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Fig. 1: When computing optical flow from motion blurred video (a), existing methods

[44] fail at object boundaries ((b) and (e), red). Our method is able to accurately

estimate optical flow (c), deblurred frames (d), and object boundaries ((e), green).

Abstract. Videos contain complex spatially-varying motion blur due
to the combination of object motion, camera motion, and depth vari-
ation with finite shutter speeds. Existing methods to estimate optical
flow, deblur the images, and segment the scene fail in such cases. In par-
ticular, boundaries between differently moving objects cause problems,
because here the blurred images are a combination of the blurred appear-
ances of multiple surfaces. We address this with a novel layered model
of scenes in motion. From a motion-blurred video sequence, we jointly
estimate the layer segmentation and each layer’s appearance and motion.
Since the blur is a function of the layer motion and segmentation, it is
completely determined by our generative model. Given a video, we for-
mulate the optimization problem as minimizing the pixel error between
the blurred frames and images synthesized from the model, and solve it
using gradient descent. We demonstrate our approach on synthetic and
real sequences.
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1 Introduction

Common goals in the analysis of video include the estimation of optical flow,
the localization of motion boundaries, and the segmentation of images into re-
gions corresponding to objects. These are all hard problems that become even
harder when the frames contain motion blur. However, when a dynamic scene
is captured by a camera with finite shutter speed, this will always be the case.
In such a setting, traditional assumptions of brightness constancy are violated,
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particularly at motion boundaries where the pixel values combine information
from multiple surfaces blurring into each other.

To address these problems, we propose a novel layered model of images that
explicitly models the motion of the layers, the blur induced by this motion,
and the un-blurred appearance of each layer (Fig. 1). A key observation is that
both the motion blur and the displacement of a surface are results of the same
process in the world: the motion of the surface relative to the camera. Hence,
the motion blur of a surface is completely determined by the motion of that
surface – estimating the optical flow gives us the blur kernel. Unlike previous
work we formulate this as a generative model and jointly solve for all unknowns.
This produces an accurate layer segmentation and precise motion boundaries
from a motion-blurred image sequence (Fig. 1(c) and (e)). To this end, layers
provide a natural framework because they directly model surface interaction at
occlusion boundaries. Here we focus on parametric motion within layers and use
a two-layer model, as is common in recent approaches [36]. While being limited
in terms of motion complexity, we nevertheless find that this model is able to
analyze real scenes with different foreground and background motion.

Much of the work on motion blur focuses on the problem of deblurring, par-
ticularly in single images where the blur is caused by camera shake [13]. These
approaches either assume homogeneous blur across the whole image or restrict
the blur kernels to those caused by common camera motion paths. On the other
hand, existing work on deblurring in the case of object motion is restricted to the
case of static backgrounds [2]. We do not address single-image deblurring, but fo-
cus on optical flow estimation in sequences with motion blur and motion of both
the foreground and the background. In particular, we deal with spatially-varying
blur kernels that are determined by the layer motions.

Figure 2 illustrates how a scene is generated as a composition of layers, each
of which is individually warped and blurred by its motion. This compositing from
layers that are independently blurred captures what happens at boundaries while
simplifying optimization compared with previous work. We explicitly model the
blur as a function of the estimated motion, resulting in an elegant formulation
of the problem. Thus, given the estimated motion, the blur within each layer
is known, and the latent, sharp, appearance of each layer can be reconstructed.
As a result we can reconstruct accurate motion at the boundaries, as well as
deblurred estimates for both layers.

To summarize, the main contribution of this work is to estimate optical
flow in video sequences in the presence of multiple motions and motion blur.
We treat motion blur in a layered framework, allowing us to simultaneously
infer the sharp layer segmentation, the object motion, the corresponding motion
blur, and the latent (deblurred) object appearances. Our formulation is the first
fully generative model of blurred video sequences using a layered framework. We
demonstrate the effectiveness of the approach using synthetic and real sequences
containing multiple motions. In addition to improving optical flow accuracy, we
can deblur sequences that previous methods cannot handle, and show accurate
estimation of layer boundaries despite heavy motion blur. We show how it is
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robust to noise by modeling a degraded sequence of the assassination of John
F. Kennedy.

