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Figure 1: SMPL is a realistic learned model of human body shape and pose that is compatible with existing rendering engines, allows
animator control, and is available for research purposes. (left) SMPL model (orange) fit to ground truth 3D meshes (gray). (right) Unity 5.0
game engine screenshot showing bodies from the CAESAR dataset animated in real time.

Abstract

We present a learned model of human body shape and pose-
dependent shape variation that is more accurate than previous
models and is compatible with existing graphics pipelines. Our
Skinned Multi-Person Linear model (SMPL) is a skinned vertex-
based model that accurately represents a wide variety of body
shapes in natural human poses. The parameters of the model are
learned from data including the rest pose template, blend weights,
pose-dependent blend shapes, identity-dependent blend shapes, and
a regressor from vertices to joint locations. Unlike previous mod-
els, the pose-dependent blend shapes are a linear function of the
elements of the pose rotation matrices. This simple formulation en-
ables training the entire model from a relatively large number of
aligned 3D meshes of different people in different poses. We quan-
titatively evaluate variants of SMPL using linear or dual-quaternion
blend skinning and show that both are more accurate than a Blend-
SCAPE model trained on the same data. We also extend SMPL to
realistically model dynamic soft-tissue deformations. Because it is
based on blend skinning, SMPL is compatible with existing render-
ing engines and we make it available for research purposes.
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1 Introduction

Our goal is to create realistic animated human bodies that can rep-
resent different body shapes, deform naturally with pose, and ex-
hibit soft-tissue motions like those of real humans. We want such
models to be fast to render, easy to deploy, and compatible with
existing rendering engines. The commercial approach commonly
involves hand rigging a mesh and manually sculpting blend shapes
to correct problems with traditional skinning methods. Many blend
shapes are typically needed and the manual effort required to build
them is large. As an alternative, the research community has fo-
cused on learning statistical body models from example scans of
different bodies in a varied set of poses. While promising, these
approaches are not compatible with existing graphics software and
rendering engines that use standard skinning methods.

Our goal is to automatically learn a model of the body that is both
realistic and compatible with existing graphics software. To that
end, we describe a “Skinned Multi-Person Linear” (SMPL) model
of the human body that can realistically represent a wide range of
human body shapes, can be posed with natural pose-dependent de-
formations, exhibits soft-tissue dynamics, is efficient to animate,
and is compatible with existing rendering engines (Fig. 1).

Traditional methods model how vertices are related to an underly-
ing skeleton structure. Basic linear blend skinning (LBS) models
are the most widely used, are supported by all game engines, and
are efficient to render. Unfortunately they produce unrealistic de-
formations at joints including the well-known “taffy” and “bowtie”
effects (see Fig. 2). Tremendous work has gone into skinning meth-
ods that ameliorate these effects [Lewis et al. 2000; Wang and
Phillips 2002; Kavan and Žára 2005; Merry et al. 2006; Kavan et al.
2008]. There has also been a lot of work on learning highly realis-
tic body models from data [Allen et al. 2006; Anguelov et al. 2005;
Freifeld and Black 2012; Hasler et al. 2010; Chang and Zwicker
2009; Chen et al. 2013]. These methods can capture the body shape
of many people as well as non-rigid deformations due to pose. The
most realistic approaches are arguably based on triangle deforma-
tions [Anguelov et al. 2005; Chen et al. 2013; Hasler et al. 2010;
Pons-Moll et al. 2015]. Despite the above research, existing mod-



Figure 2: Models compared with ground truth. This figure defines the color coding used throughout the paper and Supplemental Video.
The far right (light gray) mesh is a 3D scan. Next to it (dark gray) is a registered mesh with the same topology as our model. We ask how
well different models can approximate this registration. From left to right: (light green) Linear blend skinning (LBS), (dark green) Dual-
quaternion blend skinning (DQBS), (blue) BlendSCAPE, (red) SMPL-LBS, (orange) SMPL-DQBS. The zoomed regions highlight differences
between the models at the subject’s right elbow and hip. LBS and DQBS produce serious artifacts at the knees, elbows, shoulders and hips.
BlendSCAPE and both SMPL models do similarly well at fitting the data.

els either lack realism, do not work with existing packages, do not
represent a wide variety of body shapes, are not compatible with
standard graphics pipelines, or require significant manual labor.

In contrast to the previous approaches, a key goal of our work is to
make the body model as simple and standard as possible so that it
can be widely used, while, at the same time, keeping the realism
of deformation-based models learned from data. Specifically we
learn blend shapes to correct for the limitations of standard skin-
ning. Different blend shapes for identity, pose, and soft-tissue dy-
namics are additively combined with a rest template before being
transformed by blend skinning. A key component of our approach
is that we formulate the pose blend shapes as a linear function of
the elements of the part rotation matrices. This formulation is dif-
ferent from previous methods [Allen et al. 2006; Merry et al. 2006;
Wang and Phillips 2002] and makes training and animating with
the blend shapes simple. Because the elements of rotation matrices
are bounded, so are the resulting deformations, helping our model
generalize better.

Our formulation admits an objective function that penalizes the per-
vertex disparities between registered meshes and our model, en-
abling training from data. To learn how people deform with pose,
we use 1786 high-resolution 3D scans of different subjects in a wide
variety of poses. We align our template mesh to each scan to cre-
ate a training set. We optimize the blend weights, pose-dependent
blend shapes, the mean template shape (rest pose), and a regressor
from shape to joint locations to minimize the vertex error of the
model on the training set. This joint regressor predicts the location
of the joints as a function of the body shape and is critical to ani-
mating realistic pose-dependent deformations for any body shape.
All parameters are automatically estimated from the aligned scans.

We learn linear models of male and female body shape from the
CAESAR dataset [Robinette et al. 2002] (approximately 2000 scans
per gender) using principal component analysis (PCA). We first reg-
ister a template mesh to each scan and pose normalize the data,
which is critical when learning a vertex-based shape model. The
resulting principal components become body shape blend shapes.

We train the SMPL model in various forms and compare it quantita-
tively to a BlendSCAPE model [Hirshberg et al. 2012] trained with
exactly the same data. We evaluate the models both qualitatively
with animations and quantitatively using meshes that were not used
for training. We fit SMPL and BlendSCAPE to these meshes and
then compare the vertex errors. Two main variants of SMPL are
explored, one using linear blend skinning (LBS) and the other with
Dual-Quaternion blend skinning (DQBS); see Fig. 2. The surprise
is that a vertex-based, skinned, model such as SMPL is actually
more accurate than a deformation-based model like BlendSCAPE
trained on the same data. The test meshes are available for research
purposes so others can quantitatively compare to SMPL.

We extend the SMPL model to capture soft-tissue dynamics by
adapting the Dyna model [Pons-Moll et al. 2015]. The resulting
Dynamic-SMPL, or DMPL model, is trained from the same dataset
of 4D meshes as Dyna. DMPL, however, is based on vertices in-
stead of triangle deformations. We compute vertex errors between
SMPL and Dyna training meshes, transformed into the rest pose,
and use PCA to reduce the dimensionality, producing dynamic
blend shapes. We then train a soft-tissue model based on angu-
lar velocities and accelerations of the parts and the history of dy-
namic deformations as in [Pons-Moll et al. 2015]. Since soft-tissue
dynamics strongly depend on body shape, we train DMPL using
bodies of varying body mass index and learn a model of dynamic
deformations that depends of body shape. Animating soft-tissue
dynamics in a standard rendering engine simply requires comput-
ing the dynamic linear blend shape coefficients from the sequence
of poses. Side-by-side animations of Dyna and DMPL reveal that
DMPL is more realistic. This extension of SMPL illustrates the
generality of our additive blend shape approach, shows how defor-
mations can depend on body shape, and demonstrates how the ap-
proach provides a extensible foundation for modeling body shape.

