Varga, 1962] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Inc, New Jersey, 1962.
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