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Figure 1: Animating breathing. Here we add realistic breathing shape deformations to a 3D model of a person running. The Euclidean
distances between vertices of the breathing and non-breathing model are color coded (red is large, blue is small). Here the runner is breathing
mostly with the chest and the temporal pattern of breathing was animated by a “breath actor.”

Abstract

Modeling how the human body deforms during breathing is im-
portant for the realistic animation of lifelike 3D avatars. We learn
a model of body shape deformations due to breathing for differ-
ent breathing types and provide simple animation controls to ren-
der lifelike breathing regardless of body shape. We capture and
align high-resolution 3D scans of 58 human subjects. We com-
pute deviations from each subject’s mean shape during breathing,
and study the statistics of such shape changes for different genders,
body shapes, and breathing types. We use the volume of the regis-
tered scans as a proxy for lung volume and learn a novel non-linear
model relating volume and breathing type to 3D shape deforma-
tions and pose changes. We then augment a SCAPE body model
so that body shape is determined by identity, pose, and the parame-
ters of the breathing model. These parameters provide an intuitive
interface with which animators can synthesize 3D human avatars
with realistic breathing motions. We also develop a novel inter-
face for animating breathing using a spirometer, which measures
the changes in breathing volume of a “breath actor.”
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1 Introduction

We describe a method to animate realistic breathing in virtual hu-
mans with a simple intuitive interface. Realistic human models and
avatars are common in movies and video games. While 3D body
scanning technology produces realistic looking 3D body meshes,
making them look “alive” requires that they breathe. Moreover,
breathing is part of body language and is important for convey-
ing emotions. Apart from visually pleasing animations in the film
or video game industry, realistic animation of breathing is also es-
sential in the medical domain (e.g. for planning radiation therapy).
Given the importance of breathing, there are surprisingly few tech-
niques that produce realistic breathing motions, across a range of
body shapes, without extensive animation by hand.

Modeling breathing in a realistic, lifelike way is a hard problem.
First, it entails modeling subtle yet complex deformations of the hu-
man body that vary across time and context. Second, breathing has
a time-varying global effect on the human body; it induces shape
change mainly in the torso, but also posture changes over the whole
body. Previous work on animating breathing 3D avatars has been
either limited in realism or does not generalize easily to new shapes
and breathing types [Park and Hodgins 2006; Promayon et al. 1997;
Sanders et al. 2009; Zordan et al. 2004; Veltkamp and Piest 2009].

We propose a new approach for modeling body deformations due to
breathing using high-resolution 3D human scans, a statistical model
of the human body, and physiological parameters related to respira-
tion. An example of animating the breathing of a running character
is shown in Fig. 1. To capture the subtle and complex deforma-
tions of the human body shape due to breathing, we scanned 58
human subjects at multiple time instants during natural breathing.
High resolution triangulated meshes were captured using 22 pairs of
stereo cameras and a random projected texture pattern together with
22 color cameras and a white-light flash system; this system gives
high quality 3D meshes with registered texture. To elicit a range
of deformations, subjects were asked to breathe normally, with the
chest, and with the stomach. To separate breathing-induced shape
change in our data from pose-induced shape change, we register all
scans to a statistical model of body shape and pose variation. We
compute a mean shape for each subject and the deviations from the
mean due primarily to breathing.

We perform principal component analysis (PCA) on the estimated
breathing deformations to produce a low-dimensional model of
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Figure 2: Animating breathing types. Respiration induces
changes in torso shape and posture. We learn a model of how 3D
breathing deformations relate to lung volume and breathing type
and use it to animate bodies of varying shape and pose. Here we
show the maximal inhale and exhale shapes overlaid for three dif-
ferent bodies breathing mainly with the stomach (left), mainly with
the chest (right), or using a combination of chest and stomach (mid-
dle).

breathing variation. The PCA space has distinct components for
“chest breathing” and “stomach breathing”. For instance, the shape
change during chest breathing is as much up and down as in and
out; this is quite different from the shape changes used in simple
animations. Maybe surprisingly, we found little significant differ-
ence in breathing shape change between men and women. We did
find postural changes that were significantly correlated with breath-
ing and that differed between men and women. We also found that
the dominant breathing shape deformations were only weakly cor-
related with body shape but that body shape is correlated with fine-
scale differences of shape change during breathing.

To animate breathing we need natural controls that are related to the
statistics of pose and shape deformations. To that end, we compute
the difference in volume between each 3D body and the mean shape
of the subject. We take the change in volume as a proxy for change
in lung volume. This allows us to model breathing deformations as
a function of volume and to use volume as a simple, and physiologi-
cally relevant, control for animation. We also define different types
of breathing as illustrated in Fig. 2. For a given breathing type,
we find that body shape varies linearly with volume. This linear
relationship, however varies non-linearly with breathing type. We
learn a novel mathematical model of body shape deformation and
pose change as a function of volume and type. We also extend the
SCAPE body model [Anguelov et al. 2005] to include body shape
deformations predicted by our breathing model. These deforma-
tions are combined with identity and pose deformations to produce
realistic breathing for bodies of any shape and any pose (Figs. 1 and
2).

We describe an intuitive interface for creating temporal breathing
patterns and for changing breathing types. To more easily cap-
ture realistic lung volume sequences for animation we use a de-
vice called a spirometer. This device makes it possible for a hu-
man “breath actor” to “act out” a particular breathing sequence
to correspond with the desired action or emotional content. The
recorded changes in lung volume drive the animated character us-
ing the learned shape deformation model, providing an easy and
novel way to achieve realistic breathing animation.