SMPL models can be animated significantly faster than real time
on a CPU using standard rendering engines. Consequently SMPL
addresses an open problem in the field; it makes a realistic learned
model accessible to animators. The SMPL base template is de-



signed with animation in mind; it has a low-polygon count, a simple
vertex topology, clean quad structure, a standard rig, and reason-
able face and hand detail (though we do not rig the hands or face
here). SMPL can be represented as an Autodesk Filmbox (FBX) file
that can be imported into animation systems. We make the SMPL
model available for research purposes and provide scripts to drive
our model in Maya, Blender, Unreal Engine and Unity.

2 Related Work

Linear blend skinning and blend shapes are widely used throughout
the animation industry. While the research community has pro-
posed many novel models of articulated body shape that produce
high-quality results, they are not compatible with industry practice.
Many authors have tried to bring these worlds together with varying
degrees of success as we summarize below.

Blend Skinning. Skeleton subspace deformation methods, also
known as blend skinning, attach the surface of a mesh to an un-
derlying skeletal structure. Each vertex in the mesh surface is
transformed using a weighted influence of its neighboring bones.
This influence can be defined linearly as in Linear Blend Skinning
(LBS). The problems of LBS have been widely published and the
literature is dense with generic methods that attempt to fix these,
such as quaternion or dual-quaternion skinning, spherical skinning,
etc. (e.g. [Wang and Phillips 2002; Kavan and Žára 2005; Kavan
et al. 2008; Le and Deng 2012; Wang et al. 2007]). Generic meth-
ods, however, often produce unnatural results and here we focus on
learning to correct the limitations of blend skinning, regardless of
the particular formulation.

Auto-rigging. There is a great deal of work on automatically rig-
ging LBS models (e.g. [De Aguiar et al. 2008; Baran and Popović
2007; Corazza and Gambaretto 2014; Schaefer and Yuksel 2007])
and commercial solutions exist. Most relevant here are methods that
take a collection of meshes and infer the bones as well as the joints
and blend weights (e.g. [Le and Deng 2014]). Such methods do not
address the common problems of LBS models because they do not
learn corrective blend shapes. Models created from sequences of
meshes (e.g. [De Aguiar et al. 2008]) may not generalize well to
new poses and motions. Here, we assume the kinematic structure
is known, though the approach could be extended to also learn this
using the methods above.

The key limitation of the above methods is that the models do not
span a space of body shapes. Miller et al. [2010] partially address
this by auto-rigging using a database of pre-rigged models. They
formulate rigging and skinning as the process of transferring and
adapting skinning weights from known models to a new model.
Their method does not generate blend shapes, produces standard
LBS artifacts, and does not minimize a clear objective function.

Blend shapes. To address the shortcomings of basic blend skin-
ning, the pose space deformation model (PSD) [Lewis et al. 2000]
defines deformations (as vertex displacements) relative to a base
shape, where these deformations are a function of articulated pose.
This is the key formulation that is largely followed by later ap-
proaches and is also referred to as “scattered data interpolation” and
“corrective enveloping” [Rouet and Lewis 1999]. We take an ap-
proach more similar to weighted pose-space deformation (WPSD)
[Kurihara and Miyata 2004; Rhee et al. 2006], which defines the
corrections in a rest pose and then applies a standard skinning equa-
tion (e.g. LBS). The idea is to define corrective shapes (sculpts) for
specific key poses, so that when added to the base shape and trans-
formed by blend skinning, produce the right shape. Typically one
finds the distance (in pose space) to the exemplar poses and uses a
function, e.g. a Radial Basis (RBF) kernel [Lewis et al. 2000], to

weight the exemplars non-linearly based on distance. The sculpted
blend shapes are then weighted and linearly combined.

These approaches are all based on computing weighted distances
to exemplar shapes. Consequently, these methods require compu-
tation of the distances and weights at runtime to obtain the cor-
rective blend shape. For a given animation (e.g. in a video game)
these weights are often defined in advance based on the poses and
“baked” into the model. Game engines apply the baked-in weights
to the blend shapes. The sculpting process is typically done by an
artist and then only for poses that will be used in the animation.

Learning pose models. Allen et al. [2002] use this PSD approach
but rather than hand-sculpt the corrections, learn them from regis-
tered 3D scans. Their work focuses primarily on modeling the torso
and arms of individuals, rather than whole bodies of a population.
They store deformations of key poses and interpolate between them.
When at, or close to, a stored shape, these methods are effectively
perfect. They do not tend to generalize well to new poses, requiring
dense training data. It is not clear how many such shapes would
be necessary to model the full range of articulated human pose. As
the complexity of the model increases, so does the complexity of
controlling all these shapes and how they interact.

To address this, Kry et al. [2002] learn a low-dimensional PCA
basis for each joint’s deformations. Pose-dependent deformations
are described in terms of the coefficients of the basis vectors. Ka-
van et al. [2009] use example meshes generated using a non-linear
skinning method to construct linear approximations. James and
Twigg [2005] combine the idea of learning the bones (non-rigid,
affine bones) and skinning weights directly from registered meshes.
For blend shapes they use an approach similar to [Kry et al. 2002].

Another way to address the limitations of blend skinning is through
“multi-weight enveloping” (MWE) [Wang and Phillips 2002].
Rather than weight each vertex by a weighted combination of the
bone transformation matrices, MWE learns weights for the ele-
ments of these matrices. This increases the capacity of the model
(more parameters). Like [James and Twigg 2005] they overparam-
eterize the bone transformations to give more expressive power and
then use PCA to remove unneeded degrees of freedom. Their ex-
periments typically involve user interaction and the MWE approach
is not supported by current game engines.

Merry et al. [2006] find MWE to be overparameterized, because it
allows vertices to deform differently depending on rotation in the
global coordinate system. Their Animation Space model reduces
the parameterization at minimal loss of representational power,
while also showing computational efficiency on par with LBS.

Another alternative is proposed by Mohr and Gleicher [2003] who
learn an efficient linear and realistic model from example meshes.
To deal with the problems of LBS, however, they introduce ex-
tra “bones” to capture effects like muscle bulging. These extra
bones increase complexity, are non-physical, and are non-intuitive
for artists. Our blend shapes are simpler, more intuitive, more prac-
tical, and offer greater realism. Similarly, Wang et al. [2007] in-
troduce joints related to surface deformation. Their rotational re-
gression approach uses deformation gradients, which then must be
converted to a vertex representation.

Learning pose and shape models. The above methods focus on
learning poseable single-shape models. Our goal, however, is to
have realistic poseable models that cover the space of human shape
variation. Early methods use PCA to characterize a space of human
body shapes [Allen et al. 2003; Seo et al. 2003] but do not model
how body shape changes with pose. The most successful class of
models are based on SCAPE [Anguelov et al. 2005] and represent
body shape and pose-dependent shape in terms of triangle deforma-



tions rather than vertex displacements [Chen et al. 2013; Freifeld
and Black 2012; Hasler et al. 2009; Hirshberg et al. 2012; Pons-
Moll et al. 2015]. These methods learn statistical models of shape
variation from training scans containing different body shapes and
poses. Triangle deformations provide allow the composition of dif-
ferent transformations such as body shape variation, rigid part rota-
tion, and pose-dependent deformation. Weber et al. [2007] present
an approach that has properties of SCAPE but blends this with ex-
ample shapes. These models are not consistent with existing ani-
mation software.

