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While current monocular 3D face reconstruction methods can recover fine
geometric details, they suffer several limitations. Some methods produce
faces that cannot be realistically animated because they do not model how
wrinkles vary with expression. Other methods are trained on high-quality
face scans and do not generalize well to in-the-wild images. We present
the first approach that regresses 3D face shape and animatable details that
are specific to an individual but change with expression. Our model, DECA
(Detailed Expression Capture and Animation), is trained to robustly produce
a UV displacement map from a low-dimensional latent representation that
consists of person-specific detail parameters and generic expression param-
eters, while a regressor is trained to predict detail, shape, albedo, expression,
pose and illumination parameters from a single image. To enable this, we
introduce a novel detail-consistency loss that disentangles person-specific
details from expression-dependent wrinkles. This disentanglement allows
us to synthesize realistic person-specific wrinkles by controlling expres-
sion parameters while keeping person-specific details unchanged. DECA is
learned from in-the-wild images with no paired 3D supervision and achieves
state-of-the-art shape reconstruction accuracy on two benchmarks. Quali-
tative results on in-the-wild data demonstrate DECA’s robustness and its
ability to disentangle identity- and expression-dependent details enabling
animation of reconstructed faces. The model and code are publicly available
at https://deca.is.tue.mpg.de.
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1 INTRODUCTION
Two decades have passed since the seminal work of Vetter and
Blanz [1998] that first showed how to reconstruct 3D facial geometry
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Fig. 1. DECA. Example images (row 1), the regressed coarse shape (row 2),
detail shape (row 3) and reposed coarse shape (row 4), and reposed with
person-specific details (row 5) where the source expression is extracted by
DECA from the faces in the corresponding colored boxes (row 6). DECA is
robust to in-the-wild variations and captures person-specific details as well
as expression-dependent wrinkles that appear in regions like the forehead
andmouth. Our novelty is that this detailed shape can be reposed (animated)
such that the wrinkles are specific to the source shape and target expression.
Images are taken from Pexels [2021] (row 1; col. 5), Flickr [2021] (bottom
left) @ Gage Skidmore, Chicago [Ma et al. 2015] (bottom right), and from
NoW [Sanyal et al. 2019] (remaining images).

from a single image. Since then, 3D face reconstruction methods
have rapidly advanced (for a comprehensive overview see [Morales
et al. 2021; Zollhöfer et al. 2018]) enabling applications such as
3D avatar creation for VR/AR [Hu et al. 2017], video editing [Kim
et al. 2018a; Thies et al. 2016], image synthesis [Ghosh et al. 2020;
Tewari et al. 2020] face recognition [Blanz et al. 2002; Romdhani et al.
2002], virtual make-up [Scherbaum et al. 2011], or speech-driven
facial animation [Cudeiro et al. 2019; Karras et al. 2017; Richard
et al. 2021]. To make the problem tractable, most existing methods
incorporate prior knowledge about geometry or appearance by
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leveraging pre-computed 3D face models [Brunton et al. 2014; Egger
et al. 2020]. These models reconstruct the coarse face shape but are
unable to capture geometric details such as expression-dependent
wrinkles, which are essential for realism and support analysis of
human emotion.

Several methods recover detailed facial geometry [Abrevaya et al.
2020; Cao et al. 2015; Chen et al. 2019; Guo et al. 2018; Richardson
et al. 2017; Tran et al. 2018, 2019], however, they require high-quality
training scans [Cao et al. 2015; Chen et al. 2019] or lack robustness
to occlusions [Abrevaya et al. 2020; Guo et al. 2018; Richardson et al.
2017]. None of these explore how the recovered wrinkles change
with varying expressions. Previous methods that learn expression-
dependent detail models [Bickel et al. 2008; Chaudhuri et al. 2020;
Yang et al. 2020] either use detailed 3D scans as training data and,
hence, do not generalize to unconstrained images [Yang et al. 2020],
or model expression-dependent details as part of the appearance
map rather than the geometry [Chaudhuri et al. 2020], preventing
realistic mesh relighting.
We introduce DECA (Detailed Expression Capture and Anima-

tion), which learns an animatable displacement model from in-the-
wild images without 2D-to-3D supervision. In contrast to prior work,
these animatable expression-dependent wrinkles are specific to an in-
dividual and are regressed from a single image. Specifically, DECA
jointly learns 1) a geometric detail model that generates a UV dis-
placement map from a low-dimensional representation that consists
of subject-specific detail parameters and expression parameters, and
2) a regressor that predicts subject-specific detail, albedo, shape,
expression, pose, and lighting parameters from an image. The detail
model builds upon FLAME’s [Li et al. 2017] coarse geometry, and we
formulate the displacements as a function of subject-specific detail
parameters and FLAME’s jaw pose and expression parameters.

This enables important applications such as easy avatar creation
from a single image. While previous methods can capture detailed
geometry in the image, most applications require a face that can be
animated. For this, it is not sufficient or recover accurate geometry
in the input image. Rather, we must be able to animate that de-
tailed geometry and, more specifically, the details should be person
specific.

To gain control over expression-dependent wrinkles of the recon-
structed face, while preserving person-specific details (i.e. moles,
pores, eyebrows, and expression-independent wrinkles), the person-
specific details and expression-dependent wrinkles must be disen-
tangled. Our key contribution is a novel detail consistency loss that
enforces this disentanglement. During training, if we are given two
images of the same person with different expressions, we observe
that their 3D face shape and their person-specific details are the
same in both images, but the expression and the intensity of the
wrinkles differ with expression. We exploit this observation during
training by swapping the detail codes between different images of
the same identity and enforcing the newly rendered results to look
similar to the original input images. Once trained, DECA recon-
structs a detailed 3D face from a single image (Fig. 1, third row) in
real time (about 120fps on a Nvidia Quadro RTX 5000), and is able
to animate the reconstruction with realistic adaptive expression
wrinkles (Fig. 1, fifth row).

In summary, our main contributions are: 1) The first approach
to learn an animatable displacement model from in-the-wild images
that can synthesize plausible geometric details by varying expres-
sion parameters. 2) A novel detail consistency loss that disentangles
identity-dependent and expression-dependent facial details. 3) Re-
construction of geometric details that is, unlike most competing
methods, robust to common occlusions, wide pose variation, and il-
lumination variation. This is enabled by our low-dimensional detail
representation, the detail disentanglement, and training from a large
dataset of in-the-wild images. 4) State-of-the-art shape reconstruc-
tion accuracy on two different benchmarks. 5) The code and model
are available for research purposes at https://deca.is.tue.mpg.de.