2 Previous Work

Motion Estimation with Motion Blur. Accurate optical flow estimation in
the presence of motion blur has been rarely studied so far. One way to integrate
motion blur into the optical flow computation is to include an additional regu-
larization term for the motion, minimizing the difference between a latent, sharp
image and the observed, blurry one [27]. Alternatively, the motion blur can be
integrated directly into the data term, modulating the brightness constancy con-
straint [30]. This approach has also been used in sparse tracking [20], where the
motion is used to modify the expected appearance change of features. However,
these methods usually assume a smooth flow field and, unlike our layered model,
fail at object boundaries. Additional previous work has focused on computing
motion from a single blurred image, either using the image directly [6], or by
extracting a matte [12, 35]. From this matte, spatially varying motion informa-
tion can be extracted. While somewhat related to our layered formulation, these
approaches usually require user interaction to generate a good matte. In contrast
we present a fully automatic approach, taking multiple frames into account.

Motion Deblurring. The treatment of motion blur has focused mostly on
removing blur from single images captured in low-light scenarios. The scene is
usually assumed to be static, and the blur is caused by camera shake. The blur
process is modeled either as a complex but spatially-invariant blur kernel [7, 13]
or as a spatially-varying kernel generated by possible camera motions in 3D [43].
Single-image deblurring is beyond our scope, as are methods relying on special
hardware for multiple exposures [34].

In the case of multiple frames, an alternative strategy first estimates motion
from the blurred sequence using sparse feature tracking [17], shapes [3], or optical
flow [23, 46]. The estimated motion is then used to synthesize the blur kernel and
deblur the input images non-blindly. These methods fail in the case of strong
blur where accurate tracking becomes infeasible [27]. Our approach solves this
by explicitly modeling the blur as a function of the motion being estimated.
Like us, Li et al. [25] formulate a joint energy function between latent images
and motion parameters and optimize it using gradient descent. However, they
assume a single motion and cannot handle independently moving objects.

Methods that take object motion into account usually assume purely transla-
tional motion [2, 4, 24] or require user input to generate a matte [11, 26]. In these
cases the background is generally assumed to be static, or even known, and only
foreground motion is modeled. This eliminates the challenge of estimating over-
lapping motions at object boundaries, making the problem considerably easier.
In contrast, we model motion of both the background and the foreground, and
assume neither to be known a priori.

Model-free methods for multi-frame deblurring remove motion blur using
deconvolution in a coarsely up-sampled spatio-temporal volume [38] or patch-



4 J. Wulff and M. J. Black

based synthesis methods [8]. While such methods give good deblurring results
even in the presence of independently moving objects, they yield neither motion
information nor scene segmentation.

Layered Motion Models. Layered models of optical flow describe a scene
as a set of overlapping moving regions. This effectively separates motion estima-
tion from segmentation, allows the use of simple models for the motion within a
layer [41], and provides an explicit model of the occlusion process [36]. Layered
motion models also facilitate temporal reasoning because the structure of most
scenes changes slowly over time [36]. Thus, layers are useful for motion segmen-
tation [10, 21] and the computation of optical flow [19, 36, 39, 42]. None of these
approaches deal with motion blur.

One of the early motivations for layered models, however, was to address
blur [40]. The idea was to first compute motion using a layered model and
then, given the layer segmentation, model the blur process. Paramanand and
Rajagopalan [28] follow this approach and use a layered scene representation to
capture different blurs. However, they only consider a static scene with camera
shake, model the motion as a similarity transform, and do not explicitly model
layer interactions at the object boundaries.

Beyond motion estimation, several authors have used layered models to ex-
tract persistent image appearance (“sprites,” mosaics, etc.) [15, 18, 21, 31, 32, 45,
47]. This estimation of appearance is a key part of our method but these previ-
ous approaches do not model motion blur. For example in [32] the super-resolved
layer appearance is estimated using a hand-set blur kernel. This blur only rep-
resents lens blur and not spatially varying motion blur. Rav-Acha et al. [31] rely
on feature tracking and point out that motion blur causes problems for their
method. Chunhe et al. [9] use a layered formulation for single image deblurring.
Their work considers non-overlapping layers, more akin to a segmentation, and
adapt the spatial prior accordingly. Our notion of layers, in contrast, handles
overlapping layers and occlusions.

