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Abstract The accuracy of optical flow estimation algorithm-
s has been improving steadily as evidenced by results on
the Middlebury optical flow benchmark. The typical formu-
lation, however, has changed little since the work of Horn
and Schunck. We attempt to uncover what has made re-
cent advances possible through a thorough analysis of how
the objective function, the optimization method, and modern
implementation practices influence accuracy. We discover
that “classical” flow formulations perform surprisingly well
when combined with modern optimization and implementa-
tion techniques. One key implementation detail is the medi-
an filtering of intermediate flow fields during optimization.
While this improves the robustness of classical methods it
actually leads to higher energy solutions, meaning that these
methods are not optimizing the original objective function.
To understand the principles behind this phenomenon, we
derive a new objective function that formalizes the median
filtering heuristic. This objective function includes a non-
local smoothness term that robustly integrates flow estimates
over large spatial neighborhoods. By modifying this new ter-
m to include information about flow and image boundaries
we develop a method that can better preserve motion details.
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To take advantage of the trend towards video in wide-screen
format, we further introduce an asymmetric pyramid down-
sampling scheme that enables the estimation of longer range
horizontal motions. The methods are evaluated on Middle-
bury, MPI Sintel, and KITTI datasets using the same param-
eter settings.
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1 Introduction

The field of optical flow estimation is making steady progress
as evidenced by the increasing accuracy of current methods
on the Middlebury optical flow benchmark [ 1]. After near-
ly 30 years of research, these methods have obtained an im-
pressive level of reliability and accuracy [66,67,69,73,77].
But what has led to this progress? The majority of today’s
methods strongly resemble the original formulation of Horn
and Schunck (HS) [31]. They combine a data term that as-
sumes constancy of some image property with a spatial ter-
m that models how the flow is expected to vary across the
image. An objective function combining these two terms is
then optimized. Given that this basic structure is unchanged
since HS, what has enabled the performance gains of mod-
ern approaches?

The paper has three parts. In the first, we perform a s-
tudy of recent optical flow methods and models. The most
accurate methods on the Middlebury flow dataset make d-
ifferent choices about how to model the objective function,
how to approximate this model to make it computational-
ly tractable, and how to optimize it. Since most published
methods change all of these properties at once, it can be dif-
ficult to know which choices are most important. To address
this, we define a baseline algorithm that is “classical”, in
that it is a direct descendant of the original HS formulation,
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and then systematically vary the model and method using
different techniques from the art. The results are surprising.
We find that only a small number of key choices produce
statistically significant improvements and that they can be
combined into a very simple method that achieves reason-
able accuracy. More importantly, our analysis reveals what
makes current flow methods work so well.

Part two examines the principles behind this success. We
find that one algorithmic choice produces the most signifi-
cant improvements: applying a median filter to intermediate
flow values during incremental estimation and warping [60,

]. While this heuristic improves the accuracy of the recov-
ered flow fields, it actually increases the energy of the ob-
jective function. This suggests that what is being optimized
is actually a new and different objective. Using observations
about median filtering and L1 energy minimization from Li
and Osher [40], we formulate a new non-local term that is
added to the original, classical objective. This new term goes
beyond standard local (pairwise) smoothness to robustly in-
tegrate information over large spatial neighborhoods. We
show that minimizing this new energy approximates the o-
riginal optimization with the heuristic median filtering step.
Note, however, that the new objective falls outside our defi-
nition of classical methods.

Once the median filtering heuristic is formulated as a
non-local term in the objective, we immediately recognize
how to modify and improve it. In part three we show how in-
formation about image structure and flow boundaries can be
incorporated into a weighted version of the non-local term
to prevent over-smoothing across boundaries. By incorpo-
rating structure from the image, this weighted version does
not suffer from some of the errors produced by median fil-
tering and better preserves motion boundaries. Figure 1 il-
lustrates optical flow estimates for a range of methods from
a “basic”” HS method to our proposed Classic+NL method.

Finally we observe that the classical methods all go be-
yond the original HS algorithm by using a spatial pyramid
to cope with large motions. The classical pyramid downsam-
ples the image equally in both the horizontal and vertical di-
rection, typically until some minimum image dimension is
reached. With today’s wide-aspect ratio video, we point out
that an asymmetric approach can be employed resulting in a
pyramid that downsamples more in the horizontal direction
than in the vertical one. This effectively allows the estima-
tion of larger horizontal motions. This simple change results
in significant improvements on the wide-aspect-ratio video
in the KITTI [26] and MPI Sintel [23] datasets.

At the time of writing our previous conference paper [57]
(March 2010), the resulting approach was ranked 1% in both
angular and end-point errors in the Middlebury evaluation.
At the writing of this paper (Sep. 2012), the method, Clas-
sic+NL, ranks 13" in both AAE and EPE. Several recen-
t and high-ranking methods directly build on Classic+NL,

such as layered models [59, 60,
vanced motion prior models [25,34], efficient optimization
schemes for the non-local term [36], and better initialization
to deal with large displacement optical flow [24].

Compared to the conference version [57], this paper in-
cludes many more detailed results and analyses. In addi-
tion to an expanded literature review we compare our pro-
posed method to the closely related non-local total variation
method [68]. We discuss the limitations of our method in
dealing with occlusions and fast moving objects. We report
results on the MIT HAMA data set [42] and find that the re-
sults are consistent with those on Middlebury. We also test
our methods on the MPI Sintel [23] and KITTI [26] datasets,
which offer greater challenges. Using the same parameters,
tuned on the Middlebury training set, our method performs
well on these new datasets, particularly using an asymmetric
pyramid.

In summary, the contributions of this paper are to (1) an-
alyze current flow models and methods to understand which
design choices matter; (2) formulate and compare several
classical objectives descended from HS using modern meth-
ods; (3) formalize one of the key heuristics and derive a new
objective function that includes a non-local spatial smooth-
ness term; (4) modify this new objective to produce a state-
of-the-art method; (5) extend spatial pyramids to exploit the
extra width of high-definition and letterbox videos. In doing
so, we provide a “recipe” for others studying optical flow
that can guide their design choices. Finally, to enable com-
parison and further innovation, we provide a public MAT-
LAB implementation [1].

], methods with more ad-

2 Previous Work

It is important to separately analyze the contributions of the
objective function that defines the problem (the model) and
the optimization algorithm and implementation used to min-
imize it (the method). The HS formulation, for example, has
long been thought to be highly inaccurate. Barron et al. [12]
reported an average angular error (AAE) of ~30 degrees
on the “Yosemite” sequence. This confounds the objective
function with the particular optimization method proposed
by Horn and Schunck. Horn and Schunck noted that the cor-
rect way to optimize their objective is by solving a system
of linear equations as is common today. This was impracti-
cal on the computers of the day, hence they used a heuris-
tic method. In fact, Barron et al. note that the original HS
derivatives were implemented crudely and report a modified
version of HS with AAE around 11 degrees. When opti-
mized with today’s methods, the HS objective achieves sur-
prisingly competitive results [26] despite the expected over-
smoothing and sensitivity to outliers. The reported accuracy
of a method is jointly determined by the objective function,
the optimization techniques, the implementation details, and
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Fig. 1 Estimated optical flow on the Middlebury test “Army” sequence. Left to right: (a) an old implementation of the Horn & Schunck (HS)
method [58], (b) a new implementation with current practices, (c) a modern implementation of a robust version, (d) an improved model that
uses a non-local spatial term to robustly integrate information over a large spatial neighborhood, (e) ground truth from the Middlebury website

(downsampled and JPEG compressed; original ground truth is withheld), and (f) the first frame. Color coding as in [
Average end-point error (EPE): (a) 0.22, (b) 0.12, (c) 0.09, and (d) 0.08.

the parameter tuning/learning (cf. [45,62]). We review relat-
ed research in the context of the first three aspects below.

Models: The global formulation of optical flow intro-
duced by Horn and Schunck [31] relies on both brightness
constancy and spatial smoothness assumptions, but suffers
from the fact that their quadratic formulation is not robust to
outliers. Shulman and Herve [55] use an L1 penalty instead
to preserve flow discontinuities. Black and Anandan [15] in-
troduce a robust framework to deal with outliers in both the
data and the spatial terms. Subsequently, many different ro-
bust functions have been explored [17,38,58] and it remains
unclear which is best. We refer to all these spatially-discrete
formulations derived from HS as “classical.” We systemati-
cally explore variations in the formulation and optimization
of these approaches. The surprise is that the classical model,
appropriately implemented, remains fairly competitive.

There are many formulations beyond the classical ones
that we do not consider here. Significant ones use oriented
smoothness [46,58,60,76,77], rigidity constraints [65,066],
an over-parameterized smoothness term [48], or image seg-
mentation [14,37,72,78]. While they deserve similar careful
consideration, we expect many of our conclusions to carry
forward. Note that one can select among a set of models
or methods for a given sequence [44], instead of finding a
“best” model for all the sequences.

Methods: Many of the implementation details that are
thought to be important date back to the early days of op-
tical flow. Current best practices include coarse-to-fine esti-
mation to deal with large motions [13, 17], texture decom-
position [65,67] or high-order filter constancy [8,17,29,39,

] to reduce the influence of lighting changes, incremental
warping [13], warping with bicubic interpolation [38,67],
temporal averaging of image derivatives [30,67], graduat-
ed non-convexity [16] to minimize non-convex energies [ 15,

], and median filtering after each incremental estimation
step to remove outliers [67].

], shown in Fig. 4 (c).

This median filtering heuristic is of particular interest as
it makes non-robust methods more robust and improves the
accuracy of all methods we tested. The effect on the objec-
tive function and the underlying reason for its success have
not previously been analyzed. Least median squares estima-
tion can be used to robustly reject outliers in flow estima-
tion [10], but previous work has focused on the data term.

Related to median filtering, and our new non-local term,
is the use of bilateral filtering to prevent smoothing across
motion boundaries [7]. This approach separates a variation-
al method into two filtering update stages, and replaces the
original anisotropic diffusion process with multi-cue driv-
en bilateral filtering. As with median filtering, the bilateral
filtering step changes the original energy function.

