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Figure 1: Shape from mocap. MoSh computes body shape and pose from standard mocap marker sets. Bodies in purple are estimated
from 67 mocap markers, while scans in green are captured with a high-resolution 3D body scanner. Split-color bodies compare the shape
estimated from sparse markers with scans. MoSh needs only sparse mocap marker data to create animations (purple posed bodies) with a
level of realism that is difficult to achieve with standard skeleton-based mocap methods.

Abstract

Marker-based motion capture (mocap) is widely criticized as pro-
ducing lifeless animations. We argue that important information
about body surface motion is present in standard marker sets but is
lost in extracting a skeleton. We demonstrate a new approach called
MoSh (Motion and Shape capture), that automatically extracts this
detail from mocap data. MoSh estimates body shape and pose to-
gether using sparse marker data by exploiting a parametric model of
the human body. In contrast to previous work, MoSh solves for the
marker locations relative to the body and estimates accurate body
shape directly from the markers without the use of 3D scans; this
effectively turns a mocap system into an approximate body scanner.
MoSh is able to capture soft tissue motions directly from markers
by allowing body shape to vary over time. We evaluate the effect
of different marker sets on pose and shape accuracy and propose a
new sparse marker set for capturing soft-tissue motion. We illus-
trate MoSh by recovering body shape, pose, and soft-tissue motion
from archival mocap data and using this to produce animations with
subtlety and realism. We also show soft-tissue motion retargeting
to new characters and show how to magnify the 3D deformations
of soft tissue to create animations with appealing exaggerations.
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1 Introduction

While marker-based motion capture (mocap) is widely used to an-
imate human characters in films and games, it is also widely crit-
icized as producing lifeless and unnatural motions. We argue that
this is the result of “indirecting” through a skeleton that acts as a
proxy for the human movement. In standard mocap, visible 3D
markers on the body surface are used to infer the unobserved skele-
ton. This skeleton is then used to animate a 3D model and what
is rendered is the visible body surface. While typical protocols
place markers on parts of the body that move as rigidly as possi-
ble, soft-tissue motion always affects surface marker motion. Since
non-rigid motions of surface markers are treated as noise, subtle in-
formation about body motion is lost in the process of going from the
non-rigid body surface to the rigid, articulated, skeleton represen-
tation. We argue that these non-rigid marker motions are not noise,
but rather correspond to subtle surface motions that are important
for realistic animation.

We present a new method called MoSh (for Motion and Shape cap-
ture) that replaces the skeleton with a 3D parametric body model.
Given a standard marker set, MoSh simultaneously estimates the
marker locations on a proxy 3D body model, estimates the body
shape, and recovers the articulated body pose. By allowing body
shape to vary over time, MoSh is able to capture the non-rigid mo-
tion of soft tissue. Previous work on the mocap of such motions
relies on large marker sets [Park and Hodgins 2006; Park and Hod-
gins 2008]. In contrast, we show that significant soft tissue motion
is present in small marker sets and that capturing it results in more
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nuanced and lifelike animations. MoSh also recovers qualitatively
and metrically accurate body shapes from small numbers of mark-
ers; Fig. 1 shows body shapes and poses recovered with 67 markers
and compares the body shapes with 3D scans. While fine details
are missing, MoSh enables users of standard mocap to obtain rea-
sonable 3D body shapes from markers alone.

The basic version of MoSh has five core components. 1) MoSh
uses a parametric 3D body model that realistically represents a wide
range of natural body shapes, poses, and pose-dependent deforma-
tions. For this we use a learned statistical body model based on
SCAPE [Anguelov et al. 2005]. 2) Marker placement on the human
body varies across subjects and sessions, consequently we do not
assume that the exact marker placement is known. Instead, a key
contribution of MoSh is that it solves for the observed marker loca-
tions relative to the 3D body model. 3) MoSh also simultaneously
solves for the 3D body shape of the person that best explains the
observed 3D mocap marker data. 4) Steps 2 and 3 above require
that we also simultaneously solve for 3D body pose. Components
2–4 are all embodied in a single objective function and we optimize
this for a subset of the mocap sequence. 5) In a second stage, MoSh
uses the computed body shape and marker locations on the body, to
estimate body pose throughout a mocap session.