Closest to ours is the work of Kumar et al. [29] in which the authors segment
the video into layers, estimate the appearance of layers and model motion blur
in the estimation of flow. Our method differs in several important ways. First,
they estimate the appearance of a layer as the mean of the aligned image pixels
within the layer. This process does not model how the appearance is blurred by
motion and consequently cannot deblur the appearance. Second, they model the
blur of each layer independently. This ignores the critical effect of blur at layer
boundaries where the appearance of two elements of the scene are combined.
This further means that information about motion blur is not properly incor-
porated into the segmentation of the layers. Third, their method for estimating
flow relies on normalized cross correlation while our method is fully generative,
modeling the full appearance of each image from the model. Fourth, they do
not directly parameterize the blur kernel based on the motion. In contrast, our
explicit parameterization of blur facilitates a simpler unified formulation and
optimization scheme.
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Fig. 2: Generative Model. The sharp layers (a) are blurred (b) using the motion indi-

cated in the top right corners. Together with the blurred layer segmentation (c), an

image (d) with complex spatially-varying motion blur is generated. The checkerboard-

pattern indicates transparency. Image inspired by [41].

3 A Layered Representation of Motion-Blurred Video

Notation. A superscript denotes a layer l, 0 ≤ l ≤ L − 1, where larger l’s are
closer to the observer. Here we use a simplified model with L = 2 layers. A
subscript denotes the image frame at time t, 1 ≤ t ≤ T , for a sequence with T
frames. It ∈ Rm×n×3 is an observed color image, Al ∈ Rm×n×3 is the unblurred
color “appearance” of layer l. Gl ∈ Rm×n×3 is the segmentation mask for l; for
l = 0 (i.e. the background) the mask is assumed to be uniformly one. While Gl

does not necessarily have to be binary, here we only consider opaque layers. Note
that while Gl does have three color channels, we enforce all three to be the same
for a given pixel. Al and Gl are assumed to be constant across the sequence. For
longer sequences, this limitation could either be relaxed, or the sequence could
be split into smaller sub-sequences, each exhibiting approximately constant layer
shape and layer appearance. For readability, we use the column-vectorized forms
of It, A

l, Gl; i.e. it ∈ R3mn×1, al ∈ R3mn×1, and gl ∈ R3mn×1, respectively.

θlt are the transformation (i.e. motion) parameters for layer l at frame t. The
complexity of θtl depends on the motion model, and can range from a single
(u, v) value pair in case of purely translational motion to displacement values
for every pixel in the case of dense optical flow. Here we focus on affine motion,
which is the most common for layered flow. It provides a good middle ground by
capturing the most common frame-to-frame transformations, still being a linear
transformation. While more complicated motion models such as a full homogra-
phy are possible to include in our model, perspective effects from frame to frame
in a video are often negligible, making affine motion a good approximation.
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To cope with object areas leaving the visible frame, m×n is set to be larger
than the observation data by padding in all directions. With this simple ap-
proach, we are able to reconstruct objects leaving the frame; i.e. panoramas.

A Single Layer with Motion Blur. To fix ideas, first consider the simplest
case of motion blur, in which a single layer undergoes an arbitrary transformation
during the period of open shutter. A pixel in the blurred image can then be
approximated as a linear combination of pixels of the unblurred layer [33]. Thus,
we can model the blur as a blur matrix H (θt, θt−1, s) ∈ R3mn×3mn, and write
the blurred image as

isinglelayer = H (θt, θt−1, s) a. (1)

H depends on the affine parameters of the current and the previous frame, as
well as the shutter speed s. In this work, we assume the shutter speed to be
known and constant; this is a reasonable assumption for digital video cameras
and even archival film footage as we show in the experiments. H is set to influence
different color channels equally.1

Two Layers without Motion Blur. Without motion blur, an image that
is composed of two different layers with appearances a0 and a1, can be written
as

inoblur =
(
1− g1

)
� a0 + a1. (2)

Here, � denotes element-wise multiplication. Similar to [2], we enforce a1 to be
zero everywhere where its segmentation is zero.

