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1 OVERVIEW
The supplemental material for our paper includes this document and
a video. The video provides an illustrated summary of the method
as well as animation examples. Here we provide implementation
details and an extended qualitative evaluation.

2 IMPLEMENTATION DETAILS
Data: DECA is trained on 2 Million images from VGGFace2 [Cao
et al. 2018], BUPT-Balancedface [Wang et al. 2019] and VoxCeleb2
[Chung et al. 2018]. From VGGFace2 [Cao et al. 2018], we ran-
domly select 950𝑘 images such that 750𝐾 images are of resolution
higher than 224×224, and 200𝐾 are of lower resolution. From BUPT-
Balancedface [Wang et al. 2019] we randomly sample 550𝑘 with
Asian or African ethnicity labels to reduce the ethnicity bias of
VGGFace2. From VoxCeleb2 [Chung et al. 2018] we choose 500𝑘
frames, with multiple samples from the same video clip per subject
to obtain data with variation only in the facial expression and head
pose. We also sample 50𝑘 images from the VGGFace2 [Cao et al.
2018] test set for validation.
Data cleaning: We generate a different crop for the face image
by shifting the provided bounding box by 5% to the bottom right
(i.e. shift by 𝝐 = 1

20 (𝑏𝑤 , 𝑏ℎ)
𝑇 , where 𝑏𝑤 and 𝑏ℎ denote the bounding

box width and height). Then we expand the original and the shifted
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bounding boxes by 10% to the top, and by 20% to the left, right, and
bottom. We run FAN [Bulat and Tzimiropoulos 2017], providing
the expanded bounding boxes as input and discard all images with
max
𝑖



D(k2𝑖 − 𝝐 − k1𝑖 )


 ≥ 0.1, wherek2𝑖 andk

1
𝑖 are the 𝑖th landmarks

for the original and the shifted bounding box, respectively, and D
denote the normalization matrix 𝑑𝑖𝑎𝑔(𝑏𝑤 , 𝑏ℎ)−1.
Training details: We pre-train the coarse model (i.e. 𝐸𝑐 ) for two
epochs with a batch size of 64 with 𝜆𝑙𝑚𝑘 = 1𝑒 − 4, 𝜆𝑒𝑦𝑒 = 1.0,
𝜆𝜷 = 1𝑒 − 4, and 𝜆𝝍 = 1𝑒 − 4. Then, we train the coarse model
for 1.5 epochs with a batch size of 32, with 4 images per subject
with 𝜆𝑝ℎ𝑜 = 2.0, 𝜆𝑖𝑑 = 0.2, 𝜆𝑠𝑐 = 1.0, 𝜆𝑙𝑚𝑘 = 1.0, 𝜆𝑒𝑦𝑒 = 1.0,
𝜆𝜷 = 1𝑒 − 4, and 𝜆𝝍 = 1𝑒 − 4. The landmark loss uses different
weights for individual landmarks, the mouth corners and the nose
tip landmarks are weighted by a factor of 3, other mouth and nose
landmarks with a factor of 1.5, and all remaining landmarks have a
weight of 1.0. This is followed by training the detail model (i.e. 𝐸𝑑
and 𝐹𝑑 ) on VGGFace2 and VoxCeleb2 with a batch size of 6, with
3 images per subject, and parameters 𝜆𝑝ℎ𝑜𝐷 = 2.0, 𝜆𝑚𝑟 𝑓 = 5𝑒 − 2,
𝜆𝑠𝑦𝑚 = 5𝑒 − 3, 𝜆𝑑𝑐 = 1.0, and 𝜆𝑟𝑒𝑔𝐷 = 5𝑒 − 3. The coarse model is
fixed while training the detail model.

3 EVALUATION

3.1 Qualitative comparisons
Figure 2 shows additional qualitative comparisons to existing coarse
and detail reconstruction methods. DECA better reconstructs the
overall face shape than all existing methods, it reconstructs more
details than existing coarse reconstruction methods (e.g. (b), (e), (f)),
and it is more robust to occlusions compared with existing detail
reconstruction methods (e.g. (c), (d), (g)).

As promised in the main paper (e.g. Section 6.1), we show results
for more than 200 randomly selected ALFW2000 [Zhu et al. 2015]
samples in Figures 3, 4, 5, 6, 7, 8, and 9. For each sample, we compare
DECA’s detail reconstruction (e) with the state-of-the-art coarse
reconstruction method 3DDFA-V2 [Guo et al. 2020] (see (b)) and
existing detail reconstruction methods, namely FaceScape [Yang
et al. 2020] (see (c)), and Extreme3D [Tran et al. 2018] (see (e)). In
total, DECA reconstructs more details then 3DDFA-V2, and it is
more robust to occlusions than FaceScape and Extreme3D. Further,
the DECA retargeting results appear realistic.
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NoW (female) [Sanyal et al. 2019] NoW (male) [Sanyal et al. 2019]

Fig. 1. Quantitative comparison to state-of-the-art on the NoW [Sanyal et al. 2019] challenge for female (left) and male (samples).
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. Comparison to previous work, from left to right: (a) Input image, (b) 3DDFA-V2 [Guo et al. 2020], (c) FaceScape [Yang et al. 2020], (d) Extreme3D [Tran
et al. 2018], (e) PRNet [Feng et al. 2018], (f) Deng et al. [2019], (g) Cross-modal [Abrevaya et al. 2020], (h) DECA detail reconstruction, and (i) reposing
(animation) of DECA’s detail reconstruction to a common expression. Blank entries indicate that the particular method did not return any reconstruction.
Input images are taken from ALFW2000 [Köstinger et al. 2011; Zhu et al. 2015].
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Fig. 3. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 4. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 5. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 6. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 7. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 8. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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Fig. 9. Qualitative comparisons on randomALFW2000 [Köstinger et al. 2011; Zhu et al. 2015] samples. a) Input, b) 3DDFA-V2 [Guo et al. 2020], c) FaceScape [Yang
et al. 2020], d) Extreme3D [Tran et al. 2018], e) DECA detail reconstruction, and f) reposing (animation) of DECA’s detail reconstruction to a common
expression. Blank entries indicate that the particular method did not return any reconstruction.
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