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1 Introduction

This Technical Report contains the supplemental material to the main report on the MPI-Sintel optical
flow dataset and evaluation [1]. In particular, we provide details of the image and optical flow statistics
that are mentioned in the main paper. Additionally we provide details of the initial evaluation of optical
flow algorithm performance on the dataset. Additional details and the dataset itself can be found on the
MPI-Sintel website:

http://sintel.is.tue.mpg.de

2 Technical background

The technical background of MPI-Sintel is described in a separate paper [2]. It describes the technical
choices we made in generating the dataset, as well as the steps and modifications necessary to re-generate
the dataset from raw data. In particular it addresses how to transform the raw Sintel graphics data, which
was designed for entertainment, to a dataset appropriate for the evaluation of optical flow.

3 Image and flow statistics

Unless stated otherwise, all statistics were computed on the “Final” pass of the MPI-Sintel dataset, which
contains the most realistic and complex images including motion blur, focal blur, atmospheric effects and
complex illumination.

3.1 Image statistics

This section shows a comparison of image statistics of the MPI-Sintel dataset, the Middlebury dataset, and
a volume of “lookalike” video footage. We compare these sequences on the basis of histograms of luminance,
spatial and temporal derivatives, gradient magnitude, and power spectra. All statistics were computed on a
grayscale representation of the images, scaled to the range of [0, 255].

3.1.1 Luminance

The luminance distribution (Figure 1) shows that natural video sequences contain more dark areas than
present in Middlebury. On the other hand, a relatively large number of Middlebury pixels are overex-
posed/saturated. MPI-Sintel is a fairly good match to the lookalike videos in terms of overall luminance.
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Figure 1: Luminance distribution

The KL divergence (KL-D in the figure) makes this quantitative with MPI-Sintel being much more similar
to the lookalike sequences (LA). Since the lookalikes were chosen to semantically match the scenes from
MPI-Sintel, this was to be expected.

3.1.2 Gradient and spatial derivatives

Shown are log-histograms of the spatial derivatives in the image horizontal (x) and vertical (y) directions
(Figure 2) and of the image gradient (Figure 3). The Kurtosis values shown in the plots indicate that the
MPI-Sintel image derivatives more closely match the lookalikes than do the Middlebury images.

Both visually and in terms of Kurtosis the MPI-Sintel dataset is closer to the natural lookalikes than
Middlebury.

3.1.3 Temporal derivative

Figure 4 shows the log-histogram of the temporal derivative, i.e. the change in luminance for a given pixel
between two adjacent frames. Pixels here are camera pixels, not world pixels; we do not use optical flow
to track the real-world motion of pixels between frames. MPI-Sintel and the lookalikes are more similar for
small motions (hence the more similar Kurtosis) but MPI-Sintel differs in the tails of the distribution. A
more meaningful measure might compute the flow-warped temporal difference.

3.1.4 Power spectra

Figure 5 and Figure 6 show the power spectra P (fx, fy) = Re (I (fx, fy))
2

+ Im (I (fx, fy))
2

for fy = 0 and
fx = 0, respectively, computed in a center patch of size 436 × 436 pixels, and averaged over all frames. In
order to not violate the periodicity assumption, each patch was weighted with a Hamming window

w(x, y) =

{
0.54 − 0.46 cos

(
π
(

1 − r(x,y)
rmax

))
if r(x, y) ≤ rmax

0 otherwise
(1)
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Figure 2: Spatial derivatives
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Figure 3: Image gradient

with r(x, y) =

√
(x− 218)

2
+ (y − 218)

2
being the distance to the image center, and rmax = 218.

This ensures that the edges of the chosen patch have zero intensity and do not cause artifacts on the
cardinal axes. To minimize spectral leaking caused by the windowing, we normalize the image, as described
in [3]. Given the original image patch I(x, y), the input to the FFT is thus the image

Î(x, y) =
I(x, y) − µ

µ
w(x, y) (2)
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Figure 4: Temporal derivative

with the normalizing factor [3]

µ =

∑
x,y I(x, y)w(x, y)∑

x,y w(x, y)
. (3)

Figure 5 shows the power in x and y direction, while Figure 6 shows an azimuthal average over all
orientations. We computed the slopes using linear least squares fitting in the log-log space in the range
0 < f ≤ 0.35 cycles/pixel, since above these range aliasing and pixelation artifacts dominate [3, 4]. The
linear fits are shown as dashed lines in Figure 5 and Figure 6.