Two Layers with Foreground Motion and Blur. For readability, we
abbreviate Hl

t,t−1 = H
(
θlt, θ

l
t−1, s

)
. Assuming a static background, we get

ifg−blur =
(
1−H1

t,t−1g
1
)
� a0 + H1

t,t−1a
1. (3)

Now considering multiple points t in time, Eq. (3) becomes

ifg−blur,t =
(
1−H1

t,t−1T
1
tg

1
)
� a0 + H1

t,t−1T
1
ta

1. (4)

In addition to the blur matrices Hl
t,t−1, we use the transformation matrices

Tl
t ∈ R3mn×3mn to transform a vectorized image according to the transformation

parameters θlt.
Since any blur and transformation can be expressed as linear (re-)combination

of pixels in the image, this formulation is very flexible, allowing complex motion
models such as homographies or dense optical flow [33].

A Two-Layer Model. While algorithms dealing with spatially-varying blur
commonly assume a static background [2, 4], this assumption is often invalid in
practice; eg. in the presence of camera motion in addition to object motion.
Incorporating background motion and its corresponding blur into Eq. (4) yields
an estimated image

ît =
(
1−H1

t,t−1T
1
tg

1
)
�H0

t,t−1T
0
ta

0 + H1
t,t−1T

1
ta

1. (5)

1 To perform super resolution, A would be larger than I and we would multiply by
another matrix to decimate the blurred A in generating I.
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Likelihood. The image ît generated by our model should match the observed
image it. Hence to estimate the model parameters we minimize

ED (I,G,A,Θ) =
∑
t

w>ρ
(
it − ît

)
(6)

summed over all pixels, where ρ(x) =
√
x2 + ε2 is a robust Charbonnier func-

tion [5]. Here, w ∈ R3mn×1 contains zeros in the outside padded area, and
ones in the inside, restricting the summation to the visible part of the image.
The input is the image sequence I = {i1, · · · , iT }. The estimated parame-
ters are the set of segmentations (excluding the background), G =

{
g1
}

, the

set of appearances, A =
{
a0,a1

}
, and the set of transformation parameters,

Θ =
{
θ0

0, θ
1
0, · · · , θ0

T , θ
1
T

}
. For each layer, we obtain T +1 values for θ, since each

frame it, including the first, depends on θt and θt−1.
Regularization. To make Eq. (6) better behaved in weakly structured re-

gions, we impose a number of regularization terms on both the appearance maps
A{0,1} and the segmentation G1.

Spatial Smoothness. We regularize both the appearance images A{0,1} and
the segmentation maps G. Like standard deblurring methods we model the fact
that the spatial derivatives of natural images exhibit a heavy-tail distribution
[24]. This can be captured using a sparse prior:

Esparse(Y, α) =
∑
x,y

|∇xY (x, y)|α + |∇yY (x, y)|α. (7)

Consistent with natural image statistics, we use αA = 0.8 for the appearance
maps.

For a binary segmentation mask G, we use the L1 total variation prior, given
by Eq. (7) by setting αG = 1. This prior prefers smooth contours, and has been
successfully used in similar tasks before [2].

We approximate the non-differentiable absolute | · | in Eq. (7) with a Char-
bonnier function [5] with ε = 10−3.

Background Preference. We assume the background to generally cover more
pixels than the foreground layer. Thus, we impose a slight penalty for pixels that
are assigned to the foreground.

Ebg(Y ) =
∑
x,y

Y (x, y)2. (8)

Objective. The final objective function is

E (I,G,A,Θ) = ED (I,G,A,Θ) + EReg (G,A) , (9)

with

EReg (G,A) =

+ λsparse,A
(
Esparse

(
A0, αA

)
+ Esparse

(
A1, αA

))
+ λsparse,GEsparse

(
G1, αG

)
+ λbgEbg

(
G1
)
. (10)



8 J. Wulff and M. J. Black

(a) (b) (c) (d)

(e)

(f)

(g)

Fig. 3: Illustration of different steps in the algorithm. (a) One of the 5 input frames in

the sequence. (b) Initial flow, computed using [44]. (c) Motion initialization from optical

flow. (d) Final motion estimate. (e) Deblurred image produced by the generative model.

(f) Color key used for optical flow. (g) Normalized energy vs. number of iterations. Red

lines show transitions between the pyramid levels. See text for details.