Hasler et al. [2010] learn two linear blend rigs: one for pose and one
for body shape. To represent shape change, they introduce abstract
“bones” that control the shape change of the vertices. Animating
a character of a particular shape involves manipulating the shape
and pose bones. They learn a base mesh and blend weights but not
blend shapes. Consequently the model lacks realism.

What we would like is a vertex-based model that has the expres-
sive power of the triangle deformation models so that it can cap-
ture a whole range of natural shapes and poses. Allen et al. [2006]
formulate such a model. For a given base body shape, they de-
fine a standard LBS model with scattered/exemplar PSD to model
pose deformations (using RBFs). They greedily define “key an-
gles” at which to represent corrective blend shapes and they hold
these fixed across all body shapes. A given body shape is param-
eterized by the vertices of the rest pose, corrective blend shapes
(at the key angles), and bone lengths; these comprise a “character
vector.” Given different character vectors for different bodies they
learn a low-dimensional latent space that lets them generalize char-
acter vectors to new body shapes; they learn these parameters from
data. Their model is more complex than ours, has fewer parame-
ters, and is learned from much less data. A more detailed analysis
of how this method compares to SMPL is presented in Sec. 7.

3 Model Formulation

Our Skinned Multi-Person Linear model (SMPL) is illustrated in
Fig. 3. Like SCAPE, the SMPL model decomposes body shape
into identity-dependent shape and non-rigid pose-dependent shape;
unlike SCAPE, we take a vertex-based skinning approach that uses
corrective blend shapes. A single blend shape is represented as
a vector of concatenated vertex offsets. We begin with an artist-
created mesh with N = 6890 vertices and K = 23 joints. The
mesh has the same topology for men and women, spatially varying
resolution, a clean quad structure, a segmentation into parts, initial
blend weights, and a skeletal rig. The part segmentation and initial
blend weights are shown in Fig. 6.

Following standard skinning practice, the model is defined by a
mean template shape represented by a vector of N concatenated
vertices ¯

T 2 R3N in the zero pose, ~✓⇤; a set of blend weights, W 2
RN⇥K , (Fig. 3(a)); a blend shape function, BS(

~�) : R|~�| 7! R3N ,
that takes as input a vector of shape parameters, ~�, (Fig. 3(b)) and
outputs a blend shape sculpting the subject identity; a function to
predict K joint locations (white dots in Fig. 3(b)), J(~�) : R|~�| 7!
R3K as a function of shape parameters, ~�; and a pose-dependent
blend shape function, BP (

~✓) : R|~✓| 7! R3N , that takes as input a
vector of pose parameters, ~✓, and accounts for the effects of pose-
dependent deformations (Fig. 3(c)). The corrective blend shapes of
these functions are added together in the rest pose as illustrated in
(Fig. 3(c)). Finally, a standard blend skinning function W (·) (linear
or dual-quaternion) is applied to rotate the vertices around the es-
timated joint centers with smoothing defined by the blend weights.
The result is a model, M(

~�, ~✓;�) : R|~✓|⇥|~�| 7! R3N , that maps

shape and pose parameters to vertices (Fig. 3(d)). Here � represents
the learned model parameters described below.

Below we will use both LBS and DQBS skinning methods. In gen-
eral the skinning method can be thought of as a generic black box.
Given a particular skinning method our goal is to learn � to correct
for limitations of the method so as to model training meshes. Note
that the learned pose blend shapes both correct errors caused by the
blend skinning function and static soft-tissue deformations caused
by changes in pose.

Below we describe each term in the model. For convenience, a
notational summary is provided in Table 1 in the Appendix.

Blend skinning. To fix ideas and define notation, we present the
LBS version as it makes exposition clear (the DQBS version of
SMPL only requires changing the skinning equation). Meshes and
blend shapes are vectors of vertices represented by bold capital let-
ters (e.g. X) and lowercase bold letters (e.g. xi 2 R3) are vectors
representing a particular vertex. The vertices are sometimes repre-
sented in homogeneous coordinates. We use the same notation for
a vertex whether it is in standard or homogeneous coordinates as it
should always be clear from the context which form is needed.

The pose of the body is defined by a standard skeletal rig, where
~!k 2 R3 denotes the axis-angle representation of the relative rota-
tion of part k with respect to its parent in the kinematic tree. Our
rig has K = 23 joints, hence a pose ~✓ = [~!T

0 , . . . , ~!
T
K ]

T is defined
by |~✓| = 3 ⇥ 23 + 3 = 72 parameters; i.e. 3 for each part plus 3
for the root orientation. Let !̄ =

~!
k~!k denote the unit norm axis of

rotation. Then the axis angle for every joint j is transformed to a
rotation matrix using the Rodrigues formula

exp(~!j) = I +

b!̄j sin(k~!jk) + b!̄
2
j cos(k~!jk) (1)

where b!̄ is the skew symmetric matrix of the 3-vector !̄ and I is
the 3⇥3 identity matrix. Using this, the standard linear blend skin-
ning function W (

¯

T,J, ~✓,W) : R3N⇥3K⇥|~✓|⇥|W| 7! R3N takes
vertices in the rest pose, ¯

T, joint locations, J, a pose, ~✓, and the
blend weights, W , and returns the posed vertices. Each vertex ¯

ti

in ¯

T is transformed into ¯

t

0
i (both column vectors in homogeneous

coordinates) as

¯

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓,J)¯ti (2)

G0
k(
~✓,J) = Gk(

~✓,J)Gk(
~✓⇤,J)�1 (3)

Gk(
~✓,J) =

Y

j2A(k)



exp(~!j) jj

~
0 1

�

(4)

where wk,i is an element of the blend weight matrix W , represent-
ing how much the rotation of part k effects the vertex i, exp(~✓j) is
the local 3⇥ 3 rotation matrix corresponding to joint j, Gk(

~✓,J) is
the world transformation of joint k, and G0

k(
~✓,J) is the same trans-

formation after removing the transformation due to the rest pose,
~✓⇤. Each 3-element vector in J corresponding to a single joint cen-
ter, j, is denoted jj . Finally, A(k) denotes the ordered set of joint
ancestors of joint k. Note, for compatibility with existing render-
ing engines, we assume W is sparse and allow at most four parts to
influence a vertex.

Many methods have modified equation (2) to make skinning more
expressive. For example MWE [Wang and Phillips 2002] replaces
Gk(

~✓,J) with a more general affine transformation matrix and re-
places the scalar weight with a separate weight for every element of



(a) T̄, W
(b) T̄+BS(~�), J(~�) (c) TP (~�, ~✓) = T̄+BS(~�)+BP (~✓) (d) W (TP (~�, ~✓), J(~�), ~✓,W)

Figure 3: SMPL model. (a) Template mesh with blend weights indicated by color and joints shown in white. (b) With identity-driven
blendshape contribution only; vertex and joint locations are linear in shape vector ~�. (c) With the addition of of pose blend shapes in
preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual quaternion skinning for the split pose.

the transformation matrix. Such changes are expressive but are not
compatible with existing animation systems.

To maintain compatibility, we keep the basic skinning function and
instead modify the template in an additive way and learn a function
to predict joint locations. Our model, M(

~�, ~✓;�) is then

M(

~�, ~✓) = W (TP (
~�, ~✓), J(~�), ~✓,W) (5)

TP (
~�, ~✓) =

¯

T+BS(
~�) +BP (

~✓) (6)

where BS(
~�) and BP (

~✓) are vectors of vertices representing off-
sets from the template. We refer to these as shape and pose blend
shapes respectively.