While our shape model is built from subjects in a standing pose, we
show that the learned model applies to other poses. We animate a
3D body model and use breath acting to recover the corresponding

breathing sequence. The animated sequences with breathing look
more natural than sequences without breathing.

2 Related Work

Animation by hand. Breathing is a strong indication of life and
realistic characters in feature films often have many parameters
for hand animation of breathing; the animation is labor intensive.
For simpler characters (e.g. in video games) fairly primitive models
may be used that capture the gist of breathing through changes in
posture (rocking back and forth) or simple cyclic expansion of the
chest. Basic breathing controls like these are sometimes used for
idle motion generation [Egges et al. 2004; Egges et al. 2006]. In
this case breathing is seen as a cause of idling motion, rather than
something to model on its own. What is missing is a realistic model
of breathing, with simple animation controls, that can be applied to
many body shapes in motion.

Anatomy- and physics-based modeling. There is extensive work
on anatomy- and physics-based modeling of the human body; see
[Lee et al. 2012; Magnenat-Thalmann et al. 2009] for reviews. For
breathing, prior work focuses on modeling the torso [Promayon
et al. 1997; Zordan et al. 2004; Veltkamp and Piest 2009]. Zordan
et al. [2004] propose an anatomically motivated model of the hu-
man torso that consists of rigid parts (bones) and deformable parts
(muscles). Animation requires physical simulation. Veltkamp et
al. [2009] introduce a similar model that combines better control
over abdominal and chest breathing using two independent breath-
ing systems. Lee et al. [2009] present a comprehensive biome-
chanical model of the upper human body with a proof-of-concept
demonstration of synthesized breathing motions. In the medical do-
main, breathing models focus primarily on representing lung shape
[Moreno et al. 2007; Cavagnaro et al. 2013; Santhanam et al. 2003].

Although anatomy- and physics-based body models offer the po-
tential for high detail, they do not generalize easily to new sub-
jects. Synthesizing new human bodies as well as tuning the param-
eters to generate specific types of breathing is not straightforward.
Since these breathing models focus on the torso, they do not model
whole-body posture variation during breathing. These issues, com-
bined with the computational expense of physics simulation, mean
that such methods are difficult to use in practice. In contrast, our
model is learned from data, generalizes easily to new subjects, mod-
els whole-body posture variation during breathing, and provides in-
tuitive controls for synthesizing breathing animations. In previous
anatomy-based models, volume change over time is the observed
outcome that is used to evaluate whether an animation is realistic.
In our case, breathing volume is the input that drives the animation
and we can animate arbitrary breathing sequences using volume.

Statistical human body models. Previous work on synthesizing
breathing in a data-driven way is limited to replaying recorded
breathing motions for 3D shapes similar to the shape of the recorded
subjects [Park and Hodgins 2006; Sanders et al. 2009]. However,
statistical body models have been used successfully in the past
to model the observed body shape across the human population
[Anguelov et al. 2005; Allen et al. 2006; Hasler et al. 2009; Chen
et al. 2013]. In these models the observed shape is conceptually
decomposed to the intrinsic shape of the subject and deformations
that change based on the pose of the subject, such as muscle bulging
etc. They do not model breathing deformations or, in fact, other de-
formations not due to identity or pose. In this work, we extend the
SCAPE model [Anguelov et al. 2005] to include breathing defor-
mations and define controls to easily animate these deformations.

Dynamic shape capture and modeling. The modeling of breath-
ing shape deformations has been limited by a lack of data. High-
resolution 3D body scanners typically require several seconds be-



Figure 3: Example scans. 58 subjects were scanned in an “A” pose while breathing. Subjects wore tight fitting clothing so that shape
changes during breathing were evident. They were asked to perform different “types” of breathing: normal, breathing with the chest, and
breathing with the stomach. The full dataset consists of 2807 3D meshes with associated texture.

tween consecutive scans meaning that fine temporal resolution is
lost. Depth maps with high temporal resolution are available from
range sensors [Penne et al. 2008] but these are noisy and have low
spatial resolution. Despite progress on tracking complex surfaces
such as human clothing in video sequences [Stoll et al. 2010], cap-
turing accurate subtle deformations of the human body remains a
challenge.

Low spatial resolution and high temporal resolution is available
from tracked markers but, with standard marker sets, breathing is
not readily visible. Larger marker sets can capture breathing mo-
tions of individuals [Park and Hodgins 2006]. Park and Hodgins
capture shape changes of an actor breathing using approximately
350 markers and replay this motion on a similar body model by de-
forming the body mesh. The markers provide a high-dimensional
control signal, with high temporal resolution, that can be used to
reproduce highly realistic and nuanced animations. In contrast to
our approach, however, they do not provide a model of breathing
that can be easily controlled and animated to produce different ef-
fects. We learn a low-dimensional model of breathing deformations
from examples that can be applied to different body shapes, poses,
and motion sequences. Our model is parameterized by lung volume
and breathing type using concepts from the physiology of respira-
tion [West 2012; Mines 1981].

Learning a breathing model requires capturing the breathing shape
of different people and types of breathing. To analyze breathing
across a population, we need breathing deformations that are in
correspondence across people and over time. Marker data could be
hard to align because, on areas like the torso, it is difficult to place
markers in the same location on different people. Instead Park and
Hodgins [2008] use large marker sets to learn a deformation model
for static and dynamic motions. They then control the deforma-
tions using smaller marker sets (40-50 makers); they do not address
breathing. Small marker sets, with appropriately placed markers,
could be used to control breathing animations. In contrast, here
we develop a model of breathing that can be animated with simpler
controls.