Models that are formulated with an L1 robust penalty
are often coupled with specialized total variation (TV) opti-
mization methods [75]. Here we focus on generic optimiza-
tion methods that can apply to most models and find that the
estimated flow fields are as accurate as the reported results
for specialized methods.

Despite recent algorithmic advances, there is a lack of
publicly available, easy to use, and accurate flow estimation
software. The GPU4Vision project [2] has made a substan-
tial effort to change this and provides executable files for
several accurate methods [65,66,67,69]. The dependence on
the GPU and the lack of source code are limitations. Since
the publication of our conference paper, our public MATLAB
code has been used by both researchers to develop new opti-
cal flow algorithms [7,24,25,34,36] and practitioners to use
optical flow for different applications [33,41,49]. Currently
other available optical-flow software includes [3,4, 5].

3 Classical Models

As is common to “classical” methods we only address the
two-frame optical flow estimation problem. We write the
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classical optical flow objective function in its spatially dis-
crete form as

E(U,V) :Z{pD(Il(i,j>712(i+ui,j,j+’l}i7j)) (1)
i,J

+A[ps(wij — wir15)+ ps(wij — wijy1)
+ps(vij — vig1,5) + ps(vij — vij41)l}s

where u and v are the horizontal and vertical components of
the optical flow field to be estimated from images I; and I,
i,7 indexes a particular image pixel location, u; ; and v; ;
are elements of u and v respectively, \ is a regularization
parameter, and pp and pg are the data and spatial penalty
functions. We consider three different penalty functions: (1)
the quadratic HS penalty p(z) = 2?; (2) the Charbonnier
penalty p(x) = Va2 + €2 [20], a differentiable variant of
the absolute value, the most robust convex function; and (3)
the Lorentzian p(z) = log(1 + %) which is a non-convex
robust penalty used in [15]. We refer to the robust formu-
lation with the Lorentzian penalty as BA (short for Black
and Anandan). Note that this classical model is related to a
standard pairwise Markov random field (MRF) based on a
4-neighborhood [27].

In the remainder of this section we define a baseline
method using several techniques from the literature. This is
not the “best” method, but includes modern techniques and
will be used for comparison. We only briefly describe the
main choices, which are explored in more detail in the fol-
lowing section and the cited references.

Quantitative results are presented throughout the remain-
der of the text. In all cases we report the average end-point
error (EPE) on the Middlebury training and test sets, de-
pending on the experiment. Given the extensive nature of
the evaluation, only average results are presented in the main
body, while the details for each individual sequence are pro-
vided at the end of the paper.

3.1 Baseline methods

To gain robustness against lighting changes, we follow [67]
and apply the Rudin-Osher-Fatemi (ROF) structure texture
decomposition method [
and linearly combine the texture and structure components
(in the proportion 20:1). The parameters are set according
to [67].

Optimization is performed using a standard incremental
multi-resolution technique (e.g., [15,17]) to estimate flow
fields with large displacements. The optical flow estimated
at a coarse level is used to warp the second image toward the
first at the next finer level, and a flow increment is calculated
between the first image and the warped second image. The
standard deviation of the Gaussian anti-aliasing filter is set
to be \/%71’ where d denotes the downsampling factor. Each

] to pre-process the input sequences

level is recursively downsampled from its nearest lower lev-
el. In building the pyramid, the downsampling factor is not
critical as pointed out in the next section; here we use the
settings in [58], which uses a factor of 0.8 in the final stages
of the optimization. For the basic pyramid scheme, we adap-
tively determine the number of pyramid levels so that the top
level has a width or height of around 20 to 30 pixels. At each
pyramid level, we perform 10 warping steps to compute the
flow increment.

At each warping step, we linearize the data term once,
which involves computing terms of the type %I 2 (H—uiC jedT
vf ;)» where 0/0x denotes the partial derivative in the hori-
zontal direction, u* and v* denote the current flow estimate
at iteration k. As suggested in [67], we compute the deriva-
tives of the second image using the 5-point derivative filter
5[~180 —8 1], and warp the second image and its deriva-
tives toward the first using the current flow estimate by bicu-
bic interpolation. We then compute the spatial derivatives of
the first image, compute the average of these and the cor-
responding warped derivatives of the second image (cf. [9,

1), and use these in place of %. For pixels moving out
of the image boundaries, we set both their corresponding
temporal and spatial derivatives to zero. After each warping
step, the flow update is computed, and then we apply a5 x 5
median filter to the newly computed flow field to remove
outliers [67].

For the Charbonnier (Classic-C) and Lorentzian (Classic-
L) penalty function, we use a graduated non-convexity (GNC)
scheme [16] as described in [58]. First, we replace the robust
penalty functions by quadratic penalty functions and obtain
a quadratic formulation of the objective function, Eg(u, v).
Then we linearly combine the quadratic penalty function
with the desired robust penalty function and gradually change
the weighting of the two terms to reach the desired robust
penalty function. In practice, we use a three-stage GNC scheme,
with the objective functions for the first, second, and third
stages being Eg(u,v), 3 (Eg(u,v)+E(u,v)),and E(u, v)
respectively. The output of a previous stage serves as the ini-
tialization to the next stage. The standard deviations of the
corresponding quadratic penalty function are set to be 1 for
the Charbonnier penalty and, for the Lorentzian, are taken
to be the same as the o value used in the Lorentzian func-
tion. The same regularization weight X is used for both the
quadratic and the robust objective functions.

3.2 Baseline results

The regularization parameter A is selected among a set of
candidate values to achieve the best average end-point error
(EPE) on the Middlebury training set. For the Charbonnier
penalty function, the candidate set is [1, 3, 5, 8, 10] and 5
is optimal. The Charbonnier penalty uses e = 0.001 for both
the data and the spatial term in Eq. (1). The Lorentzian uses
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Avg. Rank  Avg. EPE
Classic-C 348 0.408
HS 49.0 0.501
Classic-L 42.7 0.530
Classic-C-brightness N/A 0.726
HS-brightness N/A 0.759
Classic-L-brightness N/A 0.603
HS [58] 66.2 0.872
BA (Classic-L) [58] 59.6 0.746
Adaptive [60] 28.5 0.401
Compl tary OF [77] 31.6 0.485

Table 1 Models. Average rank and end-point error (EPE) on the Mid-
dlebury fest set using different penalty functions. Two state-of-the-art
methods in Dec. 2010 are included for comparison. The ranking in-
formation was obtained at the writing of the paper (Sep. 2012). Please
refer Table 15 for the EPE results on each sequence.

o = 1.5 for the data term, ¢ = 0.03 for the spatial term,
and A = 0.06. These parameters are fixed throughout the
experiments, except where mentioned.

Table 1 summarizes the EPE results of the basic mod-
el with three different penalty functions on the Middlebury
test set, along with the two top performers at the time of
performing the evaluation (considering only published pa-
pers when the evaluation table was generated). The clas-
sic formulations with two non-quadratic penalty function-
s (Classic-C) and (Classic-L) achieve competitive result-
s despite their simplicity. The baseline optimization of HS
and BA (Classic-L) results in significantly better accuracy
than previously reported for these models [58]. Note that
the analysis also holds for the training set (Table 2).

Because Classic-C performs quite well despite its sim-
plicity, we set it as the baseline below. Note that our baseline
implementation of HS has a lower average EPE than many
more sophisticated methods. The HS implementation here
incorporates many algorithmic and implementation detail-
s not present in the original HS method; the core idea of
quadratic data and spatial terms however remains the same.
In our naming convention, one can think of the HS method
here as Classic-Q, meaning that it is the same as the Classic-
C method except that the data and spatial penalty terms are
quadratic.

4 Practices Explored

We now systematically vary the baseline approach by in-
corporating different ideas that have appeared in the litera-
ture, with the goal of illuminating which of these ideas are
significant. This analysis is performed on the Middlebury
training set by changing only one property at a time. Sta-
tistical significance is determined using a Wilcoxon signed
rank test [70] between each modified method and the base-
line Classic-C method; a p value less than 0.05 indicates a
significant difference. Each section below presents detailed
comparisons of all these methods and then summarizes the

Avg. EPE  significance  p-value
Classic-C 0.298 — —
HS 0.384 1 0.0078
Classic-L 0.319 1 0.0078
Classic-C-brightness 0.288 0 0.9453
HS-brightness 0.387 1 0.0078
Classic-L-brightness 0.325 0 0.2969
Gradient 0.305 0 0.4609
Gaussian + Dx + Dy 0.290 0 0.6406
Sobel edge magnitude [63] 0.417 1 0.0156
Laplacian [39] 0.430 1 0.0078
Laplacian1:1 0.301 0 0.6641
Gaussian pre-filtering (c = 0.5) 0.281 0 0.5469
Texture4:1 0.286 0 0.5312
Unnormalized texture 0.298 0 0.3750

Table 2 Pre-Processing. Average end-point error (EPE) on the Mid-
dlebury training set for the baseline method (Classic-C) using different
image pre-processing techniques. Significance is always with respec-
t to Classic-C. Please refer to Tables 16 and 17 for the detailed results
on each training sequence.

results in a simple “take away message” about what we think
are the “best practices” based on the data.

4.1 Image Pre-Processing

While it is common to talk about the brightness constan-
cy assumption as a core feature of most optical flow algo-
rithms, in practice many other constancy assumptions have
been used. It is common, for example, to pre-filter the im-
ages in a variety of ways ranging from simple smoothing
to edge detection. For each method, we optimize the reg-
ularization parameter A for the training sequences. The re-
sults are summarized in Table 2, with details of the meth-
ods applied to individual training sequences given in Ta-
bles 16 and 17. The baseline uses a non-linear pre-filtering
of the images (ROF) to reduce the influence of illumination
changes between frames [67]. Table 2 shows the effect of
using no pre-processing, resulting in the standard brightness
constancy model (*-brightness). Classic-C-brightness ac-
tually achieves lower EPE on the training set than does Classic-
C but significantly higher error on the test set (Table 1). This
disparity suggests overfitting to the training data and leaves
open the question as to whether the standard brightness con-
stancy assumption, formulated robustly, may still compete
with various types of filter/structure constancy given appro-
priate training data.