Given this definition, a vertex ¯ti is transformed according to

¯

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓, J(~�))(¯ti + bS,i(

~�) + bP,i(
~✓)) (7)

where bS,i(
~�),bP,i(

~✓) are vertices in BS(
~�) and BP (

~✓) respec-
tively and represent the shape and pose blend shape offsets for the
vertex¯ti. Hence, the joint centers are now a function of body shape
and the template mesh that is deformed by blend skinning is now a
function of both pose and shape. Below we describe each term in
detail.

Shape blend shapes. The body shapes of different people are rep-
resented by a linear function BS

BS(
~�;S) =

|~�|
X

n=1

�nSn (8)

where ~� = [�1, . . . ,�|~�|]
T , |~�| is the number of linear shape coeffi-

cients, and the Sn 2 R3N represent orthonormal principal compo-
nents of shape displacements. Let S = [S1, . . . ,S|~�|] 2 R3N⇥|~�|

be the matrix of all such shape displacements. Then the linear func-
tion BS(

~�;S) is fully defined by the matrix S, which is learned
from registered training meshes, see Sec. 4.

Notationally, the values to the right of a semicolon represent learned
parameters, while those on the left are parameters set by an anima-
tor. For notational convenience, we often omit the learned parame-
ters when they are not explicitly being optimized in training.

Figure 3(b) illustrates the application of these shape blend shapes
to the template ¯

T to produce a new body shape.

Pose blend shapes. We denote as R : R|~✓| 7! R9K a function
that maps a pose vector ~✓ to a vector of concatenated part relative
rotation matrices, exp(~!). Given that our rig has 23 joints, R(

~✓) is
a vector of length (23⇥ 9 = 207). Elements of R(

~✓) are functions
of sines and cosines (Eq. (1)) of joint angles and therefore R(

~✓) is
non-linear with ~✓.

Our formulation differs from previous work in that we define the
effect of the pose blend shapes to be linear in R⇤

(

~✓) = (R(

~✓) �
R(

~✓⇤)), where ~✓⇤ denotes the rest pose. Let Rn(
~✓) denote the nth

element of R(

~✓), then the vertex deviations from the rest template
are

BP (
~✓;P) =

9K
X

n=1

(Rn(
~✓)�Rn(

~✓⇤))Pn, (9)

where the blend shapes, Pn 2 R3N , are again vectors of vertex
displacements. Here P = [P1, . . . ,P9K ] 2 R3N⇥9K is a matrix
of all 207 pose blend shapes. In this way, the pose blend shape
function BP (

~✓;P) is fully defined by the matrix P , which we learn
in Sec. 4.

Note that subtracting the rest pose rotation vector, R(

~✓⇤), guaran-
tees that the contribution of the pose blend shapes is zero in the rest
pose, which is important for animation.

Joint locations. Different body shapes have different joint loca-
tions. Each joint is represented by its 3D location in the rest pose.
It is critical that these are accurate, otherwise there will be artifacts
when the model is posed using the skinning equation. For that rea-
son, we define the joints as a function of the body shape, ~�,

J(~�;J , ¯T,S) = J (

¯

T+BS(
~�;S)) (10)

where J is a matrix that transforms rest vertices into rest joints.
We learn the regression matrix, J , from examples of different peo-
ple in many poses, as part of our overall model learning in Sec. 4.
This matrix models which mesh vertices are important and how to
combine them to estimate the joint locations.

SMPL model. We can now specify the full set of model parameters
of the SMPL model as � =

�

¯

T,W,S,J ,P
 

. We describe how
to learn these in Sec. 4. Once learned they are held fixed and new



Figure 4: Sample registrations from the multipose dataset.

body shapes and poses are created and animated by varying ~� and
~✓ respectively.

Then the SMPL model is finally defined as M(

~�, ~✓;�) =

W
⇣

TP (
~�, ~✓; ¯T,S,P), J(~�;J , ¯T,S), ~✓,W

⌘

(11)

and hence each vertex is transformed as

t

0
i =

K
X

k=1

wk,iG
0
k(
~✓, J(~�;J , ¯T,S))tP,i(

~�, ~✓; ¯T,S,P) (12)

where tP,i(
~�, ~✓; ¯T,S,P) =

¯

ti +

|~�|
X

m=1

�msm,i +

9K
X

n=1

(Rn(
~✓)�Rn(

~✓⇤))pn,i (13)

represents the vertex i after applying the blend shapes and where
sm,i,pn,i 2 R3 are the elements of the shape and pose blend
shapes corresponding to template vertex ¯ti.

Below we experiment with both LBS and DQBS and train the pa-
rameters for each. We refer to these models as SMPL-LBS and
SMPL-DQBS; SMPL-DQBS is our default model, and we use
SMPL as shorthand to mean SMPL-DQBS.

4 Training

We train the SMPL model parameters to minimize reconstruction
error on two datasets. Each dataset contains meshes with the same
topology as our template that have been aligned to high-resolution
3D scans using [Bogo et al. 2014]; we call these aligned meshes
“registrations.” The multi-pose dataset consists of 1786 registra-
tions of 40 individuals (891 registrations spanning 20 females, and
895 registrations spanning 20 males); a sampling is shown in Fig. 4.
The multi-shape dataset consists of registrations to the CAESAR
dataset [Robinette et al. 2002], totaling 1700 registrations for males
and 2100 for females; a few examples are shown in Fig. 5. We de-
note the jth mesh in the multi-pose dataset as VP

j and the jth mesh
in the multi-shape dataset as VS

j .

Our goal is to train the parameters � =

�

¯

T,W,S,J ,P
 

to mini-
mize vertex reconstruction error on the datasets. Because our model
decomposes shape and pose, we train these separately, simplify-
ing optimization. We first train {J ,W,P} using our multi-pose
dataset and then train {¯T,S} using our multi-shape dataset. We
train separate models for men and women (i.e. �m and �f ).

Figure 5: Sample registrations from the multishape dataset.

4.1 Pose Parameter Training

We first use the multi-pose dataset to train {J ,W,P}. To this
end, we need to compute the rest templates, ˆ

T

P
i , and joint loca-

tions, ˆJP
i , for each subject, i, as well as the pose parameters, ~✓j , for

each registration, j, in the dataset. We alternate between optimiz-
ing registration specific parameters ~✓j , subject-specific parameters
{ˆTP

i , ˆJ
P
i }, and global parameters {W,P}. We then learn the ma-

trix, J , to regress from subject-specific vertex locations, ˆ

T

P
i , to

subject-specific joint locations, ˆJP
i . To achieve all this, we mini-

mize an objective function consisting of a data term, ED , and sev-
eral regularization terms {EJ , EY , EP , EW } defined below.

The data term penalizes the squared Euclidean distance between
registration vertices and model vertices

ED(

ˆ

T

P , ˆJP ,W,P,⇥) =

Preg
X

j=1

||VP
j �W (

ˆ

T

P
s(j) +BP (

~✓j ;P), ˆJP
s(j), ~✓j ,W)||2

where ⇥ =

n

~✓1, . . . , ~✓Preg

o

, s(j) is the subject index correspond-
ing to registration j, Preg are the number of meshes in the pose
trainings set, ˆTP

= {ˆTP
i }

Psubj
i=1 , ˆJP

= {ˆJP
i }

Psubj
i=1 are the sets of

all rest poses and joints, and Psubj is the number of subjects in the
pose training set.