Computer vision methods with texture painted on the skin provide a
possible alternative to marker-based systems [Neumann et al. 2013]
but have not been used to model breathing. In contrast to previous
approaches, we acquire a dense reconstruction of the human sub-
ject’s shape using a high-resolution 3D scanner. We acquire mul-
tiple scans of each subject at unknown time instants in the breath-
ing cycle and register them by taking into account both the geom-
etry and appearance of the 3D scans. We find that high-resolution

meshes facilitate the computation of correspondence across sub-
jects and across time.

Controls for animation. The motion of markers on the chest has
been used to drive an anatomy-inspired model [Sanders et al. 2009].
Other controls for breathing animation include audio [DiLorenzo
et al. 2008; Cosker and Edge 2009] and parameters related to hu-
man physiology. Animation from physiology-related input (includ-
ing a stretch sensor on the chest, EKG, pulse, skin temperature)
has been limited to the anatomically-based models described above
and lacks visual realism. Our approach is more similar in concept
to [Kider et al. 2011], where human body surface deformations are
correlated with recorded physiology data related to the level of fa-
tigue. In our case, we link the observed surface deformations with
the lung volume during breathing. In addition we animate 3D hu-
man characters using spirometer data (lung volume measurements)
recorded by “breath actors.”

3 Breath Taking (Data Capture)

To model deformations of the human body due to breathing as real-
istically as possible we capture high-resolution 3D full-body scans
of 58 subjects (28 men and 30 women) of various shapes; Fig. 3
shows a few representative scans. Subjects were a mix of pro-
fessional models (with a modeling contract), paid participants (8
Euro/hour) and volunteers. Before a capture session, each sub-
ject gave their informed written consent for the analysis and pub-
lication of their 3D scan data including images and scans of their
faces. The non-professional subjects agreed that their data could
be displayed, provided that their face is blurred or masked. The
scans were captured with a custom multi-camera stereo-based sys-
tem (3dMD LLC, Atlanta, GA), posing no risk to the participants,
using flashed texture patterns (for stereo) and white light flashes
(for texture capture). Shape capture happens in about 34ms and,
since it is flash-based, there is no motion blur. There is a recov-
ery time between captures meaning that we can only capture dis-
crete instants during breathing. Subjects wore minimal tight-fitting
clothing (bike-shorts style bottoms for both men and women and
a sports-bra style top for women) as shown in Fig. 3; this clothing
makes shape changes during respiration readily apparent. To make
later registration of scans with a common template more accurate,
some of the subjects were painted in a multi-colored pattern using
a water-based paint [Bogo et al. 2014].

We focus on normal breathing of the upright body in an “A pose”
(Fig. 3); that is, we do not consider different activities or pose-



(a) (b) (c)

Figure 4: Example of 3D scan registration. A template mesh
is warped to match a high-resolution 3D scan (a). The warped
template mesh at the end of the registration procedure is shown in
(b). Overlaying the warped template on the scan (c), we see that
the two surfaces are very close to each other (they interleave with
high frequency). We followed the registration procedure described
in [Bogo et al. 2014]. No landmarks were used for initialization.

dependent changes in breathing. Subjects were informed that the
study was about breathing and were instructed to breathe at what
they considered a normal pace. The physiology of respiration [West
2012] leads to two main types of breathing: chest and abdominal
breathing which correspond to different motions of the diaphragm.
We initially asked the subjects to breathe normally. Then we ex-
plicitly asked them to focus on breathing with the chest or with the
stomach. Additionally, to be able to represent the extremes of the
breathing deformation, we recorded the subject shape during com-
plete inhale and complete exhale. In total we captured and analyzed
2807 full body scans.

Although breathing is naturally a time evolving process, current
high-resolution 3D body scanning systems can give us only sparse
samples of this temporal process. Thus, our data consist of static
3D scans that were taken at unknown time instants of the subject’s
breathing activity. We address this limitation below.

3.1 Data processing

Our first step is to bring all the 3D scans into correspondence by
registering (aligning) them to a 3D body template represented as a
triangulated mesh (10,777 vertices, 21,550 triangles) as illustrated
in Fig. 4. The detailed process is described elsewhere [Bogo et al.
2014]; the result is that all 2807 meshes are in correspondence with
the template. Shapes are represented as triangle deformations from
a template shape. Behind this process is a 3D parametric shape
model similar to SCAPE [Anguelov et al. 2005] in that it factors
body shape changes due to identity from those due to pose. We
normalize all registered scans to a common pose and save the pose
parameters. For each subject we compute the mean shape and, for
each scan, we then compute the residual shape deformation from
the mean. This constitutes our shape training data. Additionally we
have the pose of each aligned scan and this is used as pose training
data.

The shape and pose change during respiration is directly related to
the volume of air in the lungs and the motion of the diaphragm.
Consequently lung volume and diaphragm motion would provide
natural controls for breathing animation. Unfortunately, neither is
directly observable from the scans. What is observable, however,
is mesh volume, which is easily computed from the aligned meshes
using signed volumes of tetrahedra as described in [Sánta and Kato
2013]. We assume that mesh volume changes result exclusively

Figure 5: BreathSCAPE. The standard SCAPE model [Anguelov
et al. 2005] factors body shape into intrinsic shape and pose-
dependent shape (blue). We add a new type of shape deformation
for breathing and combine all three into a model with separate con-
trols for breathing (red).

from changes in lung volume and consequently take mesh volume
(and change in volume) as a proxy for actual lung volume.