Simpler alternatives, such as filter response (or high-order)
constancy [17,19,58] can serve the same purpose as ROF
texture decomposition. A variety of pre-filters have been
used in the literature, including derivative filters, Laplacians
[22,39], and Gaussians. Edges have also been emphasized
using the Sobel edge magnitude [63].

Gradient only imposes constancy of the gradient vector
at each pixel as proposed in [17]; i.e., it robustly penalizes
Euclidean distance between image gradients. We use cen-
tral difference filters (Dz = [—0.5 0 0.5] and Dy = Da™).
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Gaussian+Dx+Dy assumes separate brightness, horizontal
derivative, and vertical derivative constancy. A weighted com-
bination of robust functions applied to each term is used as
in [58]. Neither of these methods differ significantly from
the baseline texture decomposition (Classic-C). Two meth-
ods are significantly worse: the Sobel edge magnitude [63]
and Laplacian pre-filtering (5 x 5) as used in [39]. Sobel
edge magnitude appears to not work well on some of the
sequences, particularly the synthetic ones, and may not be
suitable for a general flow estimation method. Laplacian
pre-filtering (5 x 5) as used in [39] produces good results on
“RubberWhale”, but poor ones on the synthetic sequences.
Note that the parameters for the FusionFlow method [39]
were mainly tuned using the “RubberWhale” sequence. The
evaluation results suggest room for improving the Fusion-
Flow method by a better pre-processing technique. Gaus-
sian pre-filtering (¢ = 0.5) performed well on the synthet-
ic sequences, but poorly on real ones. Finally, the texture-
structure blending ratio is 20:1 in [67] but 4:1 in [69]. We
find that (Texture4:1) performs better (but not significant-
ly) on the synthetic sequences with a little degradation on the
real ones. By default, the blended result from texture decom-
position is normalized to [—1,1] in [67] and [0, 255] in our
experiment. Not doing this normalization (Unnormalized
texture) has little effect.

For the Laplacian pre-filtering, we find combining the
filtered image with the original image, in the proportion 1:1,
improves accuracy significantly (Laplacianl:1). Similar to
the ROF texture decomposition, such an approach boosts the
high frequency while suppressing the low frequency compo-
nents that contain the lighting change.

Good Practices: Some form of image filtering is useful but
simple derivative constancy is nearly as good as the more
sophisticated texture decomposition method.

4.2 Coarse-to-Fine Estimation and Graduated
Non-Convexity (GNC)

We vary the number of warping steps per pyramid level and
find that 3 warping steps gives similar results as using the
baseline 10 (Table 3), except on “Urban3”, which is domi-

nated by large motion and occlusions (see Table 18 for sequence-

specific results). For the coarse-to-fine pyramid, [58] uses
a downsampling factor of 0.8 during non-convex optimiza-
tion. A traditional downsampling factor of 0.5 (Down-0.5),
however, has nearly identical performance. Note that a larg-
er factor means that the pyramid levels are more similar in
size and, for a pyramid with top bottom levels of the same
size, results in more pyramid levels.

Previously, Brox et al. [17] have reported that a down-
sampling factor of 0.95 produces much better results than
0.5. Note that for each iterative warping estimation step,

Avg. EPE  significance  p-value
Classic-C 0.298 — —
3 warping steps 0.304 0 0.9688
Down-0.5 0.298 0 1.0000
w/o GNC 0.354 0 0.1094
Bilinear 0.302 0 0.1016
w/o TAVG 0.306 0 0.1562
Central derivative filter 0.300 0 0.7266
7-point derivative filter [20] 0.302 0 0.3125
Deriv-warp 0.297 0 0.9531
Bicubic-II 0.290 1 0.0391
Deriv-warp-II 0.287 1 0.0156
Warp-deriv-II 0.288 1 0.0391
C-L (A = 0.6) 0.303 0 0.1562
L-CA=2) 0.306 0 0.1562
GC-0.45 (A = 3) 0.292 1 0.0156
GC-0.25 (A = 0.7) 0.298 0 1.0000
MF 3 x 3 0.305 0 0.1016
MF7 x7 0.305 0 0.5625
2x MF 0.300 0 1.0000
5x MF 0.305 0 0.6875
w/o MF 0.352 1 0.0078
Classic++ 0.285 1 0.0078

Table 3 Model and Methods. Average end-point error (EPE) on the
Middlebury training set for the baseline method (Classic-C) using dif-
ferent algorithm and modeling choices. Please refer to Table 18 for the
detailed results on each sequence.

Brox et al. use successive over-relaxation (SOR) to itera-
tively solve their linear system of equations and stop the it-
eration before convergence. With a downsampling factor of
0.95, they effectively increase the number of iterative warp-
ing steps performed by the algorithm, and this likely help-
s the overall algorithm converge. For our implementation,
we solve the linear system of equations using the MATLAB
built-in backslash function and obtain converged results for
each iterative warping estimation step. Under such a setting,
we find that the downsampling factor has little influence on
the performance.

Removing the GNC procedure for the Charbonnier penal-
ty function (w/o GNC) results in higher EPE on most se-
quences and higher energy on all sequences (Table 5). This
suggests that the GNC method is helpful even for the convex
Charbonnier penalty function due to the nonlinearity of the
data term.

Good Practices: The downsampling factor does not mat-
ter when using a convex penalty; a standard factor of 0.5 is
fine. Some form of GNC is useful even for a convex robust
penalty like Charbonnier because of the nonlinear data term.

4.3 Interpolation Method and Derivatives

We find that the baseline bicubic interpolation is more ac-
curate than bilinear (Table 3, Bilinear), as already report-
ed in previous work [67]. Removing temporal averaging of
the gradients (w/o TAVG), using a Central difference filter
[-1 0 1]/2, or using a 7-point derivative filter [-1 9 —
45045 —91]/60 [20] all reduce accuracy compared to the
baseline, but not significantly.
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Generalized Charbonnier (0.45)
“““““ Generalized Charbonnier (0.25)
- - --Lorentzian

Fig. 2 Different penalty functions for the spatial terms: Charbonnier
(e = 0.001), generalized Charbonnier (a = 0.45 and @ = 0.25), and
Lorentzian (o = 0.03).

The baseline method computes the image derivative by
first computing the derivative of the second image, warp-
ing the intermediate result toward the first image, and then
averaging the warped result with the spatial derivative of
the first image. Another approach is to first warp the sec-
ond image toward the first image, compute the derivatives
of the warped image, and then perform the temporal aver-
aging with the spatial derivatives of the first image [20]. We
find the second approach produces similar results (Deriv-
warp). However, the derivatives computed in either way are
inconsistent with those implicitly interpolated by the bicubic
interpolation. Bicubic interpolation interpolates not only the
image but also the derivatives [50]. Because the MATLAB
built-in function interp2 is based on cubic convolution [35]
and does not provide the derivatives used in interpolation,
we use the spline-based implementation in [50]. With the
new implementation (Bicubic-II), the three different ways
to compute the derivatives give very similar EPE results, all
better than the MATLAB built-in function. However, the one
with consistent derivatives (Bicubic-II) gives the lowest en-
ergy solution, as shown in Table 4.

Good Practices: Use spline-based bicubic interpolation with
a 5-point filter. Compute the derivatives during the interpo-
lation to obtain the lowest energy solutions. Temporal aver-
aging of the derivatives is probably worthwhile for a small
computational expense.

4.4 Penalty Functions

We find that the convex Charbonnier penalty performs bet-
ter than the more robust, non-convex Lorentzian on both the
training and test sets. We test using the Charbonnier for the
data term and Lorentzian for the spatial term (C-L) and vice
versa (L-C). The two approaches perform better than using
the Lorentzian for both terms but worse than using the Char-
bonnier for both terms.

One reason might be that non-convex functions are more
difficult to optimize, causing the optimization scheme to find

a poor local optimum. Another reason might be that the
MAP estimator actually favors the “wrong” penalty func-
tions [47,54].

We investigate a generalized Charbonnier penalty func-
tion p(z) = (22 + €2)? that is equal to the Charbonnier
penalty when a = 0.5, and non-convex when a < 0.5
(see Fig. 2). We optimize the regularization parameter \ a-
gain. We find a slightly non-convex penalty with a = 0.45
(GC-0.45) performs consistently better than the Charbon-
nier penalty, whereas more non-convex penalties (GC-0.25
with a = 0.25) show no improvement.

Good Practices: The less-robust Charbonnier is preferable
to the highly non-convex Lorentzian and a slightly non-convex
penalty function (GC-0.45) is better still.

4.5 Median Filtering

Figure 3 illustrates the median filtering step within the coarse-
to-fine incremental estimation process. The baseline 5 x 5
median filter (MF 5 x 5) is better than both MF 3 x 3
[67] and MF 7 x 7, but the difference is not significant (Ta-
ble 3). When we perform 5 x 5 median filtering twice (2x
MF) or five times (5x MF) per warping step, the results are
worse. Finally, removing the median filtering step (w/o M-
F) makes the computed flow significantly less accurate with
larger outliers as shown in Table 3 and Fig. 4.

One interesting result with HS is that repeatedly apply-
ing median filtering (20 times) at every warping step im-
proves the HS formulation and the improvement is statisti-
cally significant (HS 20x MF in Table 21).

Good Practices: Median filtering the intermediate flow re-
sults once after every warping iteration is the single most
important implementation detail here; 5 x 5 is a good filter
size.