We estimate 207⇥3⇥6890 = 4, 278, 690 parameters for the pose
blend shapes, P , 4⇥ 3⇥ 6890 = 82, 680 parameters for the skin-
ning weights, W , and 3⇥6890⇥23⇥3 = 1, 426, 230 for the joint
regressor matrix, J . To make the estimation well behaved, we reg-
ularize by making several assumptions. A symmetry regularization
term, EY , penalizes left-right asymmetry for ˆJP and ˆ

T

P

EY (

ˆ

J

P , ˆTP
) =

Psubj
X

i=1

�U ||ˆJP
i � U(

ˆ

J

P
i )||2 + ||ˆTP

i � U(

ˆ

T

P
i )||2,

where �U = 100, and where U(T) finds a mirror image of vertices
T, by flipping across the sagittal plane and swapping symmetric
vertices. This term encourages symmetric template meshes and,
more importantly, symmetric joint locations. Joints are unobserved
variables and along the spine they are particularly difficult to lo-
calize. While models trained without the symmetry term produce



(a) Segmentation (b) Initialization WI

Figure 6: Initialization of joints and blend weights. Discrete
part segmentation in (a) is diffused to obtain initial blend weights,
WI , in (b). Initial joint centers are shown as white dots.

reasonable results, enforcing symmetry produces models that are
visually more intuitive for animation.

Our model is hand segmented into 24 parts (Fig. 6). We use this
segmentation to compute an initial estimate of the joint centers and
a regressor JI from vertices to these centers. This regressor com-
putes the initial joints by taking the average of the ring of vertices
connecting two parts. When estimating the joints for each subject
we regularize them to be close to this initial prediction:

EJ(ˆT
P , ˆJP

) =

Psubj
X

i=1

||JI ˆT
P
i � ˆ

J

P
i ||2.

To help prevent overfitting of the pose-dependent blend shapes, we
regularize them towards zero

EP (P) = ||P||2F ,

where k · kF denotes the Frobenius norm. Note that replacing the
quadratic penalty with an L1 penalty would encourage greater spar-
sity of the blend shapes. We did not try this.

We also regularize the blend weights towards the initial weights,
WI , shown in Fig. 6:

EW (W) = ||W �WI ||2F .

The initial weights are computed by simply diffusing the segmen-
tation.

Altogether, the energy for training {W,P} is as follows:

E⇤(ˆT
P , ˆJP ,⇥,W,P) =

ED + �Y EY + �JEJ + �PEP + EW , (14)

where �Y = 100, �J = 100 and �P = 25. These weights were set
empirically. Our model has a large number of parameters and the

Figure 7: Joint regression. (left) Initialization. Joint locations can
be influenced by locations on the surface, indicated by the colored
lines. We assume that these influences are somewhat local. (right)
Optimized. After optimization we find a sparse set of vertices and
associated weights influencing each joint.

regularization helps prevent overfitting. As the size of the training
set grows, so does the strength of the data term, effectively reduc-
ing the influence of the regularization terms. Our experiments be-
low with held-out test data suggest that the learned models are not
overfit to the data and generalize well.

The overall optimization strategy is described in Sec. 4.3.

Joint regressor. Optimizing the above gives a template mesh
and joint locations for each subject, but we want to predict joint
locations for new subjects with new body shapes. To that end, we
learn the regressor matrix J to predict the training joints from the
training bodies. We tried several regression strategies; what we
found to work best, was to compute J using non-negative least
squares [Lawson and Hanson 1995] with the inclusion of a term that
encourages the weights to add to one. This approach encourages
sparsity of the vertices used to predict the joints. Making weights
positive and add to one discourages predicting joints outside the
surface. These constraints enforce the predictions to be in the con-
vex hull of surface points. Figure 7 shows the non-zero elements
of the regression matrix, illustrating that a sparse set of surface ver-
tices are linearly combined to estimate the joint centers.

4.2 Shape Parameter Training

Our shape space is defined by a mean and principal shape directions
{¯T,S}. It is computed by running PCA on shape registrations from
our multi-shape database after pose normalization. Pose normaliza-
tion transforms a raw registration V

S
j into a registration, ˆTS

j , in the
rest pose, ~✓⇤. This normalization is critical to ensure that pose and
shape are modeled separately.

To pose-normalize a registration, V

S
j , we first have to estimate

its pose. We denote ˆ

T

P
µ and ˆ

J

P
µ as the mean shape and mean

joint locations from the multi-pose database respectively. Let
We(ˆT

P
µ , ˆJ

P
µ , ~✓,W),VS

j,e 2 R3 denote an edge of the model and
of the registration respectively. An edge is obtained by subtracting
a pair of neighboring vertices. To estimate the pose using an aver-
age generic shape ˆ

T

P
µ , we minimize the following sum of squared

edge differences so that ~✓j =

argmin

~✓

X

e

||We(ˆT
P
µ +BP (

~✓;P), ˆJP
µ , ~✓,W)�V

S
j,e||2, (15)

where the sum is taken over all edges in the mesh. This allows us to
get a good estimate of the pose without knowing the subject specific
shape.



(a) PC 1 (b) PC 2 (c) PC 3

Figure 8: Shape blend shapes. The first three shape principal components of body shape are shown. PC1 and PC2 vary from -2 to +2
standard deviations from left to right, while PC3 varies from -5 to +5 standard deviations to make the shape variation more visible. Joint
locations (red dots) vary as a function of body shape and are predicted using the learned regressor, J .

Once the pose ~✓j is known we solve for ˆ

T

S
j by minimizing

ˆ

T

S
j = argmin

T̂

||W (

ˆ

T+BP (
~✓j ;P),J ˆ

T, ~✓j ,W)�V

S
j ||2.

This computes the shape that, when posed, matches the training
registration. This shape is the pose-normalized shape.

We then run PCA on {ˆTS
j }

Ssubj
j=1 to obtain {¯T,S}. This procedure

is designed to maximize the explained variance of vertex offsets in
the rest pose, given a limited number of shape directions.

Note that the optimization of pose is critically important when
building a shape basis from vertices. Without this step, pose vari-
ations of the subjects in the shape training dataset would be cap-
tured in the shape blend shapes. The resulting model would not be
decomposed properly into shape and pose. Note also that this ap-
proach constrasts with SCAPE or BlendSCAPE, where PCA is per-
formed in the space of per-triangle deformations. Unlike vertices,
triangle deformations do not live in a Euclidean space [Freifeld and
Black 2012]. Hence PCA on vertices is more principled and is con-
sistent with the registration data term, which consists of squared
vertex disparities.

Figure 8 visualizes the first three shape components. The figure
also shows how the joint locations change with the changes in body
shape. The joint positions are shown by the spheres and are com-
puted from the surface meshes using the learned joint regression
function. The lines connecting the joints across the standard devia-
tions illustrate how the joint positions vary linearly with shape.

Figure 9 shows the relative cumulative variance of SMPL and
BlendSCAPE. While SMPL requires many fewer PCs to account
for the same percentage of overall variance, the variance is different
in the two cases: one is variance in vertex locations and the other
is variance in triangle deformations. Explained variance in defor-
mations does not directly translate into explained variance in vertex
locations. While this makes the two models difficult to compare
precisely, triangle deformations have many more degrees of free-
dom and it is likely that there are many deformations that produce
visually similar shapes. A model requiring fewer components is
generally preferable.