We set the parameters to λbg = 0.05, λsparse,A = 0.001, λsparse,G = 0.05. For
the effects of the individual regularizations, please see the Sup. Mat.

4 Optimization

We assume that the shutter speed is known and that there are only two moving
layers. Our algorithm computes the latent (unblurred) appearance of both the
background and the foreground, the motion parameters of both, and the seg-
mentation mask for the foreground. Figure 3 shows an input image, and how the
solution changes after each step described here. Note that it is usually possible
to reconstruct the parts of the background that are visible in at least one frame
of the sequence.

Initialization. Since the objective function (10) is non-convex, a good ini-
tialization of A, G, and Θ is important. While standard optical flow estimates
from a blurred sequence are not generally accurate enough to actually perform
deblurring [27], they nevertheless provide a useful initial estimate of the motion.
Thus, to initialize, we first compute dense optical flow using an off-the-shelf op-
tical flow algorithm, MDP-Flow [44] (Fig. 3(b)). Note that the choice of initial
optical flow algorithm is not critical, as long as it produces reasonable results. We
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tested a number of different optical flow algorithms, but did not observe signifi-
cant differences in the end result. The reason for this is that the precise spatial
configuration of the initial optical flow is less important than the extraction of
the dominant motions, which all methods were capable of.

From the initial dense flow field, L = 2 dominant motions are robustly es-
timated, 2 yielding the initial motion parameters for each frame. Additionally,
this gives a per-frame pixel assignment estimate (i.e. foreground or background),
similar to the approach used in [41] (Fig. 3(c)). Using the estimated motion pa-
rameters, the pixel assignments are aligned across all frames and added up. The
result can be interpreted as an unnormalized foreground probability. We combine
this with a spatial consistency term, and optimize via graph cuts [22], resulting
in a single assignment estimate for the whole sequence.

Given this segmentation and the estimated motion for each layer, we separate
both layers by masking, and use a simple non-blind deblurring method [14] on
each layer to obtain initial deblurred estimates. While this initial deblurring
causes ringing artifacts and is not strictly necessary, it speeds up convergence
by providing a reasonable initialization.

Coordinate Descent. Starting with our initial estimate, we use an iterative,
alternating optimization method. We optimize one variable at a time using gra-
dient descent, but terminate the optimization after 3 iterations to avoid reaching
local optima, and switch to the next variable. One optimization cycle over all
variables makes up a single iteration. We iterate for at most 50 iterations, or
until the relative change in energy falls below 1 percent.

For optimization purposes, we relax the binary-valued g1 and use an element-

wise shifted heavy-side function u(x) = 0.5+ 1
π arctan

(
x−0.5
σu

)
. We approximate

g1 ≈ u
(
g̃1
)
, and optimize the continuous-valued g̃1 instead. Empirically, we set

σu = 0.05.

To deal with large motions, we use a standard multi-scale approach with
a Gaussian pyramid with P levels. We found P = 7 and a scaling factor of
1.5 to work well. The initialization is done at the highest resolution, and the
estimated starting values are rescaled to the highest pyramid level. The complete
optimization schedule is then performed at each pyramid level, and the results
form the input of the next level. See Sup. Mat. for pseudocode. Figure 3(g)
shows the energy per pixel vs. number of iterations. The red dashed lines show
the transition points between pyramid levels. While the gradient descent scheme
we use is not guaranteed to reach the global optimum, we nevertheless observe
a well-behaved falloff.

We have experimented with different optimizers for the single variables, but
found this simple gradient descent algorithm to work best. For the detailed
derivatives of the objective function, please see Sup. Mat.

After the optimization has converged, we obtain the final mask by smoothing
and thresholding g̃1, and multiply the binary mask element-wise with A1 to
compute the final foreground appearance estimate. Figure 3(d) shows the final

2 For translational motion, we use the median; for affine, RANSAC.



10 J. Wulff and M. J. Black

estimated flow. Note that the segmentation is significantly improved, with even
the shape of the person and rims of the bicycle being evident. A full composite
with blur removed is shown in Fig. 3(e).

Using unoptimized Python code, our algorithm takes less than 40min per
frame with a resolution of m = n = 640 pixels.