This basic method produces appealing animations but the assump-
tion of a single body shape across the session does not account
for the dynamics of soft tissue; for example, the jiggling of fat
during jumping. Currently there are no practical technologies for
easily capturing these soft-tissue motions. Previous methods have
used large marker sets [Park and Hodgins 2006] but these are time
consuming to apply, difficult to label, and suffer from occlusion.
These methods also do not apply to archival data. Video-based sur-
face capture methods offer the potential for even greater realism
[de Aguiar et al. 2008; Stark and Hilton 2007] but are not yet ma-
ture and are not widely adopted. To capture soft-tissue deformation,
we allow the body shape to change over time to better fit the marker
motions. Our solution uses a low-dimensional shape model to make
it practical and penalizes deviations from the fixed body shape es-
timated without soft-tissue deformation. We make an assumption
that these deformations can be approximated within the space of
static human body shape variations; that is, we model the soft-
tissue deformations of an individual effectively by changing their
identity. Given a sufficiently rich space of body shape variation,
this works surprisingly well.

While we can estimate body shape and pose from standard marker
sets and archival mocap sequences, we go further to design addi-
tional marker sets with greater or fewer markers. Using a princi-
pled objective function, and a training set of 3D body meshes, we
evaluate the effect of different marker sets on the accuracy of body
shape and pose capture. While the standard 47-marker set that is
often used for motion capture (e.g. in the CMU dataset) works sur-
prisingly well for recovering both shape and pose, we find that an
expanded set, with 20 additional markers, captures more soft tissue
motion.

We validate the method with nearly 800 mocap sequences. Since no
body scanner or other hardware is required, MoSh can be applied
to archival mocap data. To demonstrate this we reconstruct gender,
shape, and motion of 39 subjects in the CMU mocap dataset using
47 markers. The resulting animations are nuanced and lifelike and
the body shapes qualitatively match reference video. For quantita-
tive evaluation, we scanned twenty subjects with widely different
body shapes and performed MoSh with different numbers of mark-
ers.

MoSh can be used directly for animation or as a reference for ani-
mators. In the accompanying video we show that we can change

the body shape to retarget the mocap sequence to new bodies
(cf. [Anguelov et al. 2005]). This transfer works for any charac-
ter with the same topology as our body model. We align several
cartoon characters to our mesh and then animate them without the
labor-intensive process of developing a rigged model or retargeting
the skeletal motions. The animations include the transfer of soft tis-
sue motions and we show further how these motions can be magni-
fied to produce interesting animations with exaggerated soft-tissue
dynamics.

In summary, the main contribution of MoSh is that it provides a
fully automated method for “mining” lifelike body shape, pose, and
soft-tissue motions from sparse marker sets. This makes MoSh
appropriate for processing archival mocap. By using the same
(or slightly augmented) marker sets, MoSh complements, existing
marker-based mocap in that animators can extract standard skeletal
models from the markers, MoSh meshes, or both.

2 Prior work

There is an extensive literature on (and commercial solutions for)
estimating skeleton proxies from marker sets. Since MoSh does
not use a skeleton, we do not review these methods here. Instead,
we focus on several key themes in the literature that more directly
relate to our work: fitting models to sparse markers, dense marker
sets, and surface capture.

From Markers to Models. To get body shape from sparse markers,
one needs a model of body shape to constrain the problem. There
have been several previous approaches. Allen et al. [2003] learn
a model of body shape variation in a fixed pose from 3D training
scans. Anguelov et al. [2005] go further to learn a model that cap-
tures both body shape and non-rigid pose deformation.

Allen et al. show that one can approximately recover an unknown
3D human shape from a sparse set of 74 landmarks. They do this
only for a fixed pose since their model does not represent pose vari-
ation. Importantly the landmarks are perfect and known; that is,
they have the 3D points on the mesh they want to recover and do
not need to estimate their location on the mesh. Unlike MoSh this
does not address the problem of estimating body shape and pose
from mocap markers alone.

Anguelov et al. [2005] show how to animate a SCAPE model from
motion capture markers. Their method requires a 3D scan of the
subject with the markers on their body. This scan is used for two
purposes. First it is used to estimate the 3D shape model of the per-
son; this shape is then held fixed. Second the scanned markers are
used to establish correspondence between the scan and the mocap
markers. These limitations mean that the approach cannot work on
archival mocap data and that a user needs both a 3D body scanner
and a mocap system.