We find that the power spectra are fairly similar, with Middlebury showing the lowest slope (m = 2.52),
the lookalikes showing the highest slope (m = 2.9), and Sintel falling in between (m = 2.66). In natural
images, power spectra are reported to fall off with 1/f−α, with an often assumed α ≈ 2. However, reports
also show that α can be quite varied, depending on factors such as the gist of the scene, or imaging modalities.

For example, Tolhurst et al. [5] found α to lie in the range [1.6, 2.9], Field et al. [6] found slopes as high
as α = 3.6, van der Schaaf & van Hateren [3] report α = 1.88 ± 0.43, and Torralba & Oliva [4] distinguish
between α ≈ 2.2 for indoor and α ≈ 2.5 for outdoor scenes. Both MPI-Sintel and the lookalikes are at the
high end of these observations.

To better understand the slope of the MPI-Sintel power spectra we look at how images from the dataset
compare with images typically used for the study of natural image statistics. Figure 7 illustrates the character
of such “typical” natural images; they exhibit high depth of field and are consequently in crisp focus across
the image. This is in contrast to MPI-Sintel images and stills from movies where it is common for the camera
to focus on a subject and blur the background; see Figure 8.

Figure 9 shows a comparison between the set of 6 natural images with a high depth-of-field, shown in
Figure 7, the set of 6 natural images with a low depth-of-field as shown in Figure 8, the Final pass of MPI-
Sintel, and the Clean pass of MPI-Sintel. The Clean pass is included here because it does not include any
focus blur, and thus corresponds to an infinitely large depth-of-field. Additionally, motion blur is absent,
another possible source of attenuation of high frequencies.

Figure 9 indicates that the presence of focus blur can indeed result in a much steeper slope of the power
spectrum, both in the case of the natural images, and in the case of MPI-Sintel. This makes sense since
focal or motion blur will have the effect of attenuating the high frequencies, causing a steeper slope to the
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Figure 5: Power spectra in x and y directions. The dashed lines represent the best linear fit. For clarity, the
graphs for Sintel and the lookalikes have been shifted by 102 and 104, respectively.
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Figure 6: Power spectrum, azimuthal average. The dashed lines represent the best linear fit. For clarity, the
graphs for Sintel and the lookalikes have been shifted by 102 and 104, respectively.

power spectrum.
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Figure 7: Examples for typically used natural images.

Figure 8: Examples for natural images exhibiting a low depth-of-field and a more movie-like quality.

10-3 10-2 10-1 100

Frequency (cycles/pixel)

lo
g1

0 
(P

ow
er

)

Sintel (Final pass), slope=-2.66
Sintel (Clean pass), slope=-2.37
Natural (low DoF), slope=-2.83
Natural (high DoF), slope=-2.08

Figure 9: Comparison of power spectra of image sequences with different depths-of-field, azimuthal average.
The dashed lines represent the best linear fit. Graphs have been shifted to increase readability.

3.2 Optical flow statistics

This section presents a comparison of the optical flow statistics. We are assuming that statistics of optical
flow computed by a particular algorithm can be used as a basis for comparing the motions present in
different sequences. The optical flow is computed using the Classic+NL-fast algorithm [7] using the default
parameters. It should be noted that in case of Middlebury, the flow was computed on all publicly available
frames, not only on the 8 frames for which ground truth flow is available.
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For reference, we also show the statistics of the ground truth optical flow of MPI-Sintel as dashed lines.

3.2.1 Flow values

Figure 10 shows log-histograms of the optical flow values in the horizontal (u) and vertical (v) direction,
respectively. As expected, the Middlebury dataset lacks large motions. Figure 10 shows that the MPI-Sintel
dataset contains a large variety in motion that is similar to the lookalike motion. Note however that the
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Figure 10: Log histograms of velocities in the horizontal and vertical direction.

Classic+NL-fast algorithm is unable to capture the largest motions seen in the heavy tails of the ground
truth MPI-Sintel flow. Regardless, based on the computed flow, we argue that MPI-Sintel is more complex
and more like the lookalikes than Middlebury.

3.2.2 Speed and direction

Figure 11 shows the overall speed and direction of the flow. The speed is defined as s =
√
u(x, y)2 + v(x, y)2,

the direction as θ = tan−1 (v(x, y)/u(x, y)). Similar to the previous section, the speed plot shows the general
lack of large motion in Middlebury.

While noisy, the histogram of directions in MPI-Sintel shows broad peaks around 0 and 180 degrees and
smaller at +90 and -90 degrees. This is consistent both with the lookalike sequences, as well as with statistics
of optical flow in general natural image sequences [8].

3.2.3 Gradients and spatial derivatives

Figure 12 shows the spatial gradients of the flow in the u and v direction respectively. Figure 13 shows the
spatial derivatives of the flow fields along the x and y direction for both flow fields.