As we saw before, according to the physiology of respiration there
are two main types of breathing: chest and abdominal breathing. In
practice, however, people breathe in a variety of ways with vary-
ing amounts of chest and stomach deformation. While we cannot
observe the diaphragm’s motion, we can observe its effect on body
shape. To define the type of breathing we segment the torso into
an upper and lower segment of roughly equal volume. At maxi-
mal inhale we compute the difference in volume of each segment
from that of the mean segment volume. The ratio of chest vol-
ume change over the total volume change defines the percentage of
“chest breathing”, which we refer to as the “type” of breathing.

4 Breathing Space (Shape Model)

Given a single 3D scan of a subject it is not well defined what part
of the observed shape is due to breathing and what is due to the in-
trinsic shape of the person; e.g. do they have a large chest or are they
inhaling deeply? However, given multiple scans of the same sub-
ject at different time instants in the breathing cycle, we can extract
the shape and pose variations due to breathing. After registering the
initial 3D scans (above), our data consist of aligned 3D meshes of
multiple subjects at unknown time instants in their breathing cycle.
Given a set ofK 3D meshes in correspondence,Xij , i = 1, . . . ,K,
for a subject j, we extract their intrinsic shape, Dj , as well as the
shape deformations due to breathingBij for eachXij by extending
a SCAPE body model [Anguelov et al. 2005].

SCAPE represents body shape as a deformation from a template
mesh to an instance mesh using deformation gradients [Sumner
and Popović 2004]. The basic idea is summarized in Fig. 5 and
the reader is referred to [Anguelov et al. 2005] for details. The
deformation gradients in SCAPE are represented as 3 × 3 defor-
mation matrices that transform triangles, t, in a template mesh, T ,
into corresponding triangles in an instance mesh, Xij . Since we
have aligned the template with all the scans, T and Xij have the
same topology, and the transformation matrices are given. To re-
construct a mesh Xij using the SCAPE model, three types of de-



Figure 6: Pose change during breathing. Left: Mean pose of a
subject (A-pose). Right: Posture variation of the same subject dur-
ing the scanning session. Some pose variation is due to breathing
and some is not. Each part is color coded to show the body seg-
mentation.

formation gradients are applied to the triangles t of a template mesh
T : pose-dependent transformations, Qij

t , identity-dependent trans-
formations, Sij

t , and rigid part rotations Rij
l[t]. More specifically,

given the edges v̂t,e, e = 0, 1 of each triangle t on the template, we
compute the edges vijt,e, e = 0, 1 of triangle t belonging to the i-th
mesh of subject j as

vijt,e = Rij
l[t]S

ij
t Q

ij
t v̂t,e (1)

where l[t] denotes the body part to which triangle t belongs. The
template mesh is segmented into distinct parts and all the triangles
of the part undergo the same rotation Rl[t]; the part segmentation is
illustrated in Fig. 6.

There is one extra step to SCAPE. The above equation acts on ev-
ery triangle in the mesh independently, resulting in a collection of
triangles that do not necessarily form a valid mesh. SCAPE adds an
extra step of solving for the valid mesh with triangle deformations
that best match those above; see [Anguelov et al. 2005].

Additionally, the identity dependent deformations for a population
of people can be approximated as a linear combination of basis
deformations learned using principal component analysis (PCA).
Here we use approximately 4000 laser scans of men and women
from the US and European CAESAR datasets [Robinette et al.
2002]. After registering the scans with the template, we take the
deformations describing each scan and stack them in a vector. We
then perform PCA on the matrix of vectors for all the registered
scans. The principal components capture the directions of shape
variation in the population and we can approximate any body shape
deformation as a linear combination of a relatively small number of
these components.

To model pose-dependent deformations we captured an registered
approximately 1800 scans of people in a wide variety of poses. The
registration process and our BlendSCAPE formulation is described
in [Bogo et al. 2014; Hirshberg et al. 2012]. The template mesh is
segmented into parts and, from the registered template meshes, we
compute the rotation of each part. Using this dataset, we learn the
non-rigid, pose-dependent, deformations,Qij

t , which are a function
of the part rotations (see [Anguelov et al. 2005; Hirshberg et al.
2012]).

4.1 Adding Breathing

We now define the deformation matrices R,S,Q mentioned above
as functions of either pose parameters, r, or shape parameters, u,
corresponding to linear coefficients in the PCA space; that is,

vijt,e = Rl[t](r
ij)St(u

ij)Qt(r
ij)v̂t,e. (2)

These parameters provide the animator controls to create a body
shape u in pose r.

One of our key contributions is to extend SCAPE by separating the
identity-dependent deformations S into two parts: one due to the in-
trinsic shape of the person,D, and one due to breathing,B (Fig. 5).
The functions D and B depend on intrinsic shape parameters, d,
and the shape parameters related to breathing, b, respectively. Ad-
ditionally, we separate the pose into static pose, a, and, optionally,
pose due to breathing, c. Our new model, BreathSCAPE, takes the
following form:

vijt,e = Rl[t](a
ij+cij)(Dt(d

j)+Bt(b
ij))Qt(a

ij+cij)v̂t,e. (3)

To describe pose we use an axis-angle representation. In this rep-
resentation it is meaningful to add pose parameters as long as self-
intersection contraints and joint limits are not violated. Previous
SCAPE models (and related models) ignore breathing deforma-
tions. Here we make them explicit. Below we show how to learn
and then parameterize these by breathing type s, volume v, and
gender g. We end up with a model of the following form:

vt,e = Rl[t](a+ E(g, v))(Dt(d) +Bt(F(s, v)))

Qt(a+ E(g, v))v̂t,e (4)

where E(g, v) returns an estimate of the breathing-dependent pose,
c, and F(s, v) returns an estimate of the breathing shape parameters,
b.