It is important to note that Anguelov et al. did not solve the prob-
lem addressed by MoSh. They fit a SCAPE model to a 3D body
scan (what they call shape completion) and with known marker lo-
cations, animate the model from mocap markers. We go beyond
their work to estimate the body shape from only the sparse mocap
markers without the use of any scan and without knowing their pre-
cise location on the body. We do this by simultaneously solving
for the marker locations, the shape of the body and the pose us-
ing a single objective function and optimization method. Unlike
[Anguelov et al. 2005], MoSh is fully automatic and applicable to
archival data.

We also go beyond previous work to define new marker sets and
evaluate the effect of these on reconstruction accuracy. This pro-
vides a guide for practitioners to choose appropriate marker sets.



Dynamics of Soft Tissue. Unlike MoSh, the above work does not
address the capture of soft tissue motion. Interestingly, much of
the attention paid to soft-tissue motion in the mocap community
(particularly within biomechanics) actually focuses on minimizing
the effects of soft tissue dynamics [Leardini et al. 2005]. Soft tis-
sue motion means the markers move relative to the bones and this
reduces the accuracy of the estimated skeletal models. For anima-
tion, we argue that such soft tissue motions are actually critical to
making a character look alive.

Dense Marker Sets. To capture soft-tissue motion, previous work
has used large, dense, marker sets. Park and Hodgins [2006] use
350 markers to recover skin deformation; in the process, they de-
form a subject-specific model to the markers and estimate missing
marker locations. In later work [Park and Hodgins 2008], they use a
large (400-450) marker set for ≈ 10, 000 frames of activity to cre-
ate a subject-specific model; this model can then be used to recover
pose for the same subject in later sessions with a sparse marker set.
In these works, the authors visualize soft-tissue deformations on
characters resembling the mocap actor. Here we transfer soft-tissue
deformations to more stylized characters.

Hong et al. [2010] use 200 markers on the shoulder complex and
a data driven approach to infer a model of shoulder articulation.
While dense markers can capture rich shape and deformation in-
formation, they are not practical for many applications. Placing the
markers is time consuming and a large number of markers may limit
movement. With these large sets, additional challenges emerge in
dealing with inevitable occlusions and marker identification.

Recent work captures skin deformations using a dense set of mark-
ers or patterns painted on the body [Bogo et al. 2014; Neumann
et al. 2013a]. The work is similar to Park and Hodgins but uses
computer vision methods rather than standard mocap markers.

Our work differs in that it conforms to standard mocap practice and
is backwards-compatible with existing sparse marker sets. The goal
of MoSh is to get more out of sparse markers.

Surface Capture. At the other extreme from sparse mark-
ers are methods that capture full 3D meshes at every time in-
stant [de Aguiar et al. 2008; Stark and Hilton 2007]; this can be con-
ceived of as a very dense marker set. Still other methods use a scan
of the person and then deform it throughout a sequence [de Aguiar
et al. 2007a; Liu et al. 2013]. Existing methods for surface capture
rely on multi-camera computer vision algorithms that are compu-
tationally expensive compared with commercial marker-based sys-
tems. These methods are most applicable to capturing complex sur-
faces like clothing or breathing [Tsoli et al. 2014] that are difficult
to parametrize. In the case of body shape, we find that, together
with a parametric body model, a small marker set is already very
powerful.

In a related approach, de Aguiar et al. [2007b] use an intermediate
template that is animated in a traditional way from mocap markers.
They then transfer the template motion to a more complex mesh.
Like MoSh this method is motivated by standard practice but it
still indirects through a crude proxy, rather than solving directly
for shape and pose from markers.

Attribute Capture. The idea that markers contain information
about body shape is not new. Livne et al. [2012] use motion capture
data to extract socially meaningful attributes, such as gender, age,
mental state and personality traits by applying 3D pose tracking to
human motion. This work shows that a sparse marker set contains
rich information about people and their bodies. MoSh takes a dif-
ferent approach by using the sparse marker data to extract faithful
3D body shape. Like Livne et al., we show that gender can be esti-
mated from markers. Beyond this, we suspect that the full 3D body

model can be used to extract additional attributes.