5 Evaluation

We evaluate the algorithm in terms of motion accuracy and deblurring perfor-
mance. Furthermore, we compare the results of our algorithm with and without
the blur model. We use both synthetic and real sequences, containing transla-
tional and affine motion. The length of the sequences varies from 5 to 10 frames.
Two of our 8 test sequences contain static backgrounds (eg. in Fig. 1, or the
middle column of Fig. 4), while the remaining 6 contain moving foreground and
background. Three of the test sequences contain significant affine motions in-
cluding scale change and rotation. Here we present an overview of the results; a
complete list is given in the Sup. Mat.

Motion Estimation Accuracy. We compare our motion estimation ac-
curacy with different methods from the optical flow literature: Sun et al. [36]
use a layered optical flow model; Portz et al. [30] incorporate motion blur into
an algorithm for optical flow computation, but do not take layers into account;
Xu and Jia [44] are representative of a non-layered, but accurate optical flow
method. The implementations were either obtained from the author’s websites,
or provided upon request. In all cases, we used the default parameters. The only
exception was [30], for which we were unable to compute reasonable results us-
ing the included initialization optical flow method. Therefore, we use the same
initialization [44] as for our method.

To quantitatively compare the results, we use two metrics on the synthetic
sequences. First, we compare the full dense flow fields of all methods using the
average endpoint error (“Error frame” in Table 1). Second, we fit two parametric
motions to all flow fields, as described in Sec. 4, and compare those (“Error
fitted” in Table 1). Figure 5 shows an example, and Table 1 shows the average
errors over all sequences. Flow accuracy with our method improves significantly
over the other techniques. As can be seen in Fig. 5, our method is able to
extract even very fine details, however, in the absence of texture in the sky, the
segmentation of foreground and background is ambiguous.

To investigate the effect of our explicit motion blur model, we compare the
motion estimation accuracy for our method with and without the motion blur
modeling enabled. Disabling the motion blur is equivalent to setting the shutter
speed to be infinitely short. Without modeling blur, the accuracy of our method
is comparable to the other methods. The results in Table 1 clearly show the
critical role that the blur model plays in motion estimation accuracy.

Note that compared to other optical flow methods, our method computes
good segmentations, as implicitly shown in the optical flow maps. More explicitly,
consider Fig. 1(e). Here, the object boundaries extracted from the standard
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Fig. 4: Example results. The top row shows a frame of the input sequence, the mid-

dle row the estimated motion and segmentation, the bottom row the output of our

generative image model (i.e. a deblurred image).

optical flow (as described in Sec. 4) are shown in red, while the layer boundaries
extracted from our method are shown in green. While the standard flow method
[44] fails to capture the fine details between the fingers due to the motion blur,
our method is capable of recovering those details. A similar effect can be observed
in Fig. 3(d), and Fig. 5(e).

Deblurring Accuracy. We compare the results of our approach with those
of [7] for deblurring. Figure 6(a) shows an input from a scene in which both
layers only undergo translational motion. Within each layer, the blur kernel is
therefore spatially invariant. Note that [7] is designed for spatially invariant blur
caused by camera shake. To apply it to these images with multiple motions, we
use the approach described in Sec. 4 to obtain a rough estimate of background
and foreground segmentations. Both segments are then separately deblurred,
and the result is composed again. Figure 6 shows a visual comparison of de-
blurring results. On average, this modified version of [7] achieves a PSNR of
18.34 dB, while our generative model has a PSNR of 29.31 dB. Since [7] was not
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(a)
Input frames

(b)
Xu and Jia [44]

(c)
Portz et al. [30]

(d)
Sun et al. [36]

(e)
Ours

Fig. 5: Conventional optical flow estimation methods fail at object boundaries in the

presence of motion blur, since the motion in those areas is a combination of two motion-

blurred image regions. (e) shows our result.

Table 1: Optical flow accuracies (average endpoint error).

Error frame Error fitted

MDP-Flow [44] 3.58 3.28
Blurflow [30] 4.59 4.92
Layerflow [36] 3.27 4.15
Ours-noblur 3.06 3.42
Ours 0.73 1.25

intended to be used in a spatially-discontinuous setting, this is not an entirely
fair comparison. However, by the same token it is not our goal to present a per-
fect deblurring method. Rather, we show that our generative model of layered
motions effectively deblurs the layers resulting in better deblurred images.