4.2 Extracting the Breathing Deformations and Pose

Given multiple scans from the subjects in our training set, our goal
is to extract the intrinsic shape, Dj , of each subject as well as the
shape deformations due to breathing, Bij . Recall that all scans are
in correspondence with the template (and hence the SCAPE model).

Consider one subject, j, withK aligned meshesXij ; we seek to ex-
tract the breathing-related deformations Bij . This means we want
to effectively factor out pose, pose-dependent deformations, and
identity to focus on what is left. The remainder should be due to
breathing.

To recover the deformations for Xij , we first solve for the shape
deformations Sij by minimizing (see [Anguelov et al. 2005])

argmin
Sij

∑
t

∑
e=0,1

‖Rij
l[t]S

ijQij
t v̂t,e − v

ij
t,e‖

2
F

+ β
∑

t1,t2adj

‖Sij
t1
− Sij

t2
‖2F . (5)

The first term minimizes the reconstruction error between the ver-
tices of the captured meshes and their mesh representation based
on deformation gradients. The second term enforces smooth defor-
mations between adjacent triangles. Note that the smoothness term
here is applied only to the shape deformations.

Given that our meshes are in correspondence and segmented, it is
easy to estimate the rigid rotation matrices Rij

l[t] between corre-
sponding body parts in the aligned mesh. We convert the rotation



Figure 7: Shape change during breathing. Several examples of
registered meshes and how they deviate from the mean shape of the
subject. Here we have pose-normalized the meshes to the A-pose.
Hot colors indicate greater distance from the mean (red approxi-
mately equals 1 cm and blue 0 cm).

matrix per body part to an axis-angle representation of pose rela-
tive to the template mesh consisting of 3 parameters. That amounts
to a vector, rij , of 57 pose parameters per mesh (3 parameters, 19
body parts). We approximate the static pose with the average pose

parameters over all meshes per subject, aj =
1

K

∑
i

rij , and the

dynamic pose with the residual pose parameters cij = rij − aj .
Figure 6 shows the mean pose and the variation in pose for one
subject. Below we will correlate these variations with breathing to
factor out pose changes that are not breathing-related.

Each subject was scanned multiple times at unknown time instants
in their breathing cycle. After we estimate Sij , i = 1, . . . ,K, we
approximate the intrinsic shape of the subject as the average of the

deformations, Dj =
1

K

∑
i

Sij . Figure 7 shows example meshes

and how they deviate from the mean. We found that as few as K =
20 scans were sufficient to extract a reasonable representation of
a subject’s intrinsic shape. The residual shape deformation due to
breathing is Bij = Sij − Dj . We do this for all subjects in our
dataset and use the residual deformations below to learn a shape
model of breathing.

5 Statistics of Breathing

Respiration induces change in body shape and pose. In this section,
we study the statistics of body deformations and posture variation
due to breathing. In addition, we examine correlations with intrinsic
attributes of humans, such as gender and intrinsic shape.

5.1 Breathing Shape Statistics

After estimating Sij over all subjects, we end up with a very high-
dimensional representation of the shape of each mesh. The dimen-
sionality of Sij is 9× F , where F is the number of mesh triangles
and 9 is the number of parameters of the 3 × 3 deformation gradi-
ent per triangle. Intuitively, the shape deformations due to breathing
can be expressed with a much smaller number of parameters. Simi-
lar in concept to SCAPE, we learn a low-dimensional representation
of shape change during breathing expressed as a linear combination
of basis vectors, Gm ∈ R9F ,m = 1, . . . ,M,M � F . We learn
the basis vectors of breathing by computing the principal compo-
nents (PCs) of the breathing deformations Bij of all subjects. We
then represent a breathing shape deformation using a small number
of linear coefficients, bij ; these can provide breathing animation
controls. Breathing deformations are approximated using the basis
vectors and the linear coefficients as

B̂ij =
∑
m

bijmG
m. (6)

Figure 8 illustrates the principal components of shape variation dur-
ing breathing. Conceptually, the first two components correspond
mostly to motion of the chest and the stomach, respectively. The re-
maining components represent higher-frequency variation of shape
in the torso area. In our experiments, we have used N = 20 PCs
which account for 76% of the variance in the data. The number of
components was selected empirically; using more components does
not visually improve the realism of the synthesized breathing ani-
mations. Note that there are other subject-specific shape variations
and noise in the registered meshes, resulting in a fairly low signal
to noise ratio in the data. Below we relate the shape variations to
breathing to model how the coefficients change with breathing.

We evaluated whether breathing deformations were linearly corre-
lated with body shape. In general the correlation coefficients are
below 0.5. In particular the first few principal components of body
shape are not strongly correlated with breathing shape deforma-
tions. For higher-order shape components, capturing finer details
of the body (e.g. rolls of fat), we find stronger correlation with
breathing deformations. Intuitively, we would expect dependence
between intrinsic shape and breathing shape in areas of the body
where there are prominent skin folds and fat. Here we do not model
body-shape-specific breathing deformations but this is an interest-
ing direction for future work.