2 RELATED WORK
The reconstruction of 3D faces from visual input has received sig-
nificant attention over the last decades after the pioneering work of
Parke [1974], the first method to reconstruct 3D faces from multi-
view images. While a large body of related work aims to recon-
struct 3D faces from various input modalities such as multi-view
images [Beeler et al. 2010; Cao et al. 2018a; Pighin et al. 1998], video
data [Garrido et al. 2016; Ichim et al. 2015; Jeni et al. 2015; Shi
et al. 2014; Suwajanakorn et al. 2014], RGB-D data [Li et al. 2013;
Thies et al. 2015; Weise et al. 2011] or subject-specific image collec-
tions [Kemelmacher-Shlizerman and Seitz 2011; Roth et al. 2016],
our main focus is on methods that use only a single RGB image. For
a more comprehensive overview, see Zollhöfer et al. [2018].
Coarse reconstruction:Many monocular 3D face reconstruction
methods follow Vetter and Blanz [1998] by estimating coefficients of
pre-computed statistical models in an analysis-by-synthesis fashion.
Such methods can be categorized into optimization-based [Aldrian
and Smith 2013; Bas et al. 2017; Blanz et al. 2002; Blanz and Vetter
1999; Gerig et al. 2018; Romdhani and Vetter 2005; Thies et al. 2016],
or learning-based methods [Chang et al. 2018; Deng et al. 2019;
Genova et al. 2018; Kim et al. 2018b; Ploumpis et al. 2020; Richardson
et al. 2016; Sanyal et al. 2019; Tewari et al. 2017; Tran et al. 2017;
Tu et al. 2019]. These methods estimate parameters of a statistical
face model with a fixed linear shape space, which captures only
low-frequency shape information. This results in overly-smooth
reconstructions.
Several works are model-free and directly regress 3D faces (i.e.

voxels [Jackson et al. 2017] or meshes [Dou et al. 2017; Feng et al.
2018b; Güler et al. 2017; Wei et al. 2019]) and hence can capture
more variation than the model-based methods. However, all these
methods require explicit 3D supervision, which is provided either
by an optimization-based model fitting [Feng et al. 2018b; Güler
et al. 2017; Jackson et al. 2017; Wei et al. 2019] or by synthetic data
generated by sampling a statistical face model [Dou et al. 2017] and
therefore also only capture coarse shape variations.

Instead of capturing high-frequency geometric details, somemeth-
ods reconstruct coarse facial geometry along with high-fidelity
textures [Gecer et al. 2019; Saito et al. 2017; Slossberg et al. 2018;
Yamaguchi et al. 2018]. As this “bakes" shading details into the tex-
ture, lighting changes do not affect these details, limiting realism
and the range of applications. To enable animation and relighting,
DECA captures these details as part of the geometry.
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Detail reconstruction: Another body of work aims to reconstruct
faces with “mid-frequency" details. Common optimization-based
methods fit a statistical face model to images to obtain a coarse
shape estimate, followed by a shape from shading (SfS) method to
reconstruct facial details from monocular images [Jiang et al. 2018;
Li et al. 2018; Riviere et al. 2020], or videos [Garrido et al. 2016;
Suwajanakorn et al. 2014]. Unlike DECA, these approaches are slow,
the results lack robustness to occlusions, and the coarsemodel fitting
step requires facial landmarks, making them error-prone for large
viewing angles and occlusions.

Most regression-based approaches [Cao et al. 2015; Chen et al.
2019; Guo et al. 2018; Lattas et al. 2020; Richardson et al. 2017; Tran
et al. 2018] follow a similar approach by first reconstructing the pa-
rameters of a statistical face model to obtain a coarse shape, followed
by a refinement step to capture localized details. Chen et al. [2019]
and Cao et al. [2015] compute local wrinkle statistics from high-
resolution scans and leverage these to constrain the fine-scale detail
reconstruction from images [Chen et al. 2019] or videos [Cao et al.
2015]. Guo et al. [2018] and Richardson et al. [2017] directly regress
per-pixel displacement maps. All these methods only reconstruct
fine-scale details in non-occluded regions, causing visible artifacts in
the presence of occlusions. Tran et al. [2018] gain robustness to oc-
clusions by applying a face segmentation method [Nirkin et al. 2018]
to determine occluded regions, and employ an example-based hole
filling approach to deal with the occluded regions. Further, model-
free methods exist that directly reconstruct detailed meshes [Sela
et al. 2017; Zeng et al. 2019] or surface normals that add detail to
coarse reconstructions [Abrevaya et al. 2020; Sengupta et al. 2018].
Tran et al. [2019] and Tewari et al. [2019; 2018] jointly learn a statisti-
cal face model and reconstruct 3D faces from images. While offering
more flexibility than fixed statistical models, these methods capture
limited geometric details compared to other detail reconstruction
methods. Lattas et al. [2020] use image translation networks to infer
the diffuse normals and specular normals, resulting in realistic ren-
dering. Unlike DECA, none of these detail reconstruction methods
offer animatable details after reconstruction.
Animatable detail reconstruction: Most relevant to DECA are
methods that reconstruct detailed faces while allowing animation
of the result. Existing methods [Bickel et al. 2008; Golovinskiy et al.
2006; Ma et al. 2008; Shin et al. 2014; Yang et al. 2020] learn correla-
tions between wrinkles or attributes like age and gender [Golovin-
skiy et al. 2006], pose [Bickel et al. 2008] or expression [Shin et al.
2014; Yang et al. 2020] from high-quality 3D face meshes [Bickel
et al. 2008]. Fyffe et al. [2014] use optical flow correspondence com-
puted from dynamic video frames to animate static high-resolution
scans. In contrast, DECA learns an animatable detail model solely
from in-the-wild images without paired 3D training data. While
FaceScape [Yang et al. 2020] predicts an animatable 3D face from a
single image, the method is not robust to occlusions. This is due to
a two step reconstruction process: first optimize the coarse shape,
then predict a displacement map from the texture map extracted
with the coarse reconstruction.

Chaudhuri et al. [2020] learn identity and expression corrective
blendshapes with dynamic (expression-dependent) albedo maps
[Nagano et al. 2018]. They model geometric details as part of the
albedo map, and therefore, the shading of these details does not

adapt with varying lighting. This results in unrealistic renderings. In
contrast, DECA models details as geometric displacements, which
look natural when re-lit.
In summary, DECA occupies a unique space. It takes a single

image as input and produces person-specific details that can be real-
istically animated. While some methods produce higher-frequency
pixel-aligned details, these are not animatable. Still other methods
require high-resolution scans for training. We show that these are
not necessary and that animatable details can be learned from 2D
images without paired 3D ground truth. This is not just conve-
nient, but means that DECA learns to be robust to a wide variety of
real-world variation. We want to emphasize that, while elements of
DECA are built on well-understood principles (dating back to Vetter
and Blanz), our core contribution is new and essential. The key to
making DECA work is the detail consistency loss, which has not
appeared previously in the literature.