Motion Magnification. There has been recent work on magnifying
small motions in video sequences [Wang et al. 2007; Wu et al. 2012;
Wadhwa et al. 2013] but less work on magnifying 3D motions. In
part this may be because capturing 3D surface motions is difficult.
Other work exaggerates mocap skeletal motions using mocap data
[Kwon and Lee 2007]. In [Neumann et al. 2013b] they develop
methods for spatially localized modeling of deformations and show
that these deformations can be edited and exaggerated. In [Jain
et al. 2010] they edit body shape to exaggerate it but do not model
or amplify non-rigid soft-tissue dynamics. While the exaggeration
of facial motion has received some attention, we think ours is the
first work to use only sparse marker sets to extract full-body soft-
tissue motion for exaggeration.

In summary, MoSh occupies a unique position – it estimates 3D
body shape and deformation using existing mocap marker sets.
MoSh produces animated bodies directly from mocap markers with
a realism that would be time consuming to achieve with standard
rigging and skeleton-based methods.

3 Body Model

Extracting body shape from sparse markers is clearly an ill-posed
problem; an infinite number of bodies could explain the same
marker data. To infer the most likely body we must have a model of
human shape that captures the correlations in body shape within the
population. For this we use a learned body model that is similar to
SCAPE [Anguelov et al. 2005]. It should be noted however that any
mesh model could be used, as long as (1) it allows shape and pose
variation, and (2) is differentiable with respect to its parameters.

Our body model is a function that returns a triangulated mesh with
10,777 vertices, and is parameterized by a global translation center
γ, a vector of pose parameters, θ, a mean shape, µ, and a vector
of shape parameters, β. Shape is defined in terms of deformations
applied to the triangles of a base template mesh. The surface of
the body is described as S(β, θ, γ), with the coordinates of vertex
k notated Sk(β, θ, γ). The body mesh is segmented into parts and
each part can undergo a rotation defined by θ. The pose parame-
ters θ consist of 19 angle-axis vectors, whereby length indicates the
amount of rotation. Like SCAPE, the function S(·) includes pose-
dependent non-rigid deformations that are learned from bodies in
a wide range of poses. Body shape is approximated by the mean
shape and a linear combination of shape basis vectors; β is a vector
of these linear coefficients. This shape basis is learned from defor-
mations of training body shapes using principal component analysis
(PCA). In what follows, we represent body shape using 100 princi-
pal components.

We train the body shape model from 3803 CAESAR scans of peo-
ple in an upright pose (approximately 2103 women and 1700 men
from the US and EU datasets) [Robinette et al. 2002]. The pose-
dependent component of the model is learned from 1832 scans of
78 people (41 women and 37 men) in a wide range of poses. The
scans are aligned using the technique in [Hirshberg et al. 2012].
Since the model is trained from an extensive set of scans, it is able
to realistically capture a wide range shapes and poses. For details
of SCAPE, the reader is referred to [Anguelov et al. 2005].

Note that we train three body shape models: separate models for
men and women, plus a gender neutral model. If we know the gen-
der of the subject, we use the appropriate model. If not, we fit
the gender-neutral model, infer the gender, and then use a gender-
specific model as described below.



Figure 2: Optimizing shape and markers. Left: initial guess of
markers, vi, on the template shape in the canonical pose (blue).
Right: Shape and marker locations after optimization. Optimized
marker locations, m̃i, are shown in red. Note that they have moved
(see inset).

4 Markers on the Body and in the World

Mocap markers extend from the human body to varying degrees and
are placed on the body manually. Precise placement can be difficult,
particularly on heavy subjects where fat makes it difficult to palpate
boney locations. The result is that we cannot expect to know the
exact marker locations in advance. The first step of MoSh solves
for the marker locations, relative to a template body mesh, for a
given mocap sequence (or collection of sequences for one subject).

4.1 Defining a Marker Set

We assume that we know the number of markers and their approxi-
mate location relative to a reference template mesh. The only man-
ual part of MoSh occurs if a user wants to use a new marker set.
In this case they need to identify a template vertex for each marker.
Notationally, we say a user creates a mapping h(i) from marker
indices, i, to vertex indices on the template. Each marker requires
the user-specification of an expected distance di from the marker
center to the skin surface. Both the location and the distance can be
approximate since we optimize these for each subject.