4.6 Best Practices

Combining the analysis above into a single approach means
modifying the baseline to use the slightly non-convex gen-
eralized Charbonnier and the spline-based bicubic interpo-
lation. This leads to a statistically significant improvement
over the baseline (Table 3, Classic++). This method is di-
rectly descended from HS and BA, yet updated with the
current best optimization practices known to us. This sim-
ple method ranks 32" out of 73 methods in both EPE and
AAE on the Middlebury test set at the writing of the paper
(Sep. 2012). However, as we will see soon, this method is
somehow not “simple”. Instead of the original objective, a
different objective is being optimized with the median filter-
ing step. The same is true for the reported results of both HS
and BA.
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Sum Venus  Dimetrodon  Hydrangea  RubberWhale = Grove2  Grove3  Urban2  Urban3
Bicubic-IT 8.761 0.552 0.734 0.835 0.481 1.656 2.167 1.061 1.275
Deriv-warp 8917  0.559 0.745 0.840 0.484 1.682 2.201 1.073 1.333
Warp-deriv. 9.035  0.563 0.745 0.845 0.486 1.694 2.238 1.117 1.347

Table 4 Eq. (1) energy (x 106) for the optical flow fields computed on the Middlebury fraining set, evaluated using spline-based bicubic interpo-
lation [50]. Note the derivatives consistent with the interpolation method (Bicubic-II) produce the lowest energy solution.
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Fig. 3 The median filtering is performed after every incremental warping step (i. e., once at every image pyramid level). The output of the median
filtering is upsampled and used as the initial estimate for the next larger pyramid level.

Sum  Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3  Urban2  Urban3
Classic-C 9388 0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424
w/oGNC  9.689  0.593 0.750 0.870 0.506 1.845 2,518 1.142 1.465
w/o MF 8.044 0517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

Table 5 Eq. (1) energy (x108) for the optical flow fields computed on the Middlebury training set, evaluated using convolution-based bicubic
interpolation [35]. Note that Classic-C uses graduated non-convexity (GNC), which reduces the energy, and median filtering, which increases it.

Y a |
(a) With median filtering (b) Without median filtering (c) Key
Fig. 4 Estimated flow fields on sequence “RubberWhale” using
Classic-C with and without (w/o MF) the median filtering step. (a)
(w/ MF) energy 502,387, (b) (w/o MF) energy 449, 290, (c) color
key [11]. The median filtering step helps reach a solution free from
outliers but with a higher energy. The flow fields have been normal-
ized by their maximum magnitude resulting in different contrasts. The
outliers in the result without median filtering (b) make the flow appear
lower contrast.

5 Models Underlying Median Filtering

Our analysis reveals the practical importance of median fil-
tering during optimization. This effectively denoises the in-

termediate flow fields, preventing gross outliers, and mak-
ing even non-robust methods like HS more robust. We ask
whether there is a principle underlying this heuristic?

One interesting observation is that flow fields obtained
with median filtering have substantially higher energy than
those without (Table 5 and Fig. 4). If the median filter is
helping to optimize the objective, it should lead to lower
energies. Higher energies and more accurate estimates sug-
gest that incorporating median filtering changes the objec-
tive function being optimized.

The insight that follows from this is that the median fil-
tering heuristic is related to the minimization of an objective
function that differs from the classical one. In particular the
optimization of Eq. (1), with interleaved median filtering,
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Fig. 5 From left to right, neighborhood structure for the center (red)
pixel for the standard pairwise model, the unweighted non-local mod-
el, the unweighted non-local model with a larger neighborhood, and
the weighted non-local model. The standard pairwise model connect-
s a center pixel with its nearest neighbors, while the non-local term
connects a pixel with many pixels in a large spatial neighborhood. By
assigning larger weights (thicker red edges) to neighbors that are more
likely to be on the same surface (blue circles), the weighted non-local
model incorporates spatial scene structure information.

approximately minimizes

E(u,v) = ()
> {po(h0,5) = B + i, + i)

" +Alps (i — wit1,5)+ ps(ui; — wiji1)

+ps(vi,j = vit1,5) + ps(vij — Uz‘,j+1)]}

+>\NZ Z

4,5 (i',5)ENG,;

(Jwig — wirjo| + |vig — vir jir),

where A; ; is the set of neighbors of pixel (z,7) in a possi-
bly large area and A is a scalar weight. The term in braces
is the same as the flow energy from Eq. (1), while the last
term is new. This non-local term [21,28] imposes a particu-
lar smoothness assumption within a specified region of the
flow field'. Here we take this term to be a 5 x 5 rectangular
region to match the size of the median filter in Classic-C.
Figure 5 shows the neighborhood for the standard pairwise
model and the non-local term.

It is usually difficult to directly optimize the objective (2)
with a large spatial term. A common practice is to relax the
objective with an auxiliary flow field as

Ey(u,v,4,v) = (3)
>~ {0 (11(0,3) = Tali+ wig, +vi))
b +A[ps(wij — wit1,5)+ ps(uij — wijr1)
+ps(vij — vig15) + ps(vij — Ui,j-H)]}
+ac(lu—a|f? + [lv -]

BN

4.J (7,5 )ENG

(|5 — i jo| + |0i g — Dir jr),

where G and v denote an auxiliary flow field and \¢ is a
scalar weight. A third (coupling) term encourages 1, vV and
u, v to be the same (cf. [66,75]). Here the notation implies
a pixelwise sum of squared errors between the auxiliary and
main flow fields.

The connection to median filtering (as a denoising method)
derives from the fact that there is a direct relationship be-
tween the median and L1 minimization. Consider a simpli-
fied version of Eq. (3) with just the coupling and non-local
terms, where

E@=Xcllu-afav Y. Y

i (7,5 )ENG;

@i, j—ir o] (4)

While minimizing this is similar to median filtering u, there
are two differences. First, the non-local term minimizes the
L1 distance between the central value and all flow values in
its neighborhood except itself. Second, Eq. (4) incorporates
information about the data term through the coupling equa-
tion; median filtering the flow ignores the data term.

The formal connection between Eq. (4) and median fil-
tering? is provided by Li and Osher [40] who show that min-
imizing Eq. (4) is related to a different median computation
""" = median(Neighbors®) U Data) (5)

: (k) _ ra(k) VY - q(0) —
where Neighbors'™ = {4, } for (i’, j') € N; j and @'?) =
u as well as

\Ni,y‘\/\N}
)

= o s AN g 2AN L g
Data = {u;,j, u;,; = 52, w5 = 52 s

c b

where |N; ;| denotes the (even) number of neighbors of (4, j).
Note that the set of “data” values is balanced with an equal
number of elements on either side of the value u; ; and that
information about the data term is included through u; ;. Re-
peated application of Eq. (5) converges rapidly [40].

Observe that, as Ay /A¢ increases, the weighted data
values on either side of u; ; move away from the values of
Neighbors and cancel each other out. As this happens, E-
q- (5) approximates the median at the first iteration
aglj = median(Neighbors(O) U{u ;). (6)

Eq. (3) thus combines the original objective with an ap-
proximation to the median, the influence of which is con-
trolled by Ax/Ac. Note in practice the weight Ao on the
coupling term is usually small or is steadily increased from
small values [67,75]. We optimize the new objective (3) by
alternately minimizing

Eo(u,v) =Y {pn(11(i,) = Fali+ uijsj + vi))
%
+Aps (i j — wit1,5)+ ps(wij — wij+1)
+ps(vij — vig1,5) + ps(vij — Um‘ﬂ)]}
FAc([la—a|f? +[|v - /%) (7

! Bruhn et al. [20] also integrated information over a local region in
a global method but did so for the data term.

2 Hsiao et al. [
way.

] established the connection in a slightly different
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Avg. EPE  significance  p-value
Classic-C 0.298 — —
Classic-C-A 0.305 0 0.8125
Classic-C-A-noRep 0.309 0 0.5781
Classic-C-A-II 0.296 0 0.7188
Classic-C-A-CGD 0.305 0 0.5625

Table 6 Average end-point error (EPE) on the Middlebury training set
is shown for the new model with alternating optimization (Classic-C-
A). Please refer to Table 19 for the detailed EPE results on each training
sequence.

and

B (8,9) = Ao (|[u —al[* +[[v - ¥[]?) ®)

OIS

iJ (,5")ENG;

([T, — tir o | + 03,5 — Dir o).

We find that optimization of the coupled set of equations is
superior in terms of EPE performance than optimization of
the objective in Eq. (2).

The alternating optimization strategy first holds 1, ¥ fixed
and minimizes Eq. (7) w.r.t. u, v. Then, with u, v fixed, we
minimize Eq. (8) w.r.t. G, V. Note that Egs. (4) and (8) can
be minimized by repeated application of Eq. (5); we use this
approach with 5 iterations. We perform 10 steps of alter-
nating optimizations at every pyramid level and change A\¢
logarithmically from 10~* to 10%. During the first and sec-
ond GNC stages, we set u, v to be @i, v after every warping
step (this replacement step helps reach solutions with low-
er energy and EPE than without performing this step; see
Classic-C-A-noRep in Tables 6 and 7). In the end, we take
1,V as the final flow field estimate. The other parameters
are \ =5, Ay = 1.

Alternately optimizing this new objective function (Classic-

-C-A) leads to similar results as the baseline Classic-C (Ta-
ble 6). We also compare the energy of these solutions using
the new objective and find the alternating optimization pro-
duces the lowest energy solutions, as shown in Table 7.

We find that approximately optimizing the new objective
by changing \¢ logarithmically from 10~% to 10~! has s-
lightly better EPE results but higher energy solutions (Classic-
C-A-II). We also try replacing the absolute value by the
Charbonnier penalty function and using the conjugate gra-
dient descent method [6] to solve Eq. (4) but obtain results
with slightly worse EPE performance and higher energy.

In summary, we show that the heuristic median filtering
step in Classic-C can now be viewed as energy minimiza-
tion of a new objective with a non-local term. The explic-
it formulation emphasizes the value of robustly integrating
information over large neighborhoods and enables the im-
proved model described below.

6 Improved Model

By formalizing the median filtering heuristic as an explicit
objective function, we can find ways to improve it. While
median filtering in a large neighborhood has advantages as
we have seen, it also has problems. A neighborhood cen-
tered on a corner or thin structure is dominated by the sur-
round and computing the median results in oversmoothing
as illustrated in Fig. 1.

Examining the non-local term suggests a solution. For a
given pixel, if we know which other pixels in the area belong
to the same surface, we can weight them more highly. The
modification to the objective function is achieved by intro-
ducing a weight into the non-local term [21,28]:

PP

4,J (i, )EN: 5

w; 7 (|5 — s jr| + 05,5 — Do 0), (9)

where w! ]J represents how likely pixel ¢, ' is to belong to

the same surface as 7, j.