4.3 Optimization summary

Pose parameters ~✓j in Eq. (14) are first initialized by minimiz-
ing the difference between the model and the registration edges,

Figure 9: Cumulative relative variance of the CAESAR dataset ex-
plained as a function of the number of shape coefficients. For SMPL
the variance is in vertex locations, while for BlendSCAPE it is in
triangle deformations.

similar to Eq. (15) using an average template shape. Then
{ˆTP , ˆJP ,W,P,⇥} are estimated in an alternating manner to min-
imize Eq. 14. We proceed to estimate J from {ˆJP , ˆTP }. We
then run PCA on pose normalized subjects {ˆTS

j }
Ssubj
j=1 to obtain

{¯T,S}. The final model is defined by {J ,W,P, ¯T,S}. Note that
all training parameters except for {¯T,S} are found with gradient-
based dogleg minimization [Nocedal and Wright 2006]. Gradients
are computed with automatic differentiation using the the Chumpy
framework [Loper and Black 2014].

5 SMPL Evaluation

All training subjects gave prior informed written consent for their
data to be used in creating statistical models for distribution. Reg-
istered meshes and identifiable subjects shown here are of profes-
sional models working under contract.
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Figure 10: Model fitting with intermediate stages. We fit both BlendSCAPE (blue) and SMPL-LBS, M(

~�, ~✓), (red) to registered meshes by
optimizing pose and shape. ¯

T + BS(
~�) shows the estimated body shape and TP (

~�, ~✓) shows the effects of pose-dependent blend shapes.
Here we show SMPL-LBS, because TP shows more variation due to pose than SMPL-DQBS.

5.1 Quantitative Evaluation

We evaluate two types of error. Model generalization is the ability
of the model to fit to meshes of new people and poses; this tests
both shape and pose blend shapes. Pose generalization is the abil-
ity to generalize a shape of an individual to new poses of the same
person; this primarily tests how well pose blend shapes correct skin-
ning artifacts and pose-dependent deformations. Both are measured
by mean absolute vertex-to-vertex distance between the model and
test registrations. For this evaluation we use 120 registered meshes
of four women and two men from the public Dyna dataset [Dyn
2015]. These meshes contain a variety of body shapes and poses.
All meshes are in alignment with our template and none were used
to train our models. Figure 10 (gray) shows four examples of these
registered meshes.

We evaluate SMPL-LBS and SMPL-DQBS. We also compare these
with a BlendSCAPE model [Hirshberg et al. 2012] trained from ex-
actly the same data as the SMPL models. The kinematic tree struc-
ture for SMPL and the BlendSCAPE model are the same: therefore

we have the same number of pose parameters. We also compare the
models using the same number of shape parameters.

To measure model generalization we first fit each model to each
registered mesh, optimizing over shape ~� and pose ~✓ to find the best
fit in terms of squared vertex distances. Figure 10 shows fits of the
SMPL-LBS (red) and BlendSCAPE (blue) models to the registered
meshes. Both do a good job of fitting the data. The figure also
shows how the model works. Illustrated are the estimated body
shape, ¯T+BS(

~�), and the effect of applying the pose blend shapes,
TP (

~�, ~✓).

For pose generalization, we take each indvidual, select one of the
estimated body shapes from the generalization task, and then op-
timize the pose, ~✓, for each of the other meshes of that subject,
keeping the body shape fixed. The assumption behind pose gener-
alization is that, if a model is properly decomposed into pose and
shape, then the model should be able to fit the same subject in a
different pose, without readjusting shape parameters. Note that the
pose blend shapes are trained to fit observed registrations. As such,



Figure 11: Model generalization indicates how well we can fit an
independent registration. Mean absolute vertex error versus the
number of shape coefficients used.

they correct for problems of blend skinning and try to capture pose-
dependent deformations. Since the pose blend shapes are not de-
pendent on body shape, they capture something about the average
deformations in the training set.

Figures 11 and 12 show the error of the SMPL models and Blend-
SCAPE as a function of the number of body shape coefficients used.
The differences between SMPL and BlendSCAPE are small (on
the order of 0.5mm) but SMPL is more accurate on average. Re-
markably, SMPL-LBS and SMPL-DQBS are essentially identical
in model generalization and SMPL-LBS is actually slightly better
at pose generalization. This is surprising because the pose blend
shapes have much more to correct with LBS. Possibly the simplic-
ity of LBS helps with generalization to new poses. This analysis
is important because it says that users can choose the simpler and
faster LBS model over the DQBS model.

The plots also show how well standard LBS fits the test data.
This corresponds to the SMPL-LBS model with no pose blend
shapes. Not surprisingly, LBS produces much higher error than
either BlendSCAPE or SMPL. LBS is not as bad in Fig. 11 be-
cause here the model can vary body shape parameters, effectively
using changes in identity to try to explain deformations due to
pose. Figure 12 uses a fixed body shape and consequently illus-
trates how LBS does not model pose-dependent deformations real-
istically. Note that here we do not retrain a model specifically for
LBS and expect such a model would be marginally more accurate.

5.2 Sparse SMPL

The pose blend shapes in SMPL are not sparse in the sense that
a rotation of a part can influence any vertex of the mesh. With
sufficient training data sparsity may emerge from data; e.g. the
shoulder corrections will not be influenced by ankle motions. To
make hand animation more intuitive, and to regularize the model
to prevent long-range influences of joints, we can manually enforce
sparsity. To this end, we trained a sparse version of SMPL by using
the same sparsity pattern used for blend weights. In particular, we
allow a vertex deviation to be influenced by at most 4 joints. Since
every joint corresponds to a rotation matrix, the pose blend shape
corresponding to any given vertex will be driven by 9⇥ 4 numbers

Figure 12: Pose generalization error indicates how well a fitted
shape generalizes to new poses.

as opposed to 9⇥ 23.

This model is referred to as SMPL-LBS-Sparse in Figs. 11 and 12.
It is consistently less accurate than the regular SMPL-LBS model
but may still be useful to animators. This suggests that SMPL-
LBS is not overfit to the training data and that sparseness reduces
the capacity of the model. The sparse model sometimes produces
slight discontinuities at boundaries were vertices are influenced by
different joint angles. Other strategies to enforce sparsity could be
adopted, such as using an L1 prior or enforcing smoothness in the
pose blend shapes. These approaches, however, would complicate
the training process.

5.3 Visual Evaluation

Figure 13 illustrates the decomposition of shape parameters ~� and
pose parameters ~✓ in SMPL. Pose is held constant from left to right
across each row while varying the shape. Similarly, the shape of
each person is held constant while varying the pose from top to bot-
tom in each column. The bodies are reposed using poses from the
CMU mocap database [CMU 2000]. Note that the pose-dependent
deformations look natural through a wide range of poses, despite
very different body shapes. This illustrates that the joint regression
works well and that the blend shapes are general.

Please see the Supplemental Video for many more examples and
animations comparing SMPL and BlendSCAPE, illustrating the
pose blend shapes, and illustrating body shape and pose variation.

5.4 Run-time Performance

The run-time cost of SMPL is dominated by skinning and blend-
shape multiplication. Many skinning implementations exist, and
we do not claim to have the fastest. Performance of our own CPU-
based implementation, and a comparison against BlendSCAPE, is
shown in Fig. 14. The plot shows the time needed to generate the
vertices. Note that our BlendSCAPE rendering makes use of mul-
tiple cores, while the SMPL rendering does not; this is why the
system time for BlendSCAPE is higher than the wall-clock time.
Note that here we are showing the cost of changing body shape.
For most applications, this is done once and the shape is then held
fixed. The cost of animating the mesh then comes from only the



Figure 13: Animating SMPL. Decomposition of SMPL parameters into pose and shape: Shape parameters, ~�, vary across different subjects
from left to right, while pose parameters, ~✓, vary from top to bottom for each subject.

pose blend shapes; this cost corresponds to 0 shape coefficients.