5.2 Breathing Pose Statistics

As with breathing shape, we extract a low-dimensional repre-
sentation, pij of breathing pose variation, cij , using PCA. The
low-dimensional pose representation can be expressed as pijn =
PnT cij , n = 1, . . . , N where Pn ∈ R57 are the principal com-
ponents of pose variation; here we use N = 4 components. This
results in a low-dimensional description of breathing pose, pij .
We found, however, that not all components were correlated with
breathing. The subjects were allowed to “relax” between consec-
utive scans (20 sec) and adjusted their pose and moved their feet
slightly. Consequently we discarded pose components that were not
strongly correlated with breathing (i.e. volume). Figure 9 shows
the three most informative principal components of pose change
during breathing. As expected, they are related to spine and shoul-
der/neck motion during breathing. Examining the low-dimensional
pose space, we did not find strong correlations with the intrinsic
shape of the subject, but we did find correlation with gender. In par-
ticular, women show a more pronounced forward/backward rocking
of the upper body during breathing. Consequently, we build a sep-
arate model of pose variation for men and women.



Figure 8: Principal components of shape variation during breathing. (Gray) Mean female body. (Color) Ordered principal components
(PCs) of breathing deformation shown at +5 standard deviations. Each body is color coded based on the Euclidean distance (in cm) between
corresponding vertices of the mean shape and the mean deformed along the PC direction.

Figure 9: Principal components of pose variation during breathing. (Gray) Mean female body. (Color) The three pose principal compo-
nents most correlated with breathing (volume) displayed at +/-6 standard deviations from the mean pose.

Figure 10: Volume change versus shape change. For a specific
subject, with a particular type of breathing, we find there is a linear
relationship between the breathing shape coefficients and changes
in mesh volume. Here we see projections to the first principal com-
ponent of breathing shape for various values of mesh volume. Vol-
ume is expressed in litres (L).

6 Breathing Model

The statistics of breathing shape and pose change do not provide a
model for animation. What we need is a model that relates these
changes in pose and shape to physiological parameters like lung
volume over time. We develop our model in stages.

6.1 Shape change during breathing

Subjects were instructed to breathe in three different ways: nor-
mally, with the chest, and with the stomach. Scans from each of
these conditions were treated as separate trials. Using mesh vol-
ume as a proxy for lung volume, we express shape change of a
subject within a trial as a function of changes in mesh volume from
the mean subject mesh. We find a largely linear relationship be-
tween the coefficients of breathing shape and mesh volume change
(Fig. 10 ). Let Zj ∈ RK×2 be a matrix containing a column with
ones and a column with the volume differences, vij , between the ith

mesh of subject j and the mesh corresponding to their mean shape;
K is the number of meshes in the trial. Let Yj ∈ RK×M be a ma-
trix containing the low-dimensional breathing shape coefficients,
bij , representing the breathing shape deformations of the training
meshes (Sec. 5.1). For each trial, we learn a subject-specific linear
model, Wj , relating changes in breathing volume to shape defor-
mation coefficients

argmin
Wj∈R2×M

‖ZjWj −Yj‖2F . (7)

6.2 Breathing types

In the linear model above we assume that the subject performs the
same type of breathing throughout each of the three scanning ses-
sions (normal, chest, stomach breathing). The type of breathing
plays an important role in animation. However, the trial classifica-
tion above provides only a crude classification of the type of breath-
ing. To more precisely classify the type of breathing performed in
a trial we use the linear function and the maximum inhale volume
to predict the shape of the body at maximum volume. Using the
segmentation of the torso into chest and stomach regions (Sec. 3.1),



Figure 11: Shape as a function of volume and type of breath-
ing. Linear models of shape change during breathing for various
breathing types (percentage of chest breathing) considering only
the 1st PC. Color coding is based on breathing type.

we compute the ratio of chest volume change of this mesh from
the mean to total volume change of chest and stomach. This gives a
value, sj , for each trial, indicating the percentage of chest breathing
present in that trial.

6.3 Breathing shape model

Finally, we have what we need to learn a function, F(s, v), that takes
as input the breathing type s and volume difference v and returns
the corresponding linear shape deformation coefficients. Given the
classification of breathing type above, we divide the trials into 10
categories corresponding to 0%-10%, 10%-20%, . . ., and 90%-
100% chest breathing. Within each category we combine all the in-
dividual linear models into an aggregate linear model relating each
shape coefficient to change in volume. This aggregate model can
be thought of as the average linear relationship predicting shape
change from volume change.

Figure 11 shows what this looks like for the first principal compo-
nent. Each colored line is an aggregate linear model for a specific
value of breathing type, s. Note that the slope of each line is differ-
ent. Recall that the first principal component captures mostly chest
deformation (Fig. 8). The higher the value of s, the more the chest
is involved, and the greater the correlation of the first component
with changes in volume. Note further that this results in a function
that is non-linear in s and v.

We want a model of breathing that is continuous in s and v and
we achieve this by fitting a surface to the changing regression func-
tions using cubic interpolation. Figure 12 shows some examples of
the resulting functions wm(s, v). As we saw before, the first two
principal components are highly correlated with chest and stomach
breathing respectively. This is evident in the corresponding weight
functions (left two subplots in Fig. 12).

In the final breathing shape model then, we weight the principal
components of breathing, Gm, by a non-linear function wm(s, v)
which predicts the breathing coefficients

F(s, v) =
M∑

m=1

wm(s, v)Gm. (8)

Figure 13 shows two synthesized meshes at maximum inhale: a

female breathing with the stomach and a male breathing with the
chest.