To parameterize marker locations with respect to the body, we in-
troduce a latent coordinate system that contains markers and our
body model in a neutral pose, γ0, θ0, as in Fig. 2 (left). The pur-
pose of this latent coordinate system is to model the relationship
between the body surface and the markers in a pose-independent,
translation-independent, fashion. This relationship is then trans-
ferred to meshes in observed mocap frames.

We then denote the default position of the markers, vi, as

vi(β) ≡ Sh(i)(β, θ0, γ0) + diNh(i)(β, θ0, γ0), (1)

where Nk(β, θ, γ) indicates the vertex normal for index k given
body model parameters. Thus vi(β) is the position of the model
vertex, offset by a user-prescribed distance, di, from the surface, in
the latent coordinate system, corresponding to marker i. These are
illustrated as blue balls in Fig. 2.

Defining the marker set needs to be done once and then it is used
for any subject captured with that marker set. For example, we did
this once for the 47-marker Vicon set and used this for all mocap
sequences in the CMU database.

Figure 3: Marker transformations. In the latent coordinate space
(left) we project a marker, m̃i into a basis defined by the nearest
vertex: specifically by its normal, an arbitrary normalized edge,
and the cross product between them. This provides a pose invariant
representation for the marker. When the body pose changes (right),
we then compute the location of the marker, m̂(m̃i, β, θt, γt), in
the observed frame.

4.2 Parameterizing Markers

The default markers, vi, are approximate and below we optimize
to solve for the body shape, β, and the actual location of the la-
tent markers, m̃i, for a given subject and mocap sequence. Let M̃
denote the collection of latent markers. Notationally, we use i to in-
dicate marker number and t to indicate the mocap sequence frame
number. Observed markers are denoted mi,t individually and Mt

together. From a collection of Mt we estimate the latent markers
M̃ , shown as red balls in Fig. 2.

To that end, we define a function m̂(m̃i, β, θt, γt) that maps latent
markers to the world given a particular shape, pose, and location
of the body. We call these “simulated markers”. Intuitively, we
want to solve for the shape, pose, body location, and latent marker
locations m̃i such that, when projected into the mocap sequence,
the simulated markers match the observed markers Mt.

This requires a mapping from local surface geometry to a 3D
marker position that can be transferred from the latent coordinate
system to the observed markers resulting from different poses. We
represent a marker position in an orthonormal basis defined by its
nearest triangle in the latent coordinate system. We define that ba-
sis by three vectors: the triangle normal, one of the triangle’s nor-
malized edges, and the cross product between those two. This is
geometrically depicted in Fig. 3 (left).

We denote the rigid transformation matrix that projects m̃ into the
basis for closest triangle τ(m̃) in the mesh, as Bτ(m̃)(β, θ, γ). We
then define a simulated marker position m̂(·) as

m̂∗(m̃, β, θt, γt) = Bτ(m̃)(β, θt, γt)B
−1
τ(m̃)(β, θ0, γ0)m̃∗ (2)

where m̃∗ = [m̃T , 1]T and m̂∗(·) = [m̂(·)T , 1]T denote the
marker locations in homogeneous coordinates. Equation 2 can be
seen as having two steps. First, the matrix B−1

τ(m̃)(β, θ0, γ0) trans-
forms m̃∗ from a 3D latent-space position into a coordinate vector
in the space of its local basis. In the second step, Bτ(m̃)(β, θt, γt)
maps this coordinate vector into a 3D observed-space position,
m̂∗(·), defined by the specific position and pose, γt, θt. This is
illustrated in Fig. 3 (right).



With the marker parameterization defined, we next define the ob-
jective functions we use to estimate marker positions, shape, pose,
and nonrigid motion.

5 Objectives

Let sequences of body pose θ1..n, and position γ1..n, with n time
instants be denoted as Θ and Γ respectively. We wish to estimate
the latent markers M̃ , poses Θ, body locations Γ, and body shape β,
such that the simulated markers m̂(·), match the observed markers
mi,t. To do so we define an objective function with several terms.

The data term, ED , is the sum of squared distances between simu-
lated and observed landmarks:

ED(M̃, β,Θ,Γ) =
∑
i,t

||m̂(m̃i, β, θt, γt)−mi,t||2. (3)

Note that distances are measured in cm.