3 PRELIMINARIES
Geometry prior: FLAME [Li et al. 2017] is a statistical 3D head
model that combines separate linear identity shape and expression
spaces with linear blend skinning (LBS) and pose-dependent cor-
rective blendshapes to articulate the neck, jaw, and eyeballs. Given
parameters of facial identity 𝜷 ∈ R |𝜷 | , pose 𝜽 ∈ R3𝑘+3 (with 𝑘 = 4
joints for neck, jaw, and eyeballs), and expression 𝝍 ∈ R |𝝍 | , FLAME
outputs a mesh with 𝑛 = 5023 vertices. The model is defined as

𝑀 (𝜷, 𝜽 , 𝝍) =𝑊 (𝑇𝑃 (𝜷, 𝜽 , 𝝍), J(𝜷), 𝜽 ,W), (1)

with the blend skinning function 𝑊 (T, J, 𝜽 ,W) that rotates the
vertices in T ∈ R3𝑛 around joints J ∈ R3𝑘 , linearly smoothed by
blendweights W ∈ R𝑘×𝑛 . The joint locations J are defined as a
function of the identity 𝜷 . Further,

𝑇𝑃 (𝜷, 𝜽 , 𝝍) = T + 𝐵𝑆 (𝜷 ;S) + 𝐵𝑃 (𝜽 ;P) + 𝐵𝐸 (𝝍; E) (2)

denotes the mean template T in “zero pose” with added shape
blendshapes 𝐵𝑆 (𝜷 ;S) : R |𝜷 | → R3𝑛 , pose correctives 𝐵𝑃 (𝜽 ;P) :
R3𝑘+3 → R3𝑛 , and expression blendshapes 𝐵𝐸 (𝝍; E) : R |𝝍 | → R3𝑛 ,
with the learned identity, pose, and expression bases (i.e. linear
subspaces) S,P and E. See [Li et al. 2017] for details.
Appearance model: FLAME does not have an appearance model,
hence we convert the Basel Face Model’s linear albedo subspace
[Paysan et al. 2009] into the FLAMEUV layout to make it compatible
with FLAME. The appearance model outputs a UV albedo map
𝐴(𝜶 ) ∈ R𝑑×𝑑×3 for albedo parameters 𝜶 ∈ R |𝜶 | .
Camera model: Photographs in existing in-the-wild face datasets
are often taken from a distance. We, therefore, use an orthographic
camera model c to project the 3D mesh into image space. Face
vertices are projected into the image as v = 𝑠Π(𝑀𝑖 ) + t, where
𝑀𝑖 ∈ R3 is a vertex in 𝑀 , Π ∈ R2×3 is the orthographic 3D-2D
projection matrix, and 𝑠 ∈ R and t ∈ R2 denote isotropic scale and
2D translation, respectively. The parameters 𝑠 , and t are summarized
as 𝒄 .
Illumination model: For face reconstruction, the most frequently-
employed illumination model is based on Spherical Harmonics
(SH) [Ramamoorthi and Hanrahan 2001]. By assuming that the light
source is distant and the face’s surface reflectance is Lambertian,
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the shaded face image is computed as:

𝐵(𝜶 , l, 𝑁𝑢𝑣)𝑖, 𝑗 = 𝐴(𝜶 )𝑖, 𝑗 ⊙
9∑

𝑘=1
l𝑘𝐻𝑘 (𝑁𝑖, 𝑗 ), (3)

where the albedo, 𝐴, surface normals, 𝑁 , and shaded texture, 𝐵,
are represented in UV coordinates and where 𝐵𝑖, 𝑗 ∈ R3, 𝐴𝑖, 𝑗 ∈ R3,
and 𝑁𝑖, 𝑗 ∈ R3 denote pixel (𝑖, 𝑗) in the UV coordinate system. The
SH basis and coefficients are defined as 𝐻𝑘 : R3 → R and l =

[l𝑇1 , · · · , l
𝑇
9 ]𝑇 , with l𝑘 ∈ R3, and ⊙ denotes the Hadamard product.

Texture rendering:Given the geometry parameters (𝜷, 𝜽 , 𝝍), albedo
(𝜶 ), lighting (l) and camera information 𝒄 , we can generate the 2D
image 𝐼𝑟 by rendering as 𝐼𝑟 = R(𝑀, 𝐵, c), where R denotes the
rendering function.

FLAME is able to generate the face geometry with various poses,
shapes and expressions from a low-dimensional latent space. How-
ever, the representational power of the model is limited by the low
mesh resolution and therefore mid-frequency details are mostly
missing from FLAME’s surface. The next section introduces our
expression-dependent displacement model that augments FLAME
with mid-frequency details, and it demonstrates how to reconstruct
this geometry from a single image and animate it.

4 METHOD
DECA learns to regress a parameterized face model with geomet-
ric detail solely from in-the-wild training images (Fig. 2 left). Once
trained, DECA reconstructs the 3D head with detailed face geometry
from a single face image, 𝐼 . The learned parametrization of the recon-
structed details enables us to then animate the detail reconstruction
by controlling FLAME’s expression and jaw pose parameters (Fig. 2,
right). This synthesizes new wrinkles while keeping person-specific
details unchanged.
Key idea: The key idea of DECA is grounded in the observation
that an individual’s face shows different details (i.e. wrinkles), de-
pending on their facial expressions but that other properties of their
shape remain unchanged. Consequently, facial details should be
separated into static person-specific details and dynamic expression-
dependent details such as wrinkles [Li et al. 2009]. However, dis-
entangling static and dynamic facial details is a non-trivial task.
Static facial details are different across people, whereas dynamic
expression dependent facial details even vary for the same person.
Thus, DECA learns an expression-conditioned detail model to infer
facial details from both the person-specific detail latent space and
the expression space.

The main difficulty in learning a detail displacement model is the
lack of training data. Prior work uses specialized camera systems
to scan people in a controlled environment to obtain detailed facial
geometry. However, this approach is expensive and impractical for
capturing large numbers of identities with varying expressions and
diversity in ethnicity and age. Therefore we propose an approach
to learn detail geometry from in-the-wild images.