6.4 Breathing pose model

Based on the insights from Sec. 5.2, we derive a generic model
of pose change per gender g, E(g, v), parameterized additionally
by the breathing volume v. Let Og ∈ RKg×2 be a matrix con-
taining a column with ones and a column with the volume differ-
ences, vij , over all subjects j of gender g = {male, female}. Let
Hg ∈ RKg×N be a matrix containing the PCA projections of pose,
pij , corresponding to the training meshes as described in Sec. 5.2.
For each gender, we define a linear model for predicting breathing
induced pose deformations using linear least squares regression:

argmin
Lg∈R2×N

‖OgLg −Hg‖2F . (9)

We then define h(g, v) = [1, v]Lg and

E(g, v) =
N∑

n=1

hn(g, v)P
n. (10)

Here we do not model any dependence on breathing type. Note
also that the pose model does not need to be used for animation; for
example, when animating the breathing of a moving character, we
do not use the pose model.

7 Breathing Animation

Respiration is time varying. In particular, as air moves in and out
of the lungs, their volume changes. To animate breathing using the
model defined above, we need a way to vary lung volume over time.

7.1 Trajectory editing

We developed a Maya tool (not shown here) to create and edit real-
istic 3D body shapes that is similar to previous work on body shape
modeling [MPI IS 2011; Allen et al. 2003; Anguelov et al. 2005;
Hasler et al. 2009; Jain et al. 2010]. The tool also allows an anima-
tor to edit the temporal pattern of breathing.

Our breathing model takes two inputs: the breathing type and vol-
ume difference. Our interface includes a slider with which the an-
imator selects the percentage of chest breathing enabling them to
achieve different “styles.” A common assumption in the physiol-
ogy of respiration [West 2012; Mines 1981] is that air flow in lungs
during breathing at rest pose is a sinusoidal function of time. Thus
we provide an interface for controlling the parameters of a sinusoid
function of volume over time. The intensity of the pose change can
be adjusted separately from shape deformation. The amplitude and
frequency of the sinusoid can be varied using sliders.

7.2 Breath acting

Breathing in real life does not always follow a pure sinusoidal func-
tion. It varies with activity and emotion and plays a role in telling a
story. We use a device call a spirometer (ndd Medizintechnik AG,
Zurich), which measures change in air flow, to capture the breathing
pattern of a “breath actor” (Fig. 14). Like a voice actor, the breath
actor observes an animation and acts out the breathing that fits the
action. We then use the recorded changes in volume to produce de-
formations (and possibly pose changes) and to animate a 3D avatar.
We manually adjust the breathing type (chest or stomach) based on
the action and emotions in a scene. This approach provides a simple
and intuitive interface to produce realistic and compelling breathing
animations.



Figure 12: Shape change during breathing as a function of breathing type and volume. The breathing type is expressed as the percentage
of chest relative to stomach breathing. The first two PCA coefficients of shape change (first two plots from the left) are correlated with “chest-
breathing” and “abdominal-breathing” respectively. The third and fourth PCA coefficients (two rightmost plots) reveal a more complex
relationship. Color coding is based on breathing type (% of chest breathing).

Figure 13: Examples of synthesized breathing. “Abdominal-breathing” (left) and “chest-breathing” (right). The gray bodies represent
the mean shape of two subjects. Shape change due to breathing is color coded based on the Euclidean distance (in cm) between every mesh
vertex and the surface of the mean shape.

8 Results

To evaluate the realism of our model, we compare with a reference
video of a subject breathing. We had a breath actor (different from
the subject) watch the video and imitate the breathing using the
spirometer. We used a 3D scan of the subject to create an avatar for
their body shape, selected the amount of chest breathing manually,
and then animated the body in the style of the subject. Note the we
did not capture the pose of the actor during breathing and did not
attempt to match the pose. Focusing on the breathing deformations,
however, we find a good qualitative match between reference and
animation (Fig. 15).

8.1 Breathing in Action: Poses and Motion

Our model of respiration is trained using body scans of people in
a standing “A” pose. While the pose variation model may be quite
specific to this pose, the shape deformation model can be easily
applied to other poses using BreathSCAPE with realistic results.
Figure 16 shows a body in a seated pose and a standing pose with
the same breathing model applied. Notice that the breathing de-
formations are, in fact, different because the mesh is in a different
pose. The animation of breathing looks realistic.

We also animate the breathing of characters in motion. Figure 1
shows frames from a running sequence with the breathing defor-
mation color coded in terms of distance from the animated average
shape. In this case a breath actor observed the animated body with-
out breathing and simulated the breathing to go with it. While the
running motion makes it harder to see the breathing animation, one
can readily tell the difference between sequences animated with and
without breathing.

9 The Last Breath (Conclusions)

We describe a model for realistic breathing animation. A key
novelty of our approach is the use of high-resolution 3D scans in
combination with a human body model to capture pose and shape
change during breathing. By analyzing the statistics of breathing
shape changes we found that: 1) there are statistically significant
changes in whole-body posture and shape during breathing, 2) the
differences in breathing shape between men and women are not
great but that there are some significant postural differences; 3)
the dominant breathing shape changes are somewhat independent
of body shape but more detailed changes are correlated with body
shape; 4) people can perform different types of breathing (chest



Figure 15: Reference video. Example frames from a reference video of a subject breathing with different styles. On the left of each image
pair we see the recorded motion. On the right, we show a roughly corresponding frame from our animation.

Figure 14: Breath acting. An actor breathes into a spirometer to
convey the action and emotional content of a character. The chang-
ing volume of the lungs is recorded and used to animate breathing.

and stomach) and these are clearly reflected in the principal com-
ponents of breathing shape; 5) for a particular type, lung volume is
linearly related to these principal components; 6) this linear rela-
tionship varies with type, resulting in a non-linear model. Based on
this analysis, we learn a low-dimensional model of breathing shape
and pose variation that is parameterized by breathing volume and
the type of breathing.