Of course, we do not know wZ,]J /, but can approximate
it. We draw ideas from [53,71,74] to define the weights ac-
cording to their spatial distance, their color-value distance,
and their occlusion state as

L,
i 5 i/ P12 Gy 502 oG 5"
i O(exp{ 20_% 202n. O(Z,]) 3 (10)

where I(i, 7) is the color vector in the Lab space, n. is the
number of color channels, 01 = 7,09 = 7, and the occlu-
sion variable o(i, 7) is calculated using Eq. (22) in [53] as

w,

2
0(13 .7) =exp {_ 20_3 - 20_3 )

Y

where d(i, j) is the one-sided divergence function, defined
as

o div(i, §), div(i,j) <0
d = 12
(i) { 0, otherwise (12)
in which the flow divergence div(i, j) is
Aiv(i, ) = 5oulid) + 5-oli)) (13)

where a% and a% are respectively the horizontal and vertical
flow derivatives. The occlusion variable o(4, j) is near zero
for occluded pixels and near one for non-occluded pixels.
We set the parameters in Eq. (11) as o4 = 0.3 and o, = 20;
this is the same as in [53]. Note that the occlusion state non-
linearly depends on the unknown flow field and we calculate
the occlusion state using the latest flow estimate.
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Sum Venus  Dimetrodon ~ Hydrangea  RubberWhale = Grove2  Grove3 Urban2  Urban3
Classic-C 13.013 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153
Classic-C w/o MF 14.629  0.886 0.945 1.299 0.725 2.315 3.513 2.234 2712
Classic-C-A 12489  0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049
Classic-C-A-noRep ~ 13.076  0.790 0.894 1.165 0.670 2.092 3.143 2.005 2.317
Classic-C-A-II 13.308  0.830 0.915 1.235 0.686 2.223 3.247 1.990 2.182
Classic-C-A-CGD 13.466  0.833 0.909 1.224 0.674 2213 3.357 2.020 2.236

Table 7 Eq. (3) energy (x 109) for the computed flow fields on the Middlebury training set. The alternating optimization strategy (Classic-C-A)

produces the lower energy solutions than the median filtering heuristic.

() (e)

Fig. 6 Neighbor weights of the proposed weighted non-local term at
different positions in the “Army” sequence. We use color, spatial dis-
tance, and occlusion cues to determine whether the neighboring pixels
are likely to belong to the same surface. Among these cues, color is the
most powerful (see Table 8 and text for an evaluation of the cues).

Examples of such weights are shown for several 15 x
15 neighborhoods in Figure 6; bright values indicate high-
er weights. Note the neighborhood labeled d, correspond-
ing to the rifle. Since pixels on the rifle are in the minority,
an unweighted median oversmooths (Classic++ in Fig. 1).
The weighted term instead robustly estimates the motion us-
ing values on the rifle. A closely related piece of work is
[51], which uses the intervening contour to define affinities
among neighboring pixels for the local Lucas and Kanade
[43] method. However it only uses this scheme to estimate
motion for sparse points and then interpolates the dense flow
field.

We approximately solve for @i (and similarly ¥) using
the following weighted median problem

min E

i o, .
(#",5")EN; ;U{i,5}

(14)

o
VAP
w; § |5 — wir el

using the formula (3.13) in [40] for all the pixels (Classic+NL-

Full). Note if all the weights are equal, the solution is just the
median. In practice, we can adopt a fast version (Classic+NL)
without performance loss: Given a current estimate of the

Avg. EPE  significance  p-value
Classic+NL 0.221 — —
Classic+NL-Full 0.222 0 0.8203
Classic+NL-Fast 0.221 0 0.3125
RGB 0.240 1 0.0156
HSV 0.231 1 0.0312
LUV 0.226 0 0.5625
Gray 0.253 1 0.0078
w/o color 0.283 1 0.0156
w/o occ 0.226 0 0.1250
w/o spa 0.223 0 0.5625
o2 =5 0.221 0 1.0000
oy = 10 0.224 0 0.2500
A= 0.236 0 0.1406
A= 0.244 0 0.1016
11 x 11 0.223 0 0.5938
19 x 19 0.220 0 0.8750

Table 8 Average end-point error (EPE) on the Middlebury fraining set
is shown for the the improved model and its variants. Please refer to
Table 20 for the detailed results.

Avg. Rank  Avg. EPE  Avg. EPE near boundary
Classic++ 32.7 0.406 0.980
Classic++Gradient 335 0.430 1.042
Classic+NL 17.2 0.319 0.689
Classic+NL-Full 17.5 0.316 0.676

Table 9 Average end-point error (EPE) on the Middlebury test set for
the Classic++ model with two different preprocessing techniques and
its improved model. Please refer to Table 15 for the detailed EPE re-
sults.

flow, we detect motion boundaries using a Sobel edge detec-
tor and dilate these edges with a 5 x 5 mask to obtain flow
boundary regions. In these regions we use the weighting in
Eq. (10) in a 15 x 15 neighborhood. In the non-boundary
regions, we use equal weights in a 5 x 5 neighborhood to
compute the median.

To further reduce the computation, we can adopt a two-
stage GNC process and perform 3 warping steps per pyra-
mid level. This fast version (Classic+NL-Fast) has nearly
the same overall performance, with a slight decline in per-
formance on the “Urban3” sequence, which has large mo-
tions; with an iterative warping scheme, large motions re-
quire more iterations.

Tables 8 and 9 show that the weighted non-local ter-
m (Classic+NL) improves the accuracy on both the train-
ing and the test sets, especially in the motion boundary re-
gions. Note that the fine detail of the “rifle” is preserved in
Figure 1(e). At the writing of this paper (Sep. 2012), Clas-
sic+NL ranks 13" in both AAE and EPE. Figures 7 and 8
show some of the results on the Middlebury dataset.
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(a) “Old” HS [58]

(b) “New” HS (c) Classic++

(d) Classic+NL (e) Ground truth (f) First frame

Fig. 7 Results on the Middlebury test set. Top to bottom: “Teddy”, “Wooden”, and “Grove”. Classic+NL uses information from the color image to
detect and preserve fine motion details. Note that the ground truth visualization from the Middlebury website has been compressed and has lower

quality than the actual ground truth.

We study some variants of the weighted non-local term
(Classic+NL). Table 8 shows the importance of each term in
determining the weight and influence of the parameter set-
ting on the final results. Using different color spaces results
in some performance decline. Using grayscale pixel values
(Gray) or not using the static image information (w/o col-
or) results in significant degradation in performance. With-
out occlusion (w/o occ) or spatial distance (w/o spa) cues
does not degrade the performance significantly. The method
is robust to the setting of o5 for the color cue and 5 and 10
perform similarly as the default 7. The default A is 3, while 1
and 9 result in some loss in performance. We also study the
maximum size of the neighborhood for the non-local term
and find 11 x 11 gives similar performance while 19 x 19 is
slightly better.

Closely-related work. Werlberger et al. [68] independent-
ly propose a non-local term for optical flow estimation and

the spatial term is similar to our non-local term. They use
zero mean normalized cross correlation as the data term to
deal with lighting changes. Their work is motivated by the
success of the non-local regularization [2 1] in image restora-
tion and stereo. Our work is inspired by the success of the
heuristic median filtering step in flow estimation and we for-
malize the median filtering heuristic as a non-local regular-
ization term. The use of the GPU and C++ makes their im-
plementation faster than our implementation in MATLAB.
Classic+NL has lower average EPE on the Middlebury test
sequences; 0.319 versus 0.388 (cf. Table 15). Readers can
visually compare the results of both methods on the Middle-
bury website.

Results on the MIT dataset. To test the robustness of these
models on other data, we applied HS, Classic-C, and Clas-
sic+NL to sequences from the MIT dataset [42], and com-
pared the estimated flow fields to the human labeled ground
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(d) Classic+NL (e) Ground truth

Fig. 8 Results on other Middlebury test sequences. Top left: “Mequon”; top right: “Schefflera”; bottom left: “Urban”; bottom right “Yosemite”.

truth. Note only five of the eight test sequences in [
available on-line; these are tested here.

| are

Fig. 9 and Table 10 show the results on these sequences,
which are very different in nature from the Middlebury set
and include an outdoor scene as well as a scene of a fish tank.
The results are compared with the CLG method [20] used in
[42]. Tt is important to point out that the CLG method was
tuned to obtain the optimal results on the test sequences. Our
method had no such tuning and we used the same parameters
as those used in all the other experiments. This suggests that
training on the Middlebury data results in a method that gen-
eralizes to other sequences. The only place where this fails
is on the “fish” sequence where there is transparent motion
in a liquid medium; the statistics in this sequence are very
different from the Middlebury training data.

Average Table Hand Toy Fish CameraMotion
CLG [20,42] 1.239 0976  4.181 0456  0.196 0.385
HS 2.129 1.740  6.108  0.620  1.309 0.869
Classic-C 1.345 1.064 3428 0482 1.061 0.690
Classic+NL 1.106 0.91 2.75 0.487  0.772 0.611

Table 10 Results on the MIT dataset [42]. Average end-point error
(EPE). The CLG [20] method was tuned for each sequence [42].

Performance on MPI Sintel and KITTI datasets. We e-
valuate the methods above (corresponding to our publicly
released code) on the MPI Sintel [23] and the KITTI [26]
datasets using the default parameter settings in our confer-
ence paper [57]. As summarized in Tables 11 and 12, the
conclusions contradict our findings reported above. On the
MPI Sintel dataset, HS outperforms Classic++, which in
turn outperforms Classic+NL-fast. The only consistent re-
sult is Classic+NL, which achieves the best performance.
On the KITTI dataset, HS outperforms Classic+NL.

We ask how these datasets differ from both Middlebury
and the MIT dataset? What could lead to these inconsisten-
t conclusions? One answer surprisingly lies in the unequal
width and height of the images.