For meshes with the same number of vertices, SCAPE will always
be slower. In SMPL each blend shape is of size 3N , requiring that
many multiplications per shape. SCAPE uses triangle deformations
with 9 elements per triangle and there are roughly twice as many
triangles as vertices. This results in roughly a factor of 6 difference
between SMPL and SCAPE in terms of basic multiplications.

5.5 Compatibility with Rendering Engines

Because SMPL is built on standard skinning, it is compatible with
existing 3D animation software. In particular, for a given body
shape, we generate the subject-specific rest-pose template mesh and
skeleton (estimated joint locations) and we export SMPL as a rigged
model with pose blend shapes in Autodesk’s Filmbox (FBX) file
format, giving cross-platform compatibility. The model loads as a
typical rigged mesh and can be animated as usual in standard 3D

animation software.

Pose blend weights can be precomputed, baked into the model, and
exported as an animated FBX file. This kind of file can be loaded
into animation packages and played directly. We have tested the
animated FBX files in Maya, Unity, and Blender.

Pose blend weights can also be computed on the fly given the pose,
~✓t, at time t. To enable this, we provide scripts that take the joint
angles and compute the pose blend weights. We have tested loading
and animating SMPL in Maya 2013, 2014 and 2015. The anima-
tor can animate the model using any of the conventional animation
methods typically used in Maya. We will provide a Python script
that runs inside Maya to apply blend-shape corrections to an ani-
mated SMPL model. The pose blend shape values can be viewed
and/or edited manually within Maya if desired. We have also tested
SMPL in Unity. In SMPL, the blend weights range from -1 to +1
while in Unity they range form 0 to 1. Consequently, we scale and
recenter our weights for compatibility. For runtime computation of



Figure 14: Performance of SMPL and BlendSCAPE vary with the
number of body shape coefficients used. Performance shown here
is from a 2014 Macbook Pro.

pose blend shape coefficients, we provide a C# script that the user
can attach to SMPL’s mesh game object.

The SMPL model with shape and pose blend shapes, and
the evaluation meshes, are available for research purposes at
http://smpl.is.tue.mpg.de.

6 DMPL: Dynamic SMPL

While SMPL models static soft-tissue deformations with pose it
does not model dynamic deformations that occur due to body move-
ment and impact forces with the ground. Given 4D registrations that
contain soft-tissue dynamics, we fit them by optimizing only the
pose of a SMPL model with a personalized template shape. Dis-
placements between SMPL and the observed meshes correspond
to dynamic soft-tissue motions. To model these, we introduce a
new set of additive blend shapes that we call dynamic blend shapes.
These additional displacements are correlated with velocities and
accelerations of the body and limbs rather than with pose. We
follow the approach of Dyna [Pons-Moll et al. 2015], using the
same training data, and apply the ideas to our additive vertex-based
model.

Let ~�t = [

˙~✓t,
¨~✓t,vt,at,~�t�1,~�t�2] denote the dynamic control

vector at time t. It is composed of pose velocities and accelerations
˙~✓t,

¨~✓t 2 R|~✓|, root joint velocities and accelerations vt,at 2 R3

and a history of two vectors of predicted dynamic coefficients
~�t�1,~�t�2 2 R|~�|, described below.

We extend our linear formulation from Sec. 3 and simply add
the dynamic blend shape function, BD(

~�t, ~�), to the other blend
shapes in the rest pose before applying the skinning function. The
shape in the zero pose becomes

TD(

~�, ~✓t, ~�t) = ¯

T+BS(
~�) +BP (

~✓t) +BD(

~�t, ~�), (16)

as illustrated in Fig. 15. Here, BD(

~�t, ~�) takes as input the dy-
namic control vector at time t, and shape coefficients ~�, and pre-
dicts vertex offsets in the rest pose.

Whereas in [Pons-Moll et al. 2015] dynamic deformations are mod-
eled using triangle deformations, DMPL models deformations in

vertex space. We build male and female models using roughly
40, 000 registered male and female meshes from [Dyn 2015]. We
compute the pose in each frame and the displacements between
SMPL and the registration. Using PCA, we obtain a mean and the
dynamic blend shapes, µD 2 R3N and D 2 R3N⇥|~�| respectively.
We take |~�| = 300 principal components as in Dyna. Dynamic de-
formations vary significantly between subjects based on their body
shape and fat distribution. To capture this, we train a model that
depends on the body shape parameters ~� as in Dyna.

Dynamic blendshapes are then predicted using

BD(

~�t, ~�;D) = µD +Df(~�t, ~�) (17)

analogous to Eq. (22) in [Pons-Moll et al. 2015] where f(·) is a
function that takes as input a dynamic control vector, ~�t, and pre-
dicts the vector of dynamic shape coefficients, ~�t. This formula-
tion of soft-tissue displacements in terms of dynamic blend shapes
means that, unlike Dyna, our model remains compatible with cur-
rent graphics software. To animate the model, we only need a script
to compute the coefficients, ~�t = f(~�t, ~�), from the pose sequence
and body shape. We observe that the DMPL model produces soft-
tissue dynamics that appear more realistic than those of Dyna. See
the Supplemental Video for visualizations of the training data, dy-
namic blend shapes, and resulting animations.

7 Discussion

Why does it work? First, good quality training data is important.
Here we use thousands of high-quality registered template meshes.
Importantly, the pose training data spans a range of body shapes
enabling us to learn a good predictor of joint locations. Second,
training all the parameters (template shape, blend weights, joint re-
gressor, shape/pose/dynamic blend shapes) to minimize vertex re-
construction error is important to obtain a good model. Here the
simplicity of the model is an advantage as it enables training every-
thing with large amounts of data.

In contrast to the scattered-data interpolation methods, we learn
the blend shapes from a large set of training meshes covering the
space of possible poses and learn a simpler function relating pose
to blend-shape weights. In particular, our function is linear in the
elements of the part rotation matrices. The larger support of the
learned linear functions as opposed to radial basis functions allows
the model to generalize to arbitrary poses; in addition the simple
linear form makes it fast to animate in a game engine without bak-
ing in the weights. Because elements of a rotation matrix are con-
strained, the model cannot “blow up” when generalizing outside the
training set.

SMPL is an additive model in vertex space. In contrast, while
SCAPE also factors deformations into shape and pose deforma-
tions, SCAPE multiplies the triangle deformations. With SCAPE a
bigger person will have bigger pose-dependent deformations even
though these deformations are not learned for different body shapes.
Despite this, in our experiments, the SCAPE approach is less accu-
rate at generalizing to new shapes. Ideally one would have enough
pose data from enough different people to learn a true body-shape-
dependent pose deformation space. Our work with DMPL, where
deformations depend on body shape, suggests that this is possible.

Why is it more accurate than BlendSCAPE? Models based on the
statistics of triangle deformations have dominated the recent liter-
ature [Anguelov et al. 2005; Chen et al. 2013; Freifeld and Black
2012; Hasler et al. 2009]. Such models are not trained to repro-
duce their training registrations directly. Instead, they are trained



Figure 15: DMPL model of soft-tissue motion. Above, two frames of a “running” sequence of a male subject from the Dyna dataset, below
two frames of a “jumping jacks” sequence of a female subject from the Dyna dataset. From left to right: SMPL, DMPL, and the dynamic
blend shapes added to the base body shape. While SMPL models deformations due to pose well it does not model dynamic deformations.
DMPL predicts dynamic deformations from motion and body shape, resulting in more life like animations.

to reproduce the local deformations that produced those registra-
tions. Part of the tractability of training these models comes from
the ability to train deformations independently across triangles. As
a result, long range distances and relationships are not preserved as
well as local relationships between vertices. We speculate that an
advantage of vertex based models (such as SMPL and [Allen et al.
2006]) is that they can be trained to minimize the mean squared
error between the model and training vertices. Theoretically one
could train a SCAPE model to minimize vertex error in global co-
ordinates, but the inner loop of the optimization would involve solv-
ing a least-squares problem to reconstruct vertices from the defor-
mations. This would significantly increase the cost of optimization
and make it difficult to train the model with large amounts of data.