We capture breathing in a fixed pose but clearly shape changes will
be influenced by posture (e.g. lying down). Future work should
study how pose affects breathing deformations. Breathing shape is
likely also correlated with activity and it would be good to build a
temporal model of breathing dynamics as it relates to pose changes
during activity. We used mesh volume to measure lung volume but
it would be interesting to synchronize the output of a spirometer di-
rectly with the 3D scanning process. We focused on the two dom-
inant types of breathing described in the literature but we would
like to capture a much wider range of scenarios including other ac-
tions like puff, pant, blow, gasp, wheeze, sigh, huff. Our methods
could be use to give an animator the ability to select among these
styles. We have focused on the body but it would be interesting to
simultaneously analyze facial motions, which are also influenced
by breathing. In contrast to our model-based approach, one could
also explore example-based methods that are popular with motion
capture data [Hsu et al. 2004; Park and Shin 2004] but have not
been applied to 3D breathing shape. As mentioned, the relationship
between body shape and breathing deformations deserves further
study. Animation of our model from marker data could also be
done. Finally, our scan data does not reveal the detailed temporal
evolution of breathing; either new scanning methods are needed or

Figure 16: Pose and motion. We apply the breathing model with
40% chest breathing to a standing and seated pose. The body corre-
sponds to a person in the CAESAR dataset. Color coding represents
the distance (in cm) between the vertices of the meshes at full inhale
and the original shape of the person.

possibly one could use a combination of scanning and marker-based
motion capture.
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control of human motion. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), Eurographics Asso-
ciation, 69–77.

JAIN, A., THORMÄHLEN, T., SEIDEL, H.-P., AND THEOBALT,
C. 2010. MovieReshape: Tracking and reshaping of humans in
videos. ACM Trans. on Graphics (TOG) 29, 6, 148:1–148:10.

KIDER, J., POLLOCK, K., AND SAFONOVA, A. 2011. A
data-driven appearance model for human fatigue. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA), ACM, 119–128.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Com-
prehensive biomechanical modeling and simulation of the upper
body. ACM Trans. on Graphics (TOG) 28, 4, 99:1–99:17.

LEE, D., GLUECK, M., KHAN, A., FIUME, E., AND JACKSON,
K. 2012. Modeling and simulation of skeletal muscle for com-
puter graphics: A survey. Foundations and Trends in Computer
Graphics and Vision 7, 4, 229–276.

MAGNENAT-THALMANN, N., ZHANG, J. J., AND FENG, D. D.
2009. Recent Advances in the 3D Physiological Human.
Springer.

MINES, A. H. 1981. Respiratory Physiology. Raven Press.

MORENO, A., CHAMBON, S., SANTHANAM, A. P., BROCARDO,
R., KUPELIAN, P., ROLLAND, J. P., ANGELINI, E., AND
BLOCH, I. 2007. Thoracic CT-PET registration using a 3D
breathing model. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI). Springer, 626–633.

MPI IS, 2011. http://bodyvisualizer.com/.

NEUMANN, T., VARANASI, K., HASLER, N., WACKER, M.,
MAGNOR, M., AND THEOBALT, C. 2013. Capture and statisti-
cal modeling of arm-muscle deformations. Computer Graphics
Forum 32, 285–294.

PARK, S. I., AND HODGINS, J. K. 2006. Capturing and animating
skin deformation in human motion. ACM Trans. on Graphics
(TOG) 25, 3, 881–889.

PARK, S. I., AND HODGINS, J. K. 2008. Data-driven modeling of
skin and muscle deformation. ACM Trans. on Graphics (TOG)
27, 3, 96:1–96:6.

PARK, M. J., AND SHIN, S. Y. 2004. Example-based motion
cloning. Comp. Anim. and Virtual Worlds 15, 3-4, 245–257.

PENNE, J., SCHALLER, C., HORNEGGER, J., AND KUWERT, T.
2008. Robust real-time 3D respiratory motion detection using
Time-of-Flight cameras. International Journal of Computer As-
sisted Radiology and Surgery 3, 5, 427–431.

PROMAYON, E., BACONNIER, P., AND PUECH, C. 1997.
Physically-based model for simulating the human trunk respi-
ration movements. In Computer Vision, Virtual Reality and
Robotics in Medicine and Medical Robotics and Computer-
Assisted Surgery (CVRMed-MRCAS), Springer, 379–388.

ROBINETTE, K., BLACKWELL, S., DAANEN, H., BOEHMER, M.,
FLEMING, S., BRILL, T., HOEFERLIN, D., AND BURNSIDES,
D. 2002. Civilian American and European Surface Anthropom-
etry Resource (CAESAR) final report. Tech. Rep. AFRL-HE-
WP-TR-2002-0169, US Air Force Research Laboratory.

SANDERS, B., DILORENZO, P., ZORDAN, V., AND BAKAL,
D. 2009. Toward anatomical simulation for breath training in
mind/body medicine. In Recent Advances in the 3D Physiologi-
cal Human. Springer, 105–119.
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SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. on Graphics (TOG) 23, 3, 399–
405.

VELTKAMP, R. C., AND PIEST, B. 2009. A physiological torso
model for realistic breathing simulation. In Modelling the Phys-
iological Human. Springer, 84–94.

WEST, J. 2012. Respiratory Physiology: The Essentials. Lippin-
cott Williams & Wilkins.

ZORDAN, V. B., CELLY, B., CHIU, B., AND DILORENZO, P. C.
2004. Breathe Easy: Model and control of simulated respiration
for animation. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA), 29–37.

http://bodyvisualizer.com/