In all cases, the estimated flow for the MPI-Sintel dataset is more similar to the lookalikes than the
estimated flow for Middlebury, pointing to a higher and more realistic variety of motion discontinuities and
spatial variations.
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Figure 11: Flow speed and direction.
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Figure 12: Gradients of flow.

4 Numerical results

As described in the main paper, we compute optical flow for the MPI-Sintel test sequences using six different
optical flow algorithms:

• Large-Displacement Optical Flow (LDOF) [9]
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Figure 13: Spatial derivatives of flow.

• Classic+NL [7]

• Classic+NL-fast [7]

• Classic++ [7]

• Horn & Schunck [10], using the reference implementation from [7]

• Anisotropic Huber-L1 [11], using the reference implementation from http://gpu4vision.icg.tugraz.at/.
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Table 1 shows the performance fo the methods across the whole test set for both the Clean and Final pass.
All metrics are computed over all frames. The metrics are:

• EPE. Average endpoint error.

• EPE matched. Average endpoint error in matched regions; i.e. at pixels which are visible in adjacent
frames.

• EPE unmatched. Average endpoint error in unmatched regions; i.e. at pixels which are only visible in
the first frame. The main cause for this are image regions becoming occluded or moving out of frame.

• d0-10. Average endpoint error in regions closer than 10 pixels to the nearest motion boundary, taking
only matched pixels into account. For the definition of motion boundaries, see [1].

• d10-60. Average endpoint error in regions between 10 and 60 pixels to the nearest motion boundary,
taking only matched pixels into account.

• d60-140. Average endpoint error in regions between 60 and 140 pixels to the nearest motion boundary,
taking only matched pixels into account.

• s0-10. Average endpoint errors in regions moving slower than 10 pixels per frame.

• s10-40. Average endpoint errors in regions moving between 10 and 40 pixels per frame.

• s40+. Average endpoint errors in regions moving more than 40 pixels per frame.

Note: Different from what is described in [1], the distance metrics (d0-10, d10-60, d60-140) only take
matched regions into account. We found that, if unmatched regions are taken into account, the error values
are dominated by the high errors present in unmatched regions. Additionally, instead of d60+, as reported
in the paper, we now use the metric d60-140, taking only pixels into consideration that are closer than 140
pixels to the nearest motion boundary. The reason for this is that image regions further away from motion
boundaries usually depict large unstructured elements, such as the sky or fields of snow. The errors in these
regions are fairly high, again skewing the results. We therefore decided to exclude them.

For a more in-depth description of how the endpoint error varies with increasing speed and increasing
distance from the motion boundaries, see [1].

Table 2 shows the average endpoint error per sequence, taking all pixels into account. This reveals the
varying difficulty of the individual clips in the test set. Note that PMarket 3 and PShaman 1 refer to
the perturbed sequences, designed to catch cheating attempts (see [1]).

To evaluate how the algorithms extrapolate to unmatched regions, Table 3 gives the average endpoint
error per sequence, including only unmatched pixels.

5 Visual results

Table 4 and Table 5 show visual results for the methods we evaluated. The left column of both tables
contains the ground truth optical flow for each sequence in the testing set; a single “canonical” frame is
shown to illustrate the ground truth and the results.

Each column corresponds to a method and, for each sequence, we show the computed optical flow field
for the canonical frame and below this an image of the absolute error with respect to the ground truth. The
error displayed is the log of the EPE (which is always positive), scaled to the range [0, 1] independently for
each frame.

Table 4 shows results for the Final pass, Table 5 for the Clean pass.
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Method/Pass Method

LDOF Classic+NL Classic+NL-fast Classic++ HS Aniso-HL1

EPE
final 9.116 9.153 10.088 9.959 9.610 11.927
clean 7.563 7.961 9.129 8.721 8.739 12.642

EPE matched
final 5.037 4.814 5.659 5.410 5.419 7.323
clean 3.432 3.770 4.725 4.259 4.525 7.983

EPE unmatched
final 42.344 44.509 46.145 47.000 43.734 49.366
clean 41.170 42.079 44.956 45.047 43.032 50.472

d10-
final 6.849 7.215 8.010 8.072 7.950 9.464
clean 5.353 6.191 7.157 6.983 7.542 10.457

d10-60
final 4.928 4.822 5.738 5.554 5.658 7.692
clean 3.284 3.911 4.974 4.494 5.045 8.675

d60-140
final 4.003 3.427 4.160 3.750 3.976 5.929
clean 2.454 2.509 3.331 2.753 2.891 6.320

s10-
final 1.485 1.113 1.092 1.403 1.882 1.155
clean 0.936 0.573 0.558 0.902 1.141 0.753

s10-40
final 4.839 4.496 4.666 5.098 5.335 7.966
clean 2.908 2.694 2.812 3.295 3.860 9.976

s40+
final 57.296 60.291 67.801 64.135 58.274 74.796
clean 51.696 57.374 66.935 60.645 58.243 77.835