A surface distance energy term, ES , encourages markers to keep a
prescribed distance from the body surface in the latent coordinate
system. Let r(x, S) denote the signed distance of a 3D location x
to the surface S. Then

ES(β, M̃) =
∑
i

||r(m̃i, S(β, θ0, γ0))− di||2. (4)

Since the marker locations are roughly known to begin with, we
penalize estimated latent markers if they deviate from this. The
energy term EI regularizes the adjusted marker towards its original
position

EI(β, M̃) =
∑
i

||m̃i − vi(β)||2. (5)

We also define pose and shape priors to regularize the estimation of
body shape and pose. These are modeled as Gaussian, with their
statistics µβ , µθ,Σβ ,Σθ computed from the pose and shape train-
ing data used to train our body model. We regularize β and θt by
penalizing the squared Mahalanobis distance from the mean shape
and pose:

Eβ(β) = (β − µβ)TΣ−1
β (β − µβ) (6)

Eθ(Θ) =
∑
t

(θt − µθ)TΣ−1
θ (θt − µθ). (7)

We also add a velocity constancy term Eu that helps to smooth
marker noise by a small amount:

Eu(Θ) =

n∑
t=2

||θt − 2θt−1 + θt−2||2. (8)

Our objective in total is the sum of these terms, each weighted by
its own weight, λ:

E(M̃, β,Θ,Γ) =
∑

ω∈{D,S,θ,β,I,u}

λωEω(·). (9)

6 Optimization

The objective function above is quite general and it enables us to
solve a variety of problems depending on what we minimize and
what we hold constant. In all cases, optimization uses Powell’s
dogleg method [Nocedal and Wright 2006], with Gauss-Newton

Hessian approximation. The gradients of the objective function are
computed with algorithmic differentiation [Griewank and Walther
2008], which applies the chain rule to the objective function; for
this we use an auto-differentiation package called Chumpy [Loper
2014]. Only the differentiation of the body model Sk(β, θ, γ) and
the signed mesh distance r(x, S) were done by hand, to improve
runtime performance.

There are two main optimization processes. The first estimates
time-independent parameters (body shape β and marker place-
ments M̃ ), while the second estimates time-dependent parameters
Θ = {θ1 . . . θn}, Γ = {γ1 . . . γn}.

Body Shape and Latent Markers. For a given mocap sequence
(or set of sequences for the same subject), optimization always
starts by estimating the latent marker locations M̃ , body shape β,
poses Θ, and body positions Γ for a subset of the frames. The la-
tent marker locations and the body shape are assumed to be time
independent and can be estimated once for the entire sequence (or
set of sequences).

Notably, the transformation from latent to observed coordinate sys-
tems is continuously re-estimated during the optimization of marker
placement. The assignment of nearest neighbors, the local basis it-
self, and the coefficients relating a marker to that basis undergo con-
tinual adjustment to allow refinement of the relationship between
markers and the body surface.

The λ values in Eq. 9 are: λD = 0.75, λS = 100.0, λI = 0.25,
λβ = 1.0, λθ = 0.25, λu = 0.

The λ values were initialized to normalize each term by an estimate
of its expected value at the end of the optimization; in particular,
the distance-based λ values (λD , λS , λI ) have interpretations as
inverse variances with units of 1

cm2 . These λ values were then em-
pirically refined.

The velocity term is not used in this stage (λu = 0) because we are
optimizing over random disconnected frames.

To help avoid local optima, the optimization is run in six stages,
starting with strong regularization and then gradually decreasing
this. Specifically, the regularization weights {λθ, λβ , λI} are low-
ered from being multiplied by 40, then by 20, 10, 4, 2, and finally 1.
Note that these regularization terms are linear and quadratic in con-
trast to the data term, which is non-linear. Similar to graduated
non-convexity schemes, by increasing the regularization weights
we make the objective function more convex, potentially helping
the optimization avoid local optima during early stages of the pro-
cess. In practice we found this to work well.

Computational cost increases with the number of frames used to es-
timate the parameters since each frame requires its own pose θt. For
efficiency we perform this optimization using a randomly selected
subset of mocap time instants. We ran experiments with different
numbers of randomly chosen frames and saw little improvement
with more than 12 frames. Consequently we use 12 random frames
for all experiments here.