4.1 Coarse reconstruction
We first learn a coarse reconstruction (i.e. in FLAME’s model space)
in an analysis-by-synthesis way: given a 2D image 𝐼 as input, we
encode the image into a latent code, decode this to synthesize a

2D image 𝐼𝑟 , and minimize the difference between the synthesized
image and the input. As shown in Fig. 2, we train an encoder 𝐸𝑐 ,
which consists of a ResNet50 [He et al. 2016] network followed by a
fully connected layer, to regress a low-dimensional latent code. This
latent code consists of FLAME parameters 𝜷 , 𝝍, 𝜽 (i.e. representing
the coarse geometry), albedo coefficients 𝜶 , camera 𝒄 , and lighting
parameters l. More specifically, the coarse geometry uses the first
100 FLAME shape parameters (𝜷 ), 50 expression parameters (𝝍), and
50 albedo parameters (𝜶 ). In total, 𝐸𝑐 predicts a 236 dimensional
latent code.
Given a dataset of 2𝐷 face images 𝐼𝑖 with multiple images per

subject, corresponding identity labels 𝑐𝑖 , and 68 2𝐷 keypoints k𝑖 per
image, the coarse reconstruction branch is trained by minimizing

𝐿coarse = 𝐿lmk + 𝐿eye + 𝐿pho + 𝐿𝑖𝑑 + 𝐿𝑠𝑐 + 𝐿reg, (4)

with landmark loss 𝐿lmk , eye closure loss 𝐿eye , photometric loss 𝐿pho ,
identity loss 𝐿𝑖𝑑 , shape consistency loss 𝐿𝑠𝑐 and regularization 𝐿reg .
Landmark re-projection loss: The landmark loss measures the
difference between ground-truth 2𝐷 face landmarks k𝑖 and the
corresponding landmarks on the FLAME model’s surface 𝑀𝑖 ∈
R3, projected into the image by the estimated camera model. The
landmark loss is defined as

𝐿lmk =

68∑
𝑖=1

∥k𝑖 − 𝑠Π(𝑀𝑖 ) + t∥1 . (5)

Eye closure loss: The eye closure loss computes the relative offset
of landmarks k𝑖 and k𝑗 on the upper and lower eyelid, and mea-
sures the difference to the offset of the corresponding landmarks
on FLAME’s surface𝑀𝑖 and𝑀𝑗 projected into the image. Formally,
the loss is given as

𝐿eye =
∑

(𝑖, 𝑗) ∈𝐸



k𝑖 − k𝑗 − 𝑠Π(𝑀𝑖 −𝑀𝑗 )



1 , (6)

where 𝐸 is the set of upper/lower eyelid landmark pairs. While the
landmark loss, 𝐿lmk (Eq. 5), penalizes the absolute landmark location
differences, 𝐿eye penalizes the relative difference between eyelid
landmarks. Because the eye closure loss 𝐿eye is translation invariant,
it is less susceptible to a misalignment between the projected 3D
face and the image, compared to 𝐿lmk . In contrast, simply increasing
the landmark loss for the eye landmarks affects the overall face
shape and can lead to unsatisfactory reconstructions. See Fig. 10 for
the effect of the eye-closure loss.
Photometric loss: The photometric loss computes the error be-
tween the input image 𝐼 and the rendering 𝐼𝑟 as

𝐿pho = ∥𝑉𝐼 ⊙ (𝐼 − 𝐼𝑟 )∥1,1 .

Here,𝑉𝐼 is a face mask with value 1 in the face skin region, and value
0 elsewhere obtained by an existing face segmentationmethod [Nirkin
et al. 2018], and ⊙ denotes the Hadamard product. Computing the
error in only the face region provides robustness to common occlu-
sions by e.g. hair, clothes, sunglasses, etc. Without this, the predicted
albedo will also consider the color of the occluder, which may be
far from skin color, resulting in unnatural rendering (see Fig. 10).
Identity loss: Recent 3D face reconstruction methods demonstrate
the effectiveness of utilizing an identity loss to produce more realis-
tic face shapes [Deng et al. 2019; Gecer et al. 2019]. Motivated by
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Fig. 2. DECA training and animation. During training (left box), DECA estimates parameters to reconstruct face shape for each image with the aid of the
shape consistency information (following the blue arrows) and, then, learns an expression-conditioned displacement model by leveraging detail consistency
information (following the red arrows) from multiple images of the same individual (see Sec. 4.3 for details). While the analysis-by-synthesis pipeline is, by
now, standard, the yellow box region contains our key novelty. This displacement consistency loss is further illustrated in Fig. 3. Once trained, DECA animates
a face (right box) by combining the reconstructed source identity’s shape, head pose, and detail code, with the reconstructed source expression’s jaw pose and
expression parameters to obtain an animated coarse shape and an animated displacement map. Finally, DECA outputs an animated detail shape. Images are
taken from NoW [Sanyal et al. 2019]. Note that NoW images are not used for training DECA, but are just selected for illustration purposes.

Fig. 3. Detail consistency loss. DECA uses multiple images of the same
person during training to disentangle static person-specific details from
expression-dependent details. When properly factored, we should be able to
take the detail code from one image of a person and use it to reconstruct an-
other image of that person with a different expression. See Sec. 4.3 for details.
Images are taken from NoW [Sanyal et al. 2019]. Note that NoW images
are not used for training, but are just selected for illustration purposes.

this, we also use a pretrained face recognition network [Cao et al.
2018b], to employ an identity loss during training.
The face recognition network 𝑓 outputs feature embeddings of

the rendered images and the input image, and the identity loss
then measures the cosine similarity between the two embeddings.
Formally, the loss is defined as

𝐿𝑖𝑑 = 1 − 𝑓 (𝐼 ) 𝑓 (𝐼𝑟 )
∥ 𝑓 (𝐼 )∥2 · ∥ 𝑓 (𝐼𝑟 )∥2

. (7)

By computing the error between embeddings, the loss encourages
the rendered image to capture fundamental properties of a person’s

identity, ensuring that the rendered image looks like the same person
as the input subject. Figure 10 shows that the coarse shape results
with 𝐿𝑖𝑑 look more like the input subject than those without.
Shape consistency loss: Given two images 𝐼𝑖 and 𝐼 𝑗 of the same
subject (i.e. 𝑐𝑖 = 𝑐 𝑗 ), the coarse encoder 𝐸𝑐 should output the same
shape parameters (i.e. 𝜷𝑖 = 𝜷 𝑗 ). Previous work encourages shape
consistency by enforcing the distance between 𝜷𝑖 and 𝜷 𝑗 to be
smaller by a margin than the distance to the shape coefficients
corresponding to a different subject [Sanyal et al. 2019]. However,
choosing this fixed margin is challenging in practice. Instead, we
propose a different strategy by replacing 𝜷𝑖 with 𝜷 𝑗 while keeping
all other parameters unchanged. Given that 𝜷𝑖 and 𝜷 𝑗 represent the
same subject, this new set of parameters must reconstruct 𝐼𝑖 well.
Formally, we minimize