Table 1: Errors per evaluation metric over all sequences.
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Sequence/Pass Method

LDOF Classic+NL Classic+NL-fast Classic++ HS Aniso-HL1

PMarket 3
final 2.832 1.550 1.696 1.786 2.118 2.908
clean 1.176 0.898 1.122 1.218 1.450 3.155

PShaman 1
final 2.269 1.212 1.545 1.600 2.463 4.135
clean 1.612 0.953 1.212 1.336 1.895 3.658

Ambush 1
final 44.960 44.626 48.991 48.026 40.549 52.362
clean 34.703 34.801 42.061 37.862 32.974 50.875

Ambush 3
final 14.134 13.722 14.188 14.764 15.382 15.247
clean 8.960 9.630 9.966 10.675 10.604 14.282

Bamboo 3
final 1.107 1.093 1.098 1.221 1.419 1.302
clean 1.036 0.997 1.019 1.139 1.339 2.188

Cave 3
final 9.227 12.415 14.452 13.997 13.007 16.290
clean 7.550 10.695 13.284 12.484 12.409 18.505

Market 1
final 4.179 5.339 7.775 6.737 5.397 9.084
clean 3.233 4.278 6.377 5.252 4.650 12.592

Market 4
final 39.210 39.132 42.164 41.176 40.005 49.522
clean 38.431 39.937 44.332 41.660 42.941 53.121

Mountain 2
final 1.618 1.453 1.430 1.490 1.544 1.702
clean 1.179 0.395 0.267 0.417 0.233 1.271

Temple 1
final 1.606 1.567 1.624 1.802 2.069 1.764
clean 1.460 1.278 1.364 1.571 2.056 1.690

Tiger
final 1.637 1.561 1.553 1.633 1.584 2.330
clean 1.254 0.843 0.846 0.908 1.064 2.754

Wall
final 7.294 6.554 6.731 7.134 7.889 9.367
clean 5.372 5.923 6.005 6.544 6.950 8.984

Table 2: Average EPE per test sequence.
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Sequence/Pass Method

LDOF Classic+NL Classic+NL-fast Classic++ HS Aniso-HL1

PMarket 3
final 8.263 4.968 5.479 5.926 6.050 7.719
clean 4.640 4.073 4.504 5.546 5.401 8.416

PShaman 1
final 11.711 8.916 10.595 11.572 15.579 15.751
clean 9.925 8.154 9.797 10.846 12.820 14.995

Ambush 1
final 82.346 84.098 87.434 88.229 74.622 89.089
clean 73.419 74.310 80.540 79.506 66.931 87.289

Ambush 3
final 44.736 51.408 50.247 52.507 49.240 50.306
clean 39.397 43.129 43.241 46.664 43.945 49.548

Bamboo 3
final 5.064 4.952 4.858 5.621 5.727 5.590
clean 4.999 4.558 4.563 5.480 5.569 5.451

Cave 3
final 28.916 32.652 34.124 35.759 33.064 34.766
clean 27.457 29.592 32.558 33.663 31.737 36.475

Market 1
final 13.516 19.211 20.785 22.166 18.467 19.736
clean 11.369 15.557 18.706 19.687 14.873 22.472

Market 4
final 85.665 87.722 91.556 91.126 86.743 101.195
clean 88.672 88.173 94.245 91.103 91.379 104.244

Mountain 2
final 5.756 5.113 5.307 5.341 5.599 5.666
clean 5.222 2.041 1.548 2.387 1.529 5.041

Temple 1
final 6.133 6.289 6.307 7.403 7.344 7.248
clean 5.548 5.624 5.768 7.081 6.929 7.049

Tiger
final 9.688 9.584 9.528 10.946 10.386 11.478
clean 9.072 7.517 7.614 8.978 8.901 10.883

Wall
final 23.551 27.657 27.764 29.874 27.618 27.321
clean 22.199 25.514 25.281 28.140 25.073 28.129

Table 3: Average EPE per sequence, unmatched regions.
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Ground truth LDOF Classic+NL Classic+NL-fast Classic++ HS Aniso-HL1
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Table 4: Visual overview (final pass).
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Ground truth LDOF Classic+NL Classic+NL-fast Classic++ HS Aniso-HL1
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Table 5: Visual overview (clean pass).
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