Pose. Motion capture now becomes the problem of estimating
the pose of the body, θt, and body position, γt, at each time instant
given the known body shape and latent markers. We initialize the
optimization at frame t with the solution at t − 1 if it is available
and then a short optimization is run for each time step.

For pose estimation, the λ values are now: λD = 0.75, λS = 0,
λI = 0, λβ = 0, λθ = 1.0, λu = 6.25. Note that we now em-
ploy the velocity smoothness term, λu. A weight of zero means



that this term is not used and the corresponding parameters are not
optimized. Specifically, we do not optimize the marker locations or
body shape. We do however use a pose prior, λθ = 1.0, to penalize
unlikely poses. Here we do not used the staged regularization be-
cause the optimization begins close to the minimum and converges
quickly.

Pose and Soft Tissue Motion. In the optimization above we
assume body shape and latent marker locations do not change.
To capture soft tissue motions we now allow the body shape to
vary across the sequence while keeping the marker transformation
fixed. We still denote β as a shape estimated in the first stage,
but now denote the time-varying deviations in shape from β as
B = {β1 . . . βn}, such that a person’s shape at time t is now β+βt.

To regularize the βt, we add one additional energy term to Eq. 9:

E∆(B) =
∑
t

||βt||2 (10)

and set λ∆ to 0.25, adding λ∆E∆(·) in Eq. 9. This term allows
body shape to change over time while regularizing it to not deviate
too much from the person’s “intrinsic shape”, β.

While our body shape training set does not contain examples of soft
tissue dynamics, it does capture many shape variations across the
population. These are exploited to capture soft tissue deformations
during motion. Someone inhaling, for example, might look like a
different person with a higher chest or a bigger stomach. When
someone jumps up and down, their chest changes in ways that re-
semble the chests of other people. It is interesting, and perhaps
surprising, that the shape variations between people can be used to
approximate the shape variation of an individual due to dynamics.
Presumably there are soft-tissue deformations that cannot be ex-
plained this way but, given sufficiently many training body shapes,
and sufficiently many principal components, we posit that a wide
range of such deformations are representable. We suspect, how-
ever, that training shapes specific to soft-tissue deformations could
be used to learn a more concise model. Note further that we do not
model dynamics of soft tissue, we only approximate what is present
in the mocap marker data.

Since standard marker sets are designed for estimating a skeleton,
the markers are mostly placed on rigid body structures to mini-
mize soft tissue motion. This is another reason why existing mocap
methods lack nuance. Consequently to capture soft tissue dynam-
ics, we want just the opposite; we must have markers on the soft
tissue. We consider this below.

Run Time. Shape and marker estimation requires about 7 min-
utes. Pose estimation without soft tissue estimation takes about 1
second per frame; pose estimation with soft tissue estimation re-
quires about 2 seconds per frame.

7 Marker Selection

Body shape estimation from motion capture depends on the number
and placement of markers; here we propose a method for construct-
ing a new marker set to improve body surface reconstruction. To
be practical a marker set must be simple, make sense to the techni-
cian applying it, be repeatable across subjects, and take into account
self occlusion, self contact, and the impact on subject movement.
Consequently we start with a standard marker set and propose ad-
ditional symmetrical marker locations for a total of 114 candidate
markers (Fig. 4).

We then evaluate these putative markers to determine how impor-
tant the different markers are for shape recovery. For this we use

Figure 4: Marker sets. The union of all markers illustrates the
114 possible markers we considered. Yellow markers correspond to
a standard 47-marker Vicon set. The 20 orange markers were found
to improve shape estimation the most. The union of yellow and or-
ange markers corresponds to our 67-marker set used for capturing
shape and soft-tissue motion. White markers were deemed redun-
dant and were not used.

a set of 165 meshes of 5 females of different shapes in a variety
of poses selected from the FAUST dataset [Bogo et al. 2014]. A
template mesh is aligned to each of the 3D scans resulting in a set
of registered meshes, Rz , z = 1 . . . 165, in which all vertices are
in correspondence across the 165 instances. We associate our 114
markers with vertices of the template and then estimate body shape
from different subsets of the markers. We evaluate the accuracy
of the result in terms of the Euclidean distance between the ver-
tices of the estimated and true mesh. Specifically we compute the
root mean squared error (RMSE) over all the vertices (including the
subset used for fitting) for all meshes.