𝐿𝑠𝑐 = 𝐿coarse (𝐼𝑖 ,R(𝑀 (𝜷 𝑗 , 𝜽 𝑖 , 𝝍𝑖 ), 𝐵(𝜶 𝑖 , l𝑖 , 𝑁𝑢𝑣,𝑖 ), c𝑖 )). (8)

The goal is to make the rendered images look like the real person.
If the method has correctly estimated the shape of the face in two
images of the same person, then swapping the shape parameters
between these images should produce rendered images that are
indistinguishable. Thus, we employ the photometric and identity
loss on the rendered images from swapped shape parameters.
Regularization: 𝐿reg regularizes shape 𝐸𝜷 = ∥𝜷 ∥22, expression
𝐸𝝍 = ∥𝝍∥22, and albedo 𝐸𝜶 = ∥𝜶 ∥22.

4.2 Detail reconstruction
The detail reconstruction augments the coarse FLAME geometry
with a detailed UV displacement map 𝐷 ∈ [−0.01, 0.01]𝑑×𝑑 (see
Fig. 2). Similar to the coarse reconstruction, we train an encoder 𝐸𝑑
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(with the same architecture as 𝐸𝑐 ) to encode 𝐼 to a 128-dimensional
latent code 𝜹 , representing subject-specific details. The latent code
𝜹 is then concatenated with FLAME’s expression 𝝍 and jaw pose
parameters 𝜽 𝑗𝑎𝑤 , and decoded by 𝐹𝑑 to 𝐷 .
Detail decoder: The detail decoder is defined as

𝐷 = 𝐹𝑑 (𝜹, 𝝍, 𝜽 𝑗𝑎𝑤), (9)

where the detail code 𝜹 ∈ R128 controls the static person-specific
details.We leverage the expression𝝍 ∈ R50 and jaw pose parameters
𝜽 𝑗𝑎𝑤 ∈ R3 from the coarse reconstruction branch to capture the
dynamic expression wrinkle details. For rendering, 𝐷 is converted
to a normal map.
Detail rendering: The detail displacement model allows us to gen-
erate images with mid-frequency surface details. To reconstruct
the detailed geometry 𝑀 ′, we convert 𝑀 and its surface normals
𝑁 to UV space, denoted as 𝑀𝑢𝑣 ∈ R𝑑×𝑑×3 and 𝑁𝑢𝑣 ∈ R𝑑×𝑑×3, and
combine them with 𝐷 as

𝑀 ′
𝑢𝑣 = 𝑀𝑢𝑣 + 𝐷 ⊙ 𝑁𝑢𝑣 . (10)

By calculating normals 𝑁 ′ from𝑀 ′, we obtain the detail rendering
𝐼 ′𝑟 by rendering𝑀 with the applied normal map as

𝐼 ′𝑟 = R(𝑀, 𝐵(𝜶 , l, 𝑁 ′), c). (11)

The detail reconstruction is trained by minimizing

𝐿detail = 𝐿phoD + 𝐿mrf + 𝐿sym + 𝐿𝑑𝑐 + 𝐿regD, (12)

with photometric detail loss 𝐿phoD , ID-MRF loss 𝐿mrf , soft symmetry
loss 𝐿sym, and detail regularization 𝐿regD . Since our estimated albedo
is generated by a linear model with 50 basis vectors, the rendered
coarse face image only recovers low frequency information such as
skin tone and basic facial attributes. High frequency details in the
the rendered image result mainly from the displacement map, and
hence, since 𝐿detail compares the rendered detailed image with the
real image, 𝐹𝑑 is forced to model detailed geometric information.
Detail photometric losses:With the applied detail displacement
map, the rendered images 𝐼 ′𝑟 contain some geometric details. Equiv-
alent to the coarse rendering, we use a photometric loss 𝐿phoD =

𝑉𝐼 ⊙ (𝐼 − 𝐼 ′𝑟 )




1,1, where, recall,𝑉𝐼 is a mask representing the visible

skin pixels.
ID-MRF loss: We adopt an Implicit Diversified Markov Random
Field (ID-MRF) loss [Wang et al. 2018] to reconstruct geometric
details. Given the input image and the detail rendering, the ID-MRF
loss extracts feature patches from different layers of a pre-trained
network, and then minimizes the difference between correspond-
ing nearest neighbor feature patches from both images. Larsen et
al. [2016] and Isola et al. [2017] point out that L1 losses are not able
to recover the high frequency information in the data. Consequently,
these two methods use a discriminator to obtain high-frequency
detail. Unfortunately, this may result in an unstable adversarial
training process. Instead, the ID-MRF loss regularizes the generated
content to the original input at the local patch level; this encourages
DECA to capture high-frequency details.
Following Wang et al. [2018], the loss is computed on layers

𝑐𝑜𝑛𝑣3_2 and 𝑐𝑜𝑛𝑣4_2 of VGG19 [Simonyan and Zisserman 2014] as

𝐿mrf = 2𝐿𝑀 (𝑐𝑜𝑛𝑣4_2) + 𝐿𝑀 (𝑐𝑜𝑛𝑣3_2), (13)

where 𝐿𝑀 (𝑙𝑎𝑦𝑒𝑟𝑡ℎ) denotes the ID-MRF loss that is employed on
the feature patches extracted from 𝐼 ′𝑟 and 𝐼 with layer 𝑙𝑎𝑦𝑒𝑟𝑡ℎ of
VGG19. As with the photometric losses, we compute 𝐿mrf only for
the face skin region in UV space.
Soft symmetry loss: To add robustness to self-occlusions, we add
a soft symmetry loss to regularize non-visible face parts. Specifically,
we minimize

𝐿𝑠𝑦𝑚 = ∥𝑉𝑢𝑣 ⊙ (𝐷 − flip(𝐷))∥1,1 , (14)

where 𝑉𝑢𝑣 denotes the face skin mask in UV space, and flip is the
horizontal flip operation.Without 𝐿sym, for extreme poses, boundary
artifacts become visible in occluded regions (Fig. 9).
Detail regularization: The detail displacements are regularized by
𝐿regD = ∥𝐷 ∥1,1 to reduce noise.