Asymmetric pyramids for wide-aspect-ratio video. Our
original implementation downsamples the image equally in
the horizontal and vertical dimensions. The method auto-
matically determines the number of pyramid levels using
the smaller of the height and width of the input image. This
scheme works well when the width-to-height ratio is close to
1, i.e., the Middlebury sequences. In contrast, the MPI Sin-
tel images are 1024 x 436 and the KITTI images are around
1226 x 370. The small vertical dimension limits the height
of the pyramid, but we find that the large horizontal dimen-
sion means that the sequences contain very large horizontal
motions. As a result, at the top level of the pyramid, the hor-
izontal motions can be much larger than a pixel.

To address this we can use an unequal downsampling
factor in each direction to ensure that the motion at the top
pyramid level is small in both directions (or at least similar).
For the MPI Sintel and KITTI data sets, we use a down-
sampling factor of 0.5 in the horizontal direction and deter-
mine the downsampling factor in the vertical direction and
the pyramid level number, so that the size of top pyramid
level is around 16 x 16.

For MPI Sintel and KITTI this scheme results in a 7-
level pyramid (instead of a 5-level pyramid in the standard
symmetric scheme). This results in a significant improve-
ment on both the the MPI Sintel and the KITTI data set, as
summarized in Tables 11 and 12. We denote the method with
the new asymmetric pyramid by adding an “A” at the end of
the name.

On MPI Sintel, the results of the four methods are con-
sistent with those on the Middlebury data set. Note that even
Classic++A outperforms the previous Classic+NL. Clas-
sic+NLA outperforms MDP-flow2 [73] on the final set, but
not on the clean set. MDP-flow2 uses feature matching to
deal with fast moving objects. Feature matching tends to
work well on the clean set, but not the final set due to mo-
tion and optical blur in the latter. Fig. 10 shows an example
visual comparison between results using Classic+NLA and
Classic+NL. The asymmetric pyramid leads to significant
improvement in large areas that undergo large motions.
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(a) HS (b) Classic-C

(c) Classic+NL

(d) Ground truth

(e) First frame

Fig. 9 Results on MIT sequences. Top to bottom: “Table”, “Hand”, “Toy”, “Fish”, and “CameraMotion”

Table 11 Average end-point error (EPE) on the MPI Sintel training
set.

Table 12 Average end-point error (EPE) on the MPI Sintel fest set.
Only published results are shown, including MDP-Flow2 [73], FC-

HS 2Layers-FF [01] and AHOF[69].

Classic+NL Classic+NL-fast Classic++
Final 7.998 8.806 8.601 8.386
Clean 6.035 7.445 6.765 7.238
Classic+NLA  Classic+NL-FastA  Classic++A  HSA
Final 7.459 7.379 7.928 8.291
Clean 4.942 5.078 5.363 6.899

On the KITTI set, Classic++A performs best among al-
1 our tested methods, both in the training and the test set-
s. Note that the KITTI sequences have been collected on
a moving vehicle in an urban environment. The flow field-
s tend to be smooth with few flow boundaries. The image-
independent smoothness assumption in Classic++A is better

suited to such data. Fig. 11 shows some results for Classic+NL-

FastA and Classic+NL-fast; note the dramatic improvemen-
t resulting from the asymmetric pyramid.

It is important to note that, appart from the change of
pyramid method, all other parameters remain the same and
are trained using the Middlebury training sequences.

Classic+NL Classic+NL-fast Classic++ HS
Final 9.153 10.088 9.959 9.610
Clean 7.961 9.129 8.721 8.739
Classic+NLA  Classic+NL-FastA  Classic++A  HSA
Final 8.291 8.439 8.836 9.377
Clean 6.731 6.940 7.209 8.309
MDP-Flow2 FC-2Layers-FF AHOF
Final 8.445 8.137 11.927
Clean 5.837 6.781 12.642

Computational time. Table 14 summarizes the running time
of the evaluated methods on typical sequences from three
different data sets in MATLAB on a 64-bit Linux desktop
with 8GB memory. The additional cost from HS to Clas-
sic++ comes from the GNC stage and the non-convex penal-
ty function. The additional cost from Classic++ to Clas-
sic+NL comes from the weighted median filtering step for
detected motion boundaries. Applying the weighted medi-
an operation on all the pixels (Classic+NL-Full) increases
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Fig. 10 Example results on MPI Sintel dataset. From top to bottom: first frame, second frame, results by Classic+NL (5-level), results by Clas-
sic+NLA (7-level), and ground truth. The asymmetric pyramid leads to a significant improvements in large regions undergoing large motion (head
of the dragon on the left and background on the right). EPE results: “temple2” (left), 18.04 by Classic+NL (5-level) and 12.92 by Classic+NLA
(7-level); “cave2” (right), 52.208 by Classic+NL (5-level) and 26.565 by Classic+NLA (7-level). Note that the estimated motion for fast-moving

objects still contains large errors.

the running time by more than three times with little perfor-
mance gain. Using fewer iterations (Classic+NL-Fast) can
significantly reduce the computational cost with little per-
formance loss, especially on sequences with small motion.
Note that we solve the weighted median problem at each
pixel individually and do not reuse the sorting results from
neighboring pixels. Future work should consider reformulat-

ing the weighted median filtering so that a convolution-type
operation can be used to reduce the computational cost.

Limitations. Classic+NL produces larger errors in occlu-
sion regions on some sequences, such as “Schefflera” shown
in Fig. 12. The classical flow formulation assumes that ev-
ery pixel at the current frame has a corresponding pixel at
the next frame. However, this assumption breaks down in
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Fig. 11 Example results on the KITTI dataset. From top to bottom: first frame, second frame, results by Classic+NL-fast (5-level), results by
Classic+NL-FastA (7-level), and ground truth for the non-occluded feature points. EPE results in non-occluded sparse feature points: “000002”
(left), 12.124 by Classic+NL-fast (5-level) and 2.444 by Classic+NL-FastA (7-level); “000030” (right), 20.554 by Classic+NL-fast (5-level) and

0.615 by Classic+NL-FastA (7-level).

Table 13 Percentage of pixels with EPE larger than 3 pixels in non-
occluded (Out-Noc ) and all Out-All areas and average EPE in non-
occluded (Avg-Noc ) and all Avg-All areas on the KITTI zest set.

Method Out-Noc  Out-All  Avg-Noc  Avg-All

HS 1992 %  28.86 % 5.8 px 11.7 px
Classic+NL 24.64%  3335% 9.0 px 16.4 px
HSA 1477 %  24.08 % 4.0 px 9.0 px
Classic+NL-FastA | 1242 % 2227 % 3.2 px 7.8 px
Classic+NLA 10.60 %  20.66 % 2.8 px 7.2 px
Classic++A 10.16 %  20.29 % 2.6 px 7.1 px

Table 14 Running time (in minutes) for computing one optical flow
field from an image pair from different benchmark dataset using dif-
ferent methods in MATLAB on a 64-bit Linux desktop with 8GB mem-
ory. Used sequences: 640 x 480 Urban from Middlebury, 1024 x 436
alley_1 from MPI Sintel, and 1226 x 370 training image 0 from KITTL

\ Middlebury ~ MPI Sintel ~ KITTI
HS 1.62 1.8 2.56
Classic++ 5.83 7.2 8.48
Classic+NL 9.81 14 14.78
C+NL-fast 1.8 2.5 2.89
C+NL-full 26.7 29 42

regions of occlusion. Pixels that are occluded by some fore-
ground objects in one frame do not have corresponding pix-
els in the next, resulting in large errors with classical for-
mulations. In contrast, a layered model [64] may provide a
principled way to reason about occlusions. The motion mod-
el developed in this paper has enabled a recent layered ap-
proach [59] to achieve a consistent improvement over the
Classic+NL method, in particular near occlusion and mo-
tion boundary regions.

Small, fast moving objects also cause problems for the
classical coarse-to-fine estimation used by Classic+NL, as
shown in Fig. 10. The work by Brox and Malik [ 18] on large
displacement optical flow has inspired recent work [24, 56,
73] to embed feature matching into the coarse-to-fine esti-
mation framework. Chen et al. [24] show that, with proper
initialization, Classic+NL can also handle large displace-
ment optical flow on the Middlebury dataset.
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(b) Ground truth (c) Estimated flow field

(a) First frame

Fig. 12 Occlusions are not explicitly modeled by Classic+NL and may
cause problems in the estimated flow field. Dark pixels in the ground
truth indicate occlusions.

7 Conclusions

When implemented using modern practices, classical opti-
cal flow formulations can produce fairly competitive results
on existing datasets. To understand the techniques that help
such basic formulations work well, we quantitatively studied
various aspects of flow approaches from the literature, in-
cluding their implementation details. Among the best prac-
tices, we found that using median filtering to denoise the
flow after every warping step is key to improving accura-
cy, but that this increases the energy of the final result. Ex-
ploiting connections between median filtering and L1-based
denoising, we showed that algorithms relying on a median
filtering step are approximately optimizing a different objec-
tive that regularizes the flow field over a large spatial neigh-
borhood. Understanding this enables us to design and opti-
mize improved models that weight the neighbors adaptively
in an extended image region. The MATLAB code is publicly
available [1].

There has been much debate about whether methods that

perform well on Middlebury will generalize to other sequences.

Here we tuned the parameters of the method on the Middle-
bury training set and tested on Middlebury, MIT HAMA,
MPI Sintel, and KITTI. The conclusions on the Middlebury
dataset are consistent with those on the MIT HAMA dataset.
The one significant difference we found between Middle-
bury and the MPI Sintel and KITTI datasets was the aspect
ratio of the images. This allowed us to make a change to the
method by introducing a novel asymmetric image pyramid
that downsamples more rapidly in the horizontal direction
than the vertical direction. With only this change we found
that our conclusions on Middlebury hold for MPI Sintel as
well. The KITTI data set is somewhat different in nature and
seems to favor methods with more spatial smoothing. As
a result, the image-independent Classic++, which produces
more smooth flow fields, performs slightly better than the
image-dependent Classic+NL, with its sharp boundaries. It
is open whether these conclusions will hold for data tak-

en under totally different conditions, such as medical im-
ages. While the results on Middlebury generalize surprising-
ly well, we suspect that training the parameters for a specific
dataset will improve results further.
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Table 15 Models. Average end-point error (EPE) on the Middlebury optical flow benchmark (fest set). The ranking information was determined
at the writing of the paper (Sep. 2012).