Why has it not been done before? While we think the SMPL model
is a natural way to extend blend skinning, we are unaware of any
previous published versions. Unfortunately, the obvious implemen-
tation makes the pose blend shapes a linear function of ~✓. This
does not work. The key to SMPL’s performance is to make the
blendshapes a linear function of the elements of R⇤

(

~✓). This for-
mulation, sufficient training data, and a good optimization strategy
make it possible to learn the model.

The closest work to ours is the pioneering work of Allen et
al. [2006]. Their model is more complex than ours, using radial
basis functions for scattered data interpolation, shape-dependent
pose deformations, and a fixed set of carrying angles. Consequently
training it is also complex and requires a good initialization. They
had limited data and difficulty with overfitting so they restricted
their body shape PCA space. As a result, the model did not gener-
alize well to new shapes and poses. Our simpler model lets us learn
it from large datasets and having more data makes the simple model

(a) Euler-angles (b) SMPL parameterization

Figure 16: Parameterizing pose blend shapes. (a) Pose blend
shapes parameterized by Euler angles cause significant problems.
(b) our proposed parameterization allows the head to rotate in ei-
ther direction with natural deformations.

perform well.

Other features for driving pose blend shapes. We experimented
with driving pose blendshapes linearly from other features, such as
raw ~✓, simple polynomials of ~✓, and trigonometric functions (sin,
cos) of ~✓. None of these performed as well as our proposed formu-
lation. Using raw ~✓ has serious limitations because the values vary
between -⇡ and ⇡. Imagine a twist of the neck (Fig. 16), which
produces negative and postive angles about the vertical axis. Stan-
dard LBS will cause the neck to shrink as it rotates in either direc-



tion. To counteract this, we need a blend shape that increases the
neck volume no matter which direction it rotates. Unfortunately,
if the blendshapes are trained to expand during rightwards rotation
(to counteract LBS shrinkage), they would contract during leftward
rotation.

In general one can think of replacing the raw rotations with any
functions of rotations and using these to weight the blend shapes.
An exhaustive search is impossible and other features may work
as well as our method; for example, we did not experiment with
normalized quaternions.

Our pose blend shapes function is also very different from scattered
data interpolation methods like WPSD [Kurihara and Miyata 2004;
Rhee et al. 2006], which use a discrete number of poses and asso-
ciated corrections are interpolated between them using RBFs. In
practice, a large number of poses might be needed to cover the pose
space well. This makes animation slow since the closest key poses
have to be found at run time.

Limitations. The pose-dependent offsets of SMPL are not depen-
dent on body shape. It is surprising how well SMPL works without
this, but the general approach would likely not work if we were to
model a space of nonrealistic animated characters in which body
part scales vary widely, or a space of humans that includes infants
and adults.

This limitation could be addressed by training a more general func-
tion that would take elements of R⇤

(

~✓) together with ~� to predict
the blend shape coefficients. Note that the dynamic blend shape
coefficients do depend on body shape and therefore it should be
possible to do the same for the pose blend shapes. This would not
significantly complicate the model or run-time behavior but might
require more training data.

As described, the SMPL model is a function of joint angles and
shape parameters only: it does not model breathing, facial motion,
muscle tension, or any changes independent of skeletal joint angles
and overall shape. These could potentially be learned as additional
additive blendshapes (as with DMPL) if the appropriate factored
data is available (cf. [Tsoli et al. 2014]).

While we learn most model parameters, we do not learn them all.
We manually define the segmentation of the template into parts,
the topology of the mesh, and the zero pose. Theoretically these
could also be learned but we expect only marginal improvements
for significant effort.

Future work. SMPL uses 207 pose blend shapes. This could likely
be reduced by performing PCA on the blend shapes. This would re-
duce the number of multiplications and consequently increase ren-
dering speed. Also, our dynamic model uses PCA to learn the dy-
namic blend shapes but we could learn the elements of these blend
shapes directly as we do for the pose blend shapes. Finally, here
we fit our model to registered meshes but could fit SMPL to mocap
marker data (cf. MoSh [Loper et al. 2014]), depth data, or video.
We anticipate that optimizing the pose and shape of a SMPL-LBS
model will be significantly faster than optimizing a SCAPE model
of similar quality.

8 Conclusions

Our goal was to create a skeletally-driven human body model that
could capture body shape and pose variation as well as, or better
than, the best previous models while being compatible with ex-
isting graphics pipelines and software. To that end, SMPL uses
standard skinning equations and defines body shape and pose blend
shapes that modify the base mesh. We train the model on thousands
of aligned scans of different people in different poses. The form

of the model makes it possible to learn the parameters from large
amounts of data while directly minimizing vertex reconstruction er-
ror. Specifically we learn the rest template, joint regressor, body
shape model, pose blend shapes, and dynamic blend shapes. The
surprising result is that, when BlendSCAPE and SMPL are trained
on exactly the same data, the vertex-based model is more accu-
rate and significantly more efficient to render than the deformation-
based model. Also surprising is that a relatively small set of learned
blend shapes do as good a job of correcting the errors of LBS as they
do for DQBS. Using 4D registered meshes we extended SMPL to
model dynamic soft-tissue deformations as a function of poses over
time using an autoregressive model. SMPL can be exported as an
FBX file and we make scripts available to animate the model in
common rendering systems. This will allow anyone to realistically
animate human bodies.
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A Appendix

A.1 Mathematical Notation

We summarize our notation here and in Table 1. Matrices A 2
Rn⇥m are denoted with math calligraphic typeface. Vectors A 2
Rm are denoted with uppercase boldface, expect for the special
case of 3-vectors, which are denoted with lower case a 2 R3 to
distinguish a particular vertex from a vector of concatenated ver-
tices. The notation A() : Rm 7! Rn is used to denote a func-
tion that maps vectors in an m-dimensional space to vectors in n-
dimensional space. Typically, indices are used as follows: j iterates
over mesh registrations, k iterates over joint angles and i iterates
over subjects, and t denotes time.

Table 1: Table of Notation

Model generation functions

W , Skinning function
M , SMPL function
BP , Pose blendshapes function
BS , Shape blendshapes function
BD , Dynamic blendshapes function
J , Joint regressor: Predicts joints from surface

Model input parameters (controls)

~� , Shape parameters
~✓ , Pose parameters
~! , Scaled axis of rotation; the 3 pose parameters cor-

responding to a particular joint
~� , Dynamic control vector
~� , Dynamic shape coefficients
~✓⇤ , Zero pose or rest pose; the effect of the pose blend-

shapes is zero for that pose

Model parameters (parameters learned)

S , Shape blendshapes
P , Pose blendshapes
W , Blendweights
J , Joint regressor matrix
¯

T , Mean shape of the template

Training data

V , A registration
V

P , Pose dataset registration
V

S , Shape dataset registration
ˆ

T

P , Pose dataset subject shape; body vertices in the tem-
plate pose

ˆ

J

P , Pose dataset subject joint locations in the template
pose

ˆ

T

P
µ , Mean shape of a pose subject; body vertices in the

template pose
ˆ

T

S , Shape dataset subject shape; body vertices in the
template pose

ˆ

T

S
µ , Mean shape of a subject in the shape dataset; body

vertices in the template pose