4.3 Detail disentanglement
Optimizing 𝐿detail enables us to reconstruct faces with mid-frequen-
cy details. Making these detail reconstructions animatable, however,
requires us to disentangle person specific details (i.e. moles, pores,
eyebrows, and expression-independent wrinkles) controlled by 𝜹
from expression-dependent wrinkles (i.e. wrinkles that change for
varying facial expression) controlled by FLAME’s expression and jaw
pose parameters, 𝝍 and 𝜽 jaw . Our key observation is that the same
person in two images should have both similar coarse geometry and
personalized details.
Specifically, for the rendered detail image, exchanging the detail

codes between two images of the same subject should have no effect on
the rendered image. This concept is illustrated in Fig. 3. Here we take
the the jaw and expression parameters from image 𝑖 , extract the
detail code from image 𝑗 , and combine these to estimate the wrinkle
detail. When we swap detail codes between different images of the
same person, the produced results must remain realistic.
Detail consistency loss: Given two images 𝐼𝑖 and 𝐼 𝑗 of the same
subject (i.e. 𝑐𝑖 = 𝑐 𝑗 ), the loss is defined as

𝐿𝑑𝑐 = 𝐿detail (𝐼𝑖 ,R(𝑀 (𝜷𝑖 , 𝜽 𝑖 , 𝝍𝑖 ), 𝐴(𝜶 𝑖 ),
𝐹𝑑 (𝜹 𝑗 , 𝝍𝑖 , 𝜽 jaw,𝑖 ), l𝑖 , c𝑖 )),

(15)

where 𝜷𝑖 , 𝜽 𝑖 , 𝝍𝑖 , 𝜽 jaw,𝑖 , 𝜶 𝑖 , l𝑖 , and 𝒄𝑖 are the parameters of 𝐼𝑖 ,
while 𝜹 𝑗 is the detail code of 𝐼 𝑗 (see Fig. 3). The detail consistency
loss is essential for the disentanglement of identity-dependent and
expression-dependent details. Without the detail consistency loss,
the person-specific detail code, 𝛿 , captures identity and expression
dependent details, and therefore, reconstructed details cannot be
re-posed by varying the FLAME jaw pose and expression. We show
the necessity and effectiveness of 𝐿𝑑𝑐 in Sec. 6.3.

5 IMPLEMENTATION DETAILS
Data:We trainDECAon three publicly available datasets: VGGFace2
[Cao et al. 2018b], BUPT-Balancedface [Wang et al. 2019] and Vox-
Celeb2 [Chung et al. 2018a]. VGGFace2 [Cao et al. 2018b] contains
images of over 8𝑘 subjects, with an average of more than 350 images
per subject. BUPT-Balancedface [Wang et al. 2019] offers 7𝑘 sub-
jects per ethnicity (i.e. Caucasian, Indian, Asian and African), and
VoxCeleb2 [Chung et al. 2018a] contains 145𝑘 videos of 6𝑘 subjects.
In total, DECA is trained on 2 Million images.
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All datasets provide an identity label for each image. We use
FAN [Bulat and Tzimiropoulos 2017] to predict 68 2D landmarks k𝑖
on each face. To improve the robustness of the predicted landmarks,
we run FAN for each image twice with different face crops, and
discard all images with non-matching landmarks. See Sup. Mat. for
details on data selection and data cleaning.
Implementation details:DECA is implemented in PyTorch [Paszke
et al. 2019], using the differentiable rasterizer from Pytorch3D [Ravi
et al. 2020] for rendering. We use Adam [Kingma and Ba 2015] as
optimizer with a learning rate of 1𝑒 − 4. The input image size is 2242
and the UV space size is 𝑑 = 256. See Sup. Mat. for details.

6 EVALUATION

6.1 Qualitative evaluation
Reconstruction: Given a single face image, DECA reconstructs the
3D face shape with mid-frequency geometric details. The second
row of Fig. 1 shows that the coarse shape (i.e. in FLAME space)
well represents the overall face shape, and the learned DECA detail
model reconstructs subject-specific details and wrinkles of the input
identity (Fig. 1, row three), while being robust to partial occlusions.
Figure 5 qualitatively compares DECA results with state-of-the-

art coarse face reconstruction methods, namely PRNet [Feng et al.
2018b], RingNet [Sanyal et al. 2019], Deng et al. [2019], FML [Tewari
et al. 2019] and 3DDFA-V2 [Guo et al. 2020]. Compared to these
methods, DECA better reconstructs the overall face shape with
details like the nasolabial fold (rows 1, 2, 3, 4, and 6) and forehead
wrinkles (row 3). DECA better reconstructs the mouth shape and
the eye region than all other methods. DECA further reconstructs
a full head while PRNet [Feng et al. 2018b], Deng et al. [2019],
FML [Tewari et al. 2019] and 3DDFA-V2 [Guo et al. 2020] reconstruct
tightly cropped faces. While RingNet [Sanyal et al. 2019], like DECA,
is based on FLAME [Li et al. 2017], DECA better reconstructs the
face shape and the facial expression.
Figure 6 compares DECA visually to existing detailed face re-

construction methods, namely Extreme3D [Tran et al. 2018], Cross-
modal [Abrevaya et al. 2020], and FaceScape [Yang et al. 2020]. Ex-
treme3D [Tran et al. 2018] and Cross-modal [Abrevaya et al. 2020]
reconstruct more details than DECA but at the cost of being less
robust to occlusions (rows 1, 2, 3). Unlike DECA, Extreme3D and
Cross-modal only reconstruct static details. However, using static
details instead of DECA’s animatable details leads to visible arti-
facts when animating the face (see Fig. 4). While FaceScape [Yang
et al. 2020] provides animatable details, unlike DECA, the method
is trained on high-resolution scans while DECA is solely trained
on in-the-wild images. Also, with occlusion, FaceScape produces
artifacts (rows 1, 2) or effectively fails (row 3).
In summary, DECA produces high-quality reconstructions, out-

performing previous work in terms of robustness, while enabling
animation of the detailed reconstruction. To demonstrate the quality
of DECA and the robustness to variations in head pose, expression,
occlusions, image resolution, lighting conditions, etc., we show re-
sults for 200 randomly selected ALFW2000 [Zhu et al. 2015] images
in the Sup. Mat. along with more qualitative coarse and detail re-
construction comparisons to the state-of-the-art.

Detail animation: DECA models detail displacements as a func-
tion of subject-specific detail parameters 𝜹 and FLAME’s jaw pose
𝜽 jaw and expression parameters 𝝍 as illustrated in Fig. 2 (right).
This formulation allows us to animate detailed facial geometry such
that wrinkles are specific to the source shape and expression as
shown in Fig. 1. Using static details instead of DECA’s animatable
details (i.e. by using the reconstructed details as a static displace-
ment map) and animating only the coarse shape by changing the
FLAME parameters results in visible artifacts as shown in Fig. 4
(top), while animatable details (middle) look similar to the reference
shape (bottom) of the same identity. Figure 7 shows more examples
where using static details results in artifacts at the mouth corner or
the forehead region, while DECA’s animated results look plausible.