Rank  Average Army  Mequon  Schefflera ~ Wooden Grove  Urban  Yosemite  Teddy
HS 49.0 0.501 0.12 0.25 0.45 0.24 0.95 0.83 0.24 0.93
Classic-C 348 0.408 0.10 0.23 0.45 0.20 0.88 0.47 0.16 0.77
Classic-L 427 0.530 0.10 0.24 0.47 0.21 0.92 1.23 0.20 0.87
HS-brightness N/A 0.759 0.21 0.89 1.13 0.42 0.93 0.70 0.18 1.61
Classic-C-brightness N/A 0.726 0.39 0.95 1.12 0.42 0.87 0.48 0.13 1.45
Classic-L-brightness N/A 0.603 0.17 0.64 0.84 0.32 0.90 0.48 0.13 1.34
HS [58] 66.2 0.872 0.22 0.61 1.01 0.78 1.26 1.43 0.16 1.51
BA (Classic-L) [58] 59.6 0.746 0.18 0.58 0.95 0.49 1.08 1.43 0.15 1.11
Adaptive [00] 28.5 0.401 0.09 0.23 0.54 0.18 0.88 0.50 0.14 0.65
Complementary OF [77] 31.6 0.485 0.10 0.20 0.35 0.19 0.87 1.46 0.11 0.60
NL-TV-NCC [68] 23.5 0.388 0.10 0.22 0.35 0.15 0.79 0.78 0.16 0.55
Classic++ 32.7 0.406 0.09 0.23 0.43 0.20 0.87 0.47 0.17 0.79
Classic++Gradient 335 0.430 0.08 0.17 0.49 0.21 0.94 0.55 0.17 0.83
Classic+NL 17.2 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49
Classic+NL-Full 17.5 0.316 0.08 0.24 0.28 0.15 0.63 0.49 0.16 0.50

Table 16 Models and pre-processing. Average end-point error (EPE) on the Middlebury training set for the classical model and different penalty
functions. By default, the input sequences were preprocessed using ROF texture decomposition; “brightness” means no preprocessing is performed.
The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus  Dimetrodon  Hydrangea ~ RubberWhale  Grove2  Grove3 Urban2 Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
Classic-C-brightness 0.288 0.268 0.166 0.215 0.134 0.146 0.584 0.352 0.437 0 0.9453
HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 1 0.0078
HS-brightness 0.387 0.335 0.226 0.252 0.154 0.185 0.639 0.564 0.743 1 0.0078
Classic-L 0.319 0.294 0.193 0.175 0.095 0.166 0.648 0.374 0.604 1 0.0078
Classic-L-brightness 0.325 0.292 0.207 0.274 0.145 0.158 0.588 0.451 0.484 0 0.2969

Table 17 Pre-Processing. Average end-point error (EPE) on the Middlebury training set for the baseline method (Classic-C) using different
pre-processing techniques. The regularization weight A parameter was tuned for each method to achieve optimal performance. The statistical
significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3 Urban2  Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
Gradient 0.305 0.288 0.141 0.167 0.092 0.165 0.614 0.385 0.588 0 0.4609
Gaussian 0.281 0.268 0.146 0.226 0.141 0.137 0.582 0.335 0.413 0 0.5469
Gaussian + Dx + Dy 0.290 0.280 0.126 0.174 0.105 0.154 0.588 0.470 0.420 0 0.6406
Dx + Dy 0.301 0.286 0.122 0.166 0.099 0.161 0.616 0.443 0.518 0 1.0000
Sobel edge[63] 0.417 0.334 0.149 0.184 0.130 0.194 0.757 0.451 1.135 1 0.0156
Laplacian [38] 0.430 0.374 0.170 0.176 0.096 0.175 0.756 0.464 1.232 1 0.0078
Laplacian 1:1 0.301 0.296 0.179 0.193 0.109 0.157 0.606 0.349 0.520 0 0.6641
Texture 4:1 0.286 0.271 0.159 0.175 0.100 0.154 0.587 0.349 0.490 0 0.5312
Unnormalized texture 0.298 0.279 0.152 0.166 0.092 0.158 0.623 0.348 0.563 0 0.3750

Table 18 Model and Methods. Average end-point error (EPE) on the Middlebury training set for the baseline model (Classic-C) using different
algorithm and modeling choices. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline
(Classic-C).

Average Venus  Dimetrodon  Hydrangea ~ RubberWhale  Grove2  Grove3 Urban2 Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
3 warping steps 0.304 0.283 0.122 0.163 0.095 0.150 0.622 0.357 0.644 0 0.9688
Down-0.5 0.298 0.280 0.152 0.166 0.092 0.158 0.626 0.349 0.562 0 1.0000
Down-0.95 0.298 0.281 0.151 0.168 0.099 0.165 0.661 0.339 0.523 0 0.9375
w/o GNC 0.354 0.303 0.160 0.171 0.105 0.183 0.835 0.316 0.759 0 0.1094
Bilinear 0.302 0.284 0.144 0.167 0.099 0.160 0.637 0.363 0.563 0 0.1016
w/o TAVG 0.306 0.288 0.149 0.167 0.093 0.163 0.647 0.345 0.593 0 0.1562
Central 0.300 0.272 0.156 0.169 0.092 0.159 0.608 0.349 0.597 0 0.7266
7-point [20] 0.302 0.282 0.168 0.171 0.091 0.163 0.601 0.360 0.584 0 0.3125
Deriv-warp 0.297 0.283 0.153 0.165 0.092 0.159 0.636 0.333 0.552 0 0.9531
Bicubic-II 0.290 0.276 0.132 0.152 0.083 0.142 0.624 0.338 0.571 1 0.0391
Deriv-warp-II 0.287 0.264 0.155 0.152 0.085 0.145 0.616 0.333 0.546 1 0.0156
Warp-deriv-II 0.288 0.267 0.155 0.151 0.085 0.147 0.630 0.328 0.542 1 0.0391
C-L(A=0.6) 0.303 0.290 0.158 0.171 0.094 0.158 0.611 0.367 0.579 0 0.1562
L-C(A=2) 0.306 0.281 0.174 0.173 0.096 0.164 0.662 0.343 0.557 0 0.1562
GC-0.45 (A = 3) 0.292 0.280 0.145 0.165 0.092 0.154 0.612 0.340 0.546 1 0.0156
GC-0.25 (A = 0.7) 0.298 0.283 0.128 0.169 0.094 0.150 0.617 0.353 0.594 0 1.0000
MF 3 x 3 0.305 0.287 0.155 0.168 0.094 0.162 0.616 0.372 0.583 0 0.1016
MF7x7 0.305 0.281 0.152 0.173 0.095 0.174 0.676 0.330 0.557 0 0.5625
2x MF 0.300 0.279 0.152 0.167 0.093 0.163 0.650 0.339 0.555 0 1.0000
5x MF 0.305 0.278 0.152 0.171 0.093 0.172 0.682 0.329 0.561 0 0.6875
w/o MF 0.352 0.307 0.168 0.199 0.113 0.217 0.705 0.423 0.684 1 0.0078
Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555 1 0.0078
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Table 19 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the non-local term and alternating
optimization (Classic-C-A) and its improved models. The statistical significance is tested using the Wilcoxon signed rank test between each
method and the baseline (Classic-C).

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3 ~ Urban2  Urban3 signif.  p-value
Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —
Classic-C-A 0.305 0.281 0.140 0.159 0.092 0.167 0.676 0.334 0.594 0 0.8125
Classic-C-A-noRep 0.309 0.279 0.139 0.161 0.093 0.157 0.653 0.370 0.619 0 0.5781
Classic-C-A-II 0.296 0.278 0.153 0.166 0.091 0.168 0.656 0.329 0.531 0 0.7188
Classic-C-A-CGD 0.305 0.281 0.148 0.161 0.093 0.159 0.697 0.344 0.560 0 0.5625

Table 20 Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the weighted non-local term and its
variants. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic+NL).

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3 Urban2  Urban3 signif.  p-value

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384 — —
Classic+NL-Full 0.222 0.252 0.135 0.156 0.074 0.097 0.469 0.214 0.382 0 0.8203
Classic+NL-Fast 0.221 0.233 0.117 0.151 0.076 0.098 0.464 0.210 0.421 0 0.3125
RGB 0.240 0.243 0.131 0.155 0.081 0.109 0.501 0.236 0.468 1 0.0156
HSV 0.231 0.245 0.131 0.152 0.074 0.110 0.492 0.222 0.424 1 0.0312
LUV 0.226 0.241 0.131 0.149 0.074 0.104 0.460 0.223 0.427 0 0.5625
Gray 0.253 0.253 0.133 0.158 0.086 0.125 0.547 0.242 0.479 1 0.0078
w/o color 0.283 0.258 0.128 0.157 0.087 0.155 0.633 0.303 0.543 1 0.0156
w/o occ 0.226 0.243 0.131 0.152 0.073 0.103 0.488 0.230 0.386 0 0.1250
w/o spa 0.223 0.237 0.132 0.154 0.073 0.102 0.475 0.213 0.398 0 0.5625
o9 =5 0.221 0.240 0.131 0.151 0.073 0.104 0.466 0.208 0.392 0 1.0000
o =10 0.224 0.238 0.132 0.153 0.073 0.102 0.485 0.228 0.384 0 0.2500
A=1 0.236 0.245 0.151 0.164 0.080 0.120 0.430 0.243 0.459 0 0.1406
=9 0.244 0.249 0.137 0.160 0.091 0.111 0.577 0.201 0.426 0 0.1016
11 x 11 0.223 0.240 0.131 0.151 0.074 0.103 0.451 0.234 0.397 0 0.5938
19 x 19 0.220 0.238 0.132 0.154 0.073 0.103 0.470 0.210 0.384 0 0.8750

Table 21 Additional results for HS. Average end-point error (EPE) on the Middlebury fraining set. The statistical significance is tested using the
Wilcoxon signed rank test between each method and HS.
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24.

25.

26.