Historical Challenge. Figure 7 demonstrates the method for an extremely
challenging archival video with large blur, film grain, and extreme noise – the
famous Zapruder film of the John F. Kennedy assassination. Using 7 frames,
our method removes the motion blur in the scene, both in the rightward driving
car and in the background. The non-rigid motions of the people in the scene
(e.g. the child’s legs) produce some artifacts and require a more flexible motion
model. However, even without this our method performs surprisingly well.

6 Assumptions, Limitations, and Future Work.

To demonstrate our approach, we assume parametric models of the layer motion,
which currently restricts our method to scenes with suitable motion. Our model
formulation however is general and just as valid for smoothly varying flow within
a layer. Future work will address this more general formulation (e.g. [36, 42]).
The model also assumes a two-layer scene. While such a model is frequently used
in comparable work [28, 37], it is again somewhat restrictive. Future work will
extend our current model to more layers, and allow more varied motion within a
given layer. For a preliminary experiment on the effects of gradually increasing
perspective motion, please see the Sup. Mat.
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(a)
One input frame

(b)
[7], segmented

(c)
Our result

Fig. 6: Deblurring example (one frame from sequence). Note that there is different

foreground and background blur. Conventional deblurring methods suffer from discon-

tinuously varying motion blur at object boundaries.

(a) One original frame and magnification (b) Deblurred frame, magnification, and computed
motion and layer segmentation

Fig. 7: Kennedy Assassination. Our method is robust to severely degraded input im-

ages. Zapruder Film c©1967 (Renewed 1995) The Sixth Floor Museum At Dealey Plaza.

Our model assumes constant layer appearance over the sequence. Figure 8
shows a case in which reflections in the windshield of the car cause a change in
appearance over time. This leads to ringing artifacts in the segmentation and
foreground layer estimation. Future work should allow gradual changes in the
appearance, or split the sequences into smaller subsets, for which the appearance
constancy assumption approximately holds.

The limitations mentioned above should be considered in the light of our
claims. We do not claim that we have developed either a full motion estimation
or a full deblurring system. Instead we propose a new layered generative model of
blurred video and show its feasibility for motion estimation and deblurring. Re-
cent work on layered flow has addressed the estimation of the number of layers,
their depth order, and the use of static image cues to improve layer segmentation
[36]. Our framework is consistent with these techniques and could be incorpo-
rated into them. Future work should include optimizing the code and learning
the regularization terms from training data, using more layers, and allowing the
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(a)
One input frame

(b)
Motion estimation

(c)
Deblurring result

Fig. 8: Failure case. A reflection in the windshield causes a changing appearance of the

foreground layer, leading to an incorrect segmentation.

layer appearances, A, and segmentation, G, to vary over time. Additionally, fu-
ture work will include improving the optimization with respect to A by using a
dedicated, state-of-the-art deblurring method, instead of the coordinate descent
method employed here.

Here we have considered a classical shutter, but low-cost sensors today, using
CMOS technology, have rolling shutters. Modeling such shutters is possible in
our framework but remains future work (cf. [16]). Beyond motion blur, images
contain further artifacts such as focal blur, discretization, and camera noise.
These have been modeled before and could be incorporated into our model,
enabling joint motion estimation, denoising, and super-resolution (cf. [1]).

7 Conclusion

We have developed a principled formulation of motion blur in layers, have shown
how it can be used to jointly estimate parametric motion, deblurred appear-
ance, and scene segmentation, and have demonstrated the effectiveness of this
approach using synthetic and real video sequences with appropriate motion. The
results point to the value of incorporating a model of motion blur into the formu-
lation of optical flow. A key insight is that, given the optical flow and the shutter
speed, the blur is completely determined. This simplifies the modeling and es-
timation problem. Additionally, we argue that the scene structure, resulting in
occlusion, has to be modeled in order to capture the complex interplay between
different depth layers, especially if motion blur causes different depth layers to
smear into each other. We have shown that the layered model captures the blur
at boundaries between surfaces and, by modeling the blur process, we achieve
better motion estimation results, layer segmentation, and layer deblurring.
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