6.2 Quantitative evaluation
We compare DECAwith publicly available methods, namely 3DDFA-
V2 [Guo et al. 2020], Deng et al. [2019], RingNet [Sanyal et al. 2019],
PRNet [Feng et al. 2018b], 3DMM-CNN [Tran et al. 2017] and Ex-
treme3D [Tran et al. 2018]. Note that there is no benchmark face
dataset with ground truth shape detail. Consequently, our quantita-
tive analysis focuses on the accuracy of the coarse shape. Note that
DECA achieves SOTA performance on 3D reconstruction without
any paired 3D data in training.
NoW benchmark: The NoW challenge [Sanyal et al. 2019] consists
of 2054 face images of 100 subjects, split into a validation set (20
subjects) and a test set (80 subjects), with a reference 3D face scan per
subject. The images consist of indoor and outdoor images, neutral
expression and expressive face images, partially occluded faces, and
varying viewing angles ranging from frontal view to profile view,
and selfie images. The challenge provides a standard evaluation
protocol that measures the distance from all reference scan vertices
to the closest point in the reconstructed mesh surface, after rigidly
aligning scans and reconstructions. For details, see [NoW challenge
2019].

We found that the tightly cropped face meshes predicted by Deng
et al. [2019] are smaller than the NoW reference scans, which would
result in a high reconstruction error in the missing region. For a
fair comparison to the method of Deng et al. [2019], we use the
Basel Face Model (BFM) [Paysan et al. 2009] parameters they output,
reconstruct the complete BFMmesh, and get the NoW evaluation for
these complete meshes. As shown in Tab. 1 and the cumulative error
plot in Figure 8 (left), DECA gives state-of-the-art results on NoW,
providing the reconstruction error with the lowest mean, median,
and standard deviation.

To quantify the influence of the geometric details, we separately
evaluate the coarse and the detail shape (i.e. w/o and w/ details)
on the NoW validation set. The reconstruction errors are, median:
1.18/1.19 (coarse / detailed), mean: 1.46/1.47 (coarse / detailed), std:
1.25/1.25 (coarse / detailed). This indicates that while the detail
shape improves visual quality when compared to the coarse shape,
the quantitative performance is slightly worse.

To test for gender bias in the results, we report errors separately
for female (f) and male (m) NoW test subjects. We find that re-
covered female shapes are slightly more accurate. Reconstruction
errors are, median: 1.03/1.16 (f/m), mean: 1.32/1.45 (f/m), and std:
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Fig. 4. Effect of DECA’s animatable details. Given images of source identity I and source expression E (left), DECA reconstructs the detail shapes (middle) and
animates the detail shape of I with the expression of E (right, middle). This synthesized DECA expression appears nearly identical to the reconstructed same
subject’s reference detail shape (right, bottom). Using the reconstructed details of I instead (i.e. static details) and animating the coarse shape only, results in
visible artifacts (right, top). See Sec. 6.1 for details. Input images are taken from NoW [Sanyal et al. 2019].

Fig. 5. Comparison to other coarse reconstruction methods, from left
to right: PRNet [Feng et al. 2018b], RingNet [Sanyal et al. 2019] Deng et
al. [2019], FML [Tewari et al. 2019], 3DDFA-V2 [Guo et al. 2020], DECA
(ours). Input images are taken from VoxCeleb2 [Chung et al. 2018b].

1.16/1.20 (f/m). The cumulative error plots in Fig. 1 of the Sup. Mat.
demonstrate that DECA gives state-of-the-art performance for both
genders.
Feng et al. benchmark: The Feng et al. [2018a] challenge contains
2000 face images of 135 subjects, and a reference 3D face scan
for each subject. The benchmark consists of 1344 low-quality (LQ)

Method Median (mm) Mean (mm) Std (mm)
3DMM-CNN [Tran et al. 2017] 1.84 2.33 2.05
PRNet [Feng et al. 2018b] 1.50 1.98 1.88
Deng et al.19 [2019] 1.23 1.54 1.29
RingNet [Sanyal et al. 2019] 1.21 1.54 1.31
3DDFA-V2 [Guo et al. 2020] 1.23 1.57 1.39
MGCNet [Shang et al. 2020] 1.31 1.87 2.63
DECA (ours) 1.09 1.38 1.18

Table 1. Reconstruction error on the NoW [Sanyal et al. 2019] benchmark.

Method Median (mm) Mean (mm) Std (mm)
LQ HQ LQ HQ LQ HQ

3DMM-CNN [Tran et al. 2017] 1.88 1.85 2.32 2.29 1.89 1.88
Extreme3D [Tran et al. 2018] 2.40 2.37 3.49 3.58 6.15 6.75
PRNet [Feng et al. 2018b] 1.79 1.59 2.38 2.06 2.19 1.79
RingNet [Sanyal et al. 2019] 1.63 1.59 2.08 2.02 1.79 1.69
3DDFA-V2 [Guo et al. 2020] 1.62 1.49 2.10 1.91 1.87 1.64
DECA (ours) 1.48 1.45 1.91 1.89 1.66 1.68

Table 2. Feng et al. [2018a] benchmark performance.

images extracted from videos, and 656 high-quality (HQ) images
taken in controlled scenarios. A protocol similar to NoW is used for
evaluation, which measures the distance between all reference scan
vertices to the closest points on the reconstructed mesh surface, after
rigidly aligning scan and reconstruction. As shown in Tab. 2 and
the cumulative error plot in Fig. 8 (middle & right), DECA provides
state-of-the-art performance.

6.3 Ablation experiment
Detail consistency loss: To evaluate the importance of our novel
detail consistency loss 𝐿𝑑𝑐 (Eq. 15), we train DECAwith and without
𝐿𝑑𝑐 . Figure 9 (left) shows the DECA details for detail code 𝜹𝐼 from
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Fig. 6. Comparison to other detailed face reconstruction methods, from
left to right: Extreme3D [Tran et al. 2018], FaceScape [Yang et al. 2020],
Cross-modal [Abrevaya et al. 2020], DECA (ours). See Sup. Mat. for many
more examples. Input images are taken from AFLW2000 [Zhu et al. 2015]
(rows 1-3) and VGGFace2 [Cao et al. 2018b] (rows 4-6).