Average Venus  Dimetrodon  Hydrangea  RubberWhale  Grove2  Grove3  Urban2  Urban3 signif.  p-value
HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 — —
HS 20 x MF 0.365 0.299 0.214 0.184 0.104 0.196 0.699 0.431 0.792 1 0.0469

. T. Brox and J. Malik. Large displacement optical flow: Descrip-

tor matching in variational motion estimation. /EEE Transaction
on Pattern Analysis Machine Intelligence, 33(3):500-513, March
2011.

A. Bruhn and J. Weickert. Towards ultimate motion estimation:
Combining highest accuracy with real-time performance. In IC-
CV, pages 749-755, 2005.

A. Bruhn, J. Weickert, and C. Schnérr. Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods.
International Journal of Computer Vision, 61(3):211-231, Febru-
ary 2005.

A. Buades, B. Coll, and J. Morel. A non-local algorithm for image
denoising. In IEEE International Conference on Computer Vision
and Pattern Recognition, volume 2, pages 60-65, 2005.

P. J. Burt, C. Yen, and X. Xu. Local correlation measures for mo-
tion analysis: A comparative study. Processings of IEEE Pattern
Recognition and Image Processing, pages 269-274, 1982.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A natural-
istic open source movie for optical flow evaluation. In European
Conference on Computer Vision, IV, pages 611-625, 2012.

Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement
optical flow from nearest neighbor fields. In IEEE International
Conference on Computer Vision and Pattern Recognition, 2013.
to appear.

Z. Chen, Y. Wu, and J. Wang. Decomposing and regularizing
sparse/non-sparse components for motion field estimation. In
IEEE International Conference on Computer Vision and Pattern
Recognition, pages 1176-1183, 2012.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? The KITTI vision benchmark suite. In /[EEE Internation-
al Conference on Computer Vision and Pattern Recognition, pages
3354-3361, Providence, USA, 2012.

27

28

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

. S. Geman and D. Geman. Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Transaction
on Pattern Analysis Machine Intelligence, 6(6):721-741, Novem-

ber 1984.
. G. Gilboa and S. Osher. Nonlocal operators with applications to
image processing. SIAM Multiscale Modeling and Simulation,
7:1005-1028, 2008.
F. Glaer, G. Reynolds, and P. Anandan. Scene matching by hierar-
chical correlation. In IEEE International Conference on Computer

Vision and Pattern Recognition, pages 432-441, 1983.
B. Horn. Robot Vision. MIT Press, 1986.
B. Horn and B. Schunck. Determining optical flow. Artificial

Intelligence, 16(1-3):185-203, August 1981.

I. Hsiao, A. Rangarajan, and G. Gindi. A new convex edge-
preserving median prior with applications to tomography. /EEE
Transactions on Medical Imaging, 22(5):580-585, May 2003.

A. Humayun, O. Mac Aodha, and G. J. Brostow. Learning to Find
Occlusion Regions. In IEEE International Conference on Com-
puter Vision and Pattern Recognition, number 2161-216, 2011.
K. Jia, X. Wang, and X. Tang. Optical flow estimation using
learned sparse model. In IEEE International Conference on Com-

puter Vision, pages 2391-2398, 2011.
R. G. Keys. Cubic convolution interpolation for digital image pro-

cessing. IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, 29(6):1153-1160, December 1981.

P. Krihenbiihl and V. Koltun. Efficient nonlocal regularization
for optical flow. In European Conference on Computer Vision,
volume I, pages 356-369, 2012.

C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine
region-trees using discrete optimization. In IEEE International

Conference on Computer Vision, pages 1562—1569, 2009.
V. Lempitsky, S. Roth, and C. Rother. FusionFlow: Discrete-

continuous optimization for optical flow estimation. In IEEE In-



20

Deqing Sun et al.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

ternational Conference on Computer Vision and Pattern Recogni-
tion, 2008.

V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves for
Markov random field optimization. /EEE Transaction on Pattern
Analysis Machine Intelligence, 32(8):1392-1405, August 2010.
Y. Li and S. Osher. A new median formula with applications
to PDE based denoising. Communications in Mathematical Sci-
ences, 7(3):741-753, September 2009.

D. Lin and J. Fisher. Low level vision via switchable Markov
random fields. In /EEE International Conference on Computer
Vision and Pattern Recognition, pages 2432-2439, 2012.

C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-
assisted motion annotation. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 1-8, 2008.

B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Confer-
ences on Artificial Intelligence, pages 674—679, 1981.

O. Mac Aodha, G. J. Brostow, and M. Pollefeys. Segmenting
video into classes of algorithm-suitability. In /EEE International
Conference on Computer Vision and Pattern Recognition, pages
1778-1785, 2010.

D. Marr. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. W.H. Free-
man, New York, NY, USA, 1982.

H.-H. Nagel and W. Enkelmann. An investigation of smoothness
constraints for the estimation of displacement vector fields from
image sequences. [EEE Transaction on Pattern Analysis Machine
Intelligence, 8(5):565-593, September 1986.

M. Nikolova. Model distortions in Bayesian MAP reconstruction.
AIMS J. on Inverse Problems and Imaging, 1:399-422, 2007.

T. Nir, A. M. Bruckstein, and R. Kimmel. Over-parameterized
variational optical flow. International Journal of Computer Vision,
76(2):205-216, 2008.

Y. Niu, W. Feng, and F. Liu. Enabling warping on stereoscopic
images. ACM Trans. Graph., 31(6):183, 2012.

W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flan-
nery. Numerical Recipes in C++: The art of scientific computing.
Cambridge University Press, New York, NY, USA, 2002.

X. Ren. Local grouping for optical flow. In IEEE International
Conference on Computer Vision and Pattern Recognition, pages
1-8, 2008.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenome-
na, 60(1-4):259-268, November 1992.

P. Sand and S. Teller. Particle video: Long-range motion estima-
tion using point trajectories. International Journal of Computer
Vision, 80(1):72-91, October 2008.

U. Schmidt, Q. Gao, and S. Roth. A generative perspective on
MREFs in low-level vision. In IEEE International Conference
on Computer Vision and Pattern Recognition, pages 1751-1758,
2010.

D. Shulman and J.-Y. Herve. Regularization of discontinuous flow
fields. In Workshop on Visual Motion, pages 81-86, 1989.

F. Steinbriicker, T. Pock, and D. Cremers. Large displacement
optical flow computation withoutwarping. In /IEEE International
Conference on Computer Vision, pages 1609-1614, 2009.

D. Sun, S. Roth, and M. J. Black. Secrets of optical flow esti-
mation and their principles. In IEEE International Conference
on Computer Vision and Pattern Recognition, pages 2432-2439,
2010.

D. Sun, S. Roth, J. P. Lewis, and M. J. Black. Learning optical
flow. In European Conference on Computer Vision, pages 83-97,
2008.

D. Sun, E. B. Sudderth, and M. J. Black. Layered image motion
with explicit occlusions, temporal consistency, and depth order-
ing. In Advances in Neural Information Processing Systems, pages
2226-2234, 2010.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

D. Sun, E. B. Sudderth, and M. J. Black. Layered segmentation
and optical flow estimation over time. In IEEE International Con-
ference on Computer Vision and Pattern Recognition, pages 1768—
1775, 2012.

D. Sun, J. Wulff, E. B. Sudderth, H. Pfister, and M. J. Black.
A fully-connected layered model of foreground and background
flow. In IEEE International Conference on Computer Vision and
Pattern Recognition, pages 1768-1775, 2013.

R. Szeliski. Computer Vision: Algorithms and Applications.
Springer-Verlag New York, Inc., 2010.

T. Vaudrey and R. Klette. Residual images remove illumination
artifacts! In Pattern Recognition (Proceedings of DAGM), pages
472-481, Berlin, Heidelberg, 2009. Springer-Verlag.

J. Y. A. Wang and E. H. Adelson. Representing moving images
with layers. IEEE Transactions on Image Processing, 3(5):625—
638, September 1994.

A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality
TV-L1 flow with fundamental matrix prior. In Image and Vision
Computing New Zealand, 2008.

A. Wedel, T. Pock, and D. Cremers. Structure- and motion-
adaptive regularization for high accuracy optic flow. In /EEE
International Conference on Computer Vision, pages 1663—-1668,
2009.

A. Wedel, T. Pock, C. Zach, D. Cremers, and H. Bischof. An
improved algorithm for TV-L1 optical flow. In Dagstuhl Motion
Workshop, pages 2345, 2008.

M. Werlberger, T. Pock, and H. Bischof. Motion estimation with
non-local total variation regularization. In IEEE International
Conference on Computer Vision and Pattern Recognition, pages
2464-2471, 2010.

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof. Anisotropic Huber-L1 optical flow. In Proceedings
of the British Machine Vision Conference, pages 108.1-108.11,
2009.

F. Wilcoxon. Individual Comparisons by Ranking Methods. Bio-
metrics Bulletin, 1(6):80-83, December 1945.

J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bilateral
filtering-based optical flow estimation with occlusion detection. In
European Conference on Computer Vision, volume I, pages 211-
224, 2006.

L. Xu, J. Chen, and J. Jia. A segmentation based variational model
for accurate optical flow estimation. In European Conference on
Computer Vision, volume I, pages 671-684, 2008.

L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical
flow estimation. /EEE Transaction on Pattern Analysis Machine
Intelligence, 34(9):1744—1757, September 2012.

K. Yoon and I. Kweon. Adaptive support-weight approach for cor-
respondence search. IEEE Transaction on Pattern Analysis Ma-
chine Intelligence, 28(4):650-656, April 2006.

C. Zach, T. Pock, and H. Bischof. A duality based approach for
realtime TV-L1 optical flow. In Pattern Recognition (Proceedings
of DAGM), pages 214-223, 2007.

H. Zimmer, A. Bruhn, and J. Weickert. Optic flow in harmony.
International Journal of Computer Vision, 93(3):368-388, 2011.
H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado,
B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. In
Energy Minimization Methods in Computer Vision and Pattern,
pages 207-220, 2009.

C. Zitnick, N. Jojic, and S. B. Kang. Consistent segmentation
for optical flow estimation. In IEEE International Conference on
Computer Vision, volume 2, pages 1308—1315, 2005.