Fig. 7. Effect of DECA’s animatable details. Given a single image (left),
DECA reconstructs a course mesh (second column) and a detailed mesh
(third column). Using static details and animating (i.e. reposing) the coarse
FLAME shape only (fourth column) results in visible artifacts as highlighted
by the red boxes. Instead, reposing with DECA’s animatable details (right)
results in a more realistic mesh with geometric details. The reposing uses
the source expression shown in Fig. 1 (bottom). Input images are taken from
NoW [Sanyal et al. 2019] (top), and Pexels [2021] (bottom).

the source identity, and expression 𝝍𝐸 and jaw pose parameters
𝜽 jaw,𝐸 from the source expression. For DECA trained with 𝐿𝑑𝑐 (top),
wrinkles appear in the forehead as a result of the raised eyebrows of
the source expression, while for DECA trained without 𝐿𝑑𝑐 (bottom),

no such wrinkles appear. This indicates that without 𝐿𝑑𝑐 , person-
specific details and expression-dependent wrinkles are not well
disentangled. See Sup. Mat. for more disentanglement results.
ID-MRF loss: Figure 9 (right) shows the effect of 𝐿mrf on the detail
reconstruction. Without 𝐿mrf (middle), wrinkle details (e.g. in the
forehead) are not reconstructed, resulting in an overly smooth result.
With 𝐿mrf (right), DECA captures the details.
Other losses: We also evaluate the effect of the eye-closure loss
𝐿𝑒𝑦𝑒 , segmentation on the photometric loss, and the identity loss 𝐿𝑖𝑑 .
Fig. 10 provides a qualitative comparison of the DECA coarse model
with/without using these losses. Quantitatively, we also evaluate
DECA with and without 𝐿𝑖𝑑 on the NoW validation set; the former
gives a mean error of 1.46mm, while the latter is worse with an
error of 1.59mm.

7 LIMITATIONS AND FUTURE WORK
While DECA achieves SOTA results for reconstructed face shape and
provides novel animatable details, there are several limitations. First,
the rendering quality for DECA detailed meshes is mainly limited
by the albedo model, which is derived from BFM. DECA requires an
albedo space without baked in shading, specularities, and shadows
in order to disentangle facial albedo from geometric details. Future
work should focus on learning a high-quality albedo model with
a sufficiently large variety of skin colors, texture details, and no
illumination effects. Second, existing methods, like DECA, do not
explicitly model facial hair. This pushes skin tone into the lighting
model and causes facial hair to be explained by shape deformations.
A different approach is needed to properly model this. Third, while
robust, our method can still fail due to extreme head pose and
lighting. While we are tolerant to common occlusions in existing
face datasets (Fig. 6 and examples in Sup. Mat.), we do not address
extreme occlusion, e.g. where the hand covers large portions of the
face. This suggests the need for more diverse training data.
Further, the training set contains many low-res images, which

help with robustness but can introduce noisy details. Existing high-
res datasets (e.g. [Karras et al. 2018, 2019]) are less varied, thus
training DECA from these datasets results in a model that is less
robust to general in-the-wild images, but captures more detail. Addi-
tionally, the limited size of high-resolution datasets makes it difficult
to disentangle expression- and identity-dependent details. To fur-
ther research on this topic, we also release a model trained using
high-resolution images only (i.e. DECA-HR). Using DECA-HR in-
creases the visual quality and reduces noise in the reconstructed
details at the cost of being less robust (i.e. to low image resolutions,
extreme head poses, extreme expressions, etc.).
DECA uses a weak perspective camera model. To use DECA to

recover head geometry from “selfies”, we would need to extend
the method to include the focal length. For some applications, the
focal length may be directly available from the camera. However,
inferring 3D geometry and focal length from a single image under
perspective projection for in-the-wild images is unsolved and likely
requires explicit supervision during training (cf. [Zhao et al. 2019]).
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NoW [Sanyal et al. 2019] Feng et al. [2018a] LQ Feng et al. [2018a] HQ

Fig. 8. Quantitative comparison to state-of-the-art on two 3D face reconstruction benchmarks, namely the NoW [Sanyal et al. 2019] challenge (left) and the
Feng et al. [2018a] benchmark for low-quality (middle) and high-quality (right) images.

Fig. 9. Ablation experiments. Top: Effects of 𝐿𝑑𝑐 on the animation of the
source identity with the source expression visualized on a neutral expression
template mesh. Without 𝐿𝑑𝑐 , no wrinkles appear in the forehead despite
the “surprise" source expression. Middle: Effect of 𝐿𝑚𝑟 𝑓 on the detail recon-
struction. Without 𝐿𝑚𝑟 𝑓 , fewer details are reconstructed. Bottom: Effect
of 𝐿𝑠𝑦𝑚 on the reconstructed details. Without 𝐿𝑠𝑦𝑚 , boundary artifacts
become visible. Input images are taken from NoW [Sanyal et al. 2019] (rows
1 & 4), Chicago [Ma et al. 2015] (row 2), and Pexels [2021] (row 3).

Finally, in future work, we want to extend the model over time,
both for tracking and to learn more personalized models of indi-
viduals from video where we could enforce continuity of intrinsic
wrinkles over time.

Fig. 10. More ablation experiments. Left: estimated landmarks and recon-
structed coarse shape from DECA (first column) and DECA without 𝐿eye
(second column), and without 𝐿𝑖𝑑 (third column). When trained without
𝐿eye , DECA is not able to capture closed-eye expressions. Using 𝐿𝑖𝑑 helps
reconstruct coarse shape. Right: rendered image from DECA and DECA
without segmentation. Without using the skin mask in the photometric loss,
the estimated result bakes in the color of the occluder (e.g. sunglasses, hats)
into the albedo. Input images are taken from NoW [Sanyal et al. 2019].

8 CONCLUSION
We have presented DECA, which enables detailed expression cap-
ture and animation from single images by learning an animatable
detail model from a dataset of in-the-wild images. In total, DECA is
trained from about 2M in-the-wild face images without 2D-to-3D
supervision. DECA reaches state-of-the-art shape reconstruction
performance enabled by a shape consistency loss. A novel detail
consistency loss helps DECA to disentangle expression-dependent
wrinkles from person-specific details. The low-dimensional detail
latent space makes the fine-scale reconstruction robust to noise and
occlusions, and the novel loss leads to disentanglement of identity
and expression-dependent wrinkle details. This enables applications
like animation, shape change, wrinkle transfer, etc. DECA is publicly
available for research purposes. Due to the reconstruction accuracy,
the reliability, and the speed, DECA is useful for applications like
face reenactment or virtual avatar creation.
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