More formally, given a maximum number of markers, c, we seek a
subset, T , of the mesh vertices, A, that enables the most accurate
estimation of body shape. This subset T is the one that minimizes
a cost EM (T ); that is

T ∗ = arg min
T⊆A,|T |=c

EM (T ). (11)

Notationally, we will now abbreviate body model parameters
{β, θ, γ} as P . We will also denote vertex k of registered mesh
z as Rzk. The best parameters P ∗({Rzj |j ∈ T}), given access only
to subset T of the vertices for registered mesh z, are defined as

P ∗({Rzj |j ∈ T}) = arg min
P

∑
i∈T

||Si(P )−Rzi ||2. (12)

The cost of choosing subset T takes into account the distance be-
tween all vertices i ∈ A across all the registered meshes z ∈ Z =
{1 . . . 165}

EM (T ) =
∑

i∈A,z∈Z

||Si(P ∗({Rzj |j ∈ T}))−Rzi ||2. (13)

Note that the RMSE is (EM (T )/(|A||Z|))1/2.

Evaluating all possible subsets of 114 markers is infeasible so we
take a greedy approach. If we currently have N markers, we re-
move one, evaluate the cost for the N − 1 possible sets, and select



Figure 5: Marker selection residuals. The plot shows the mesh
shape reconstruction error as a function of marker count.

the deleted marker that produces the lowest error. We remove this
marker and repeat.

Figure 4 shows all 114 putative markers. The standard 47-marker
set is in yellow. White and orange markers correspond to the set of
additional markers that we considered. Using the greedy method,
we found that the white markers were not as useful for estimat-
ing shape as the orange ones. Figure 5 shows a plot of the RMSE
for different numbers of markers. Note that here we start with the
47-marker set and subtract markers from it and add markers to it.
Surprisingly one can remove markers from the standard set and still
obtain reasonable shape estimates down to about 25 markers. We
decided to keep the original set and add the 20 additional (orange)
markers. The addition of markers to the 47 results in a noticeable
decrease in RMSE. Note that we could obtain similar error to our
set of 67 with fewer markers by dropping some of the original 47.
To enable comparison with CMU results, however, we decided to
preserve the 47 and add to this set.

8 Results

8.1 Quantitative Shape Analysis

We evaluate the first stage of optimization, which computes the
body shape and marker locations. To compare estimated body
shapes to real ones, we scanned 20 subjects using a high-resolution
3D body scanner (3dMD LLC, Atlanta, GA). Before scanning, all
subjects gave informed written consent. Additionally, 10 of the sub-
jects were professional models who signed modeling contracts that
allow us to release their full scan data.

We also used a Vicon mocap system (Vicon Motion Systems Ltd,
Oxford, UK) to capture subjects with 89 markers. The 89 mark-
ers were selected using the marker optimization analysis from the
full set of 114 evaluated in Sec. 7. We use at most 67 markers for
shape and pose estimation; unused markers prove valuable to evalu-
ate held-out marker error. In all cases we used the optimization with
soft-tissue deformation. We processed, and evaluate error using, a
total of 73 mocap sequences.

Our goal is to estimate a body shape that minimizes 3D body shape
reconstruction error. We measure this error in two different ways:
as held-out marker error and as mesh registration error. Held-out
marker error reveals how well we can predict marker locations that
were not used by the optimization: for example, if we use 47 of

the markers to estimate the body shape then we use the remaining
markers to estimate held-out error. As shown in Fig. 6 (right), the
mean distance for held-out markers drops to approximately 3.4cm
when we use 67 markers. Note that these errors include deviations
in placing markers on a subject, which can easily exceed a centime-
ter. Specifically, when we estimate shape from a subset of mark-
ers, we do not optimize the placement of the held-out markers. So
this error combines human placement error with errors in soft-tissue
motion of the held-out markers that are not predicted by the subset
used for fitting.

After about 25 markers the improvement is very gradual. This is
interesting because it suggests that small marker sets can give good
estimates of body shape. Note that this evaluation uses all 73 mo-
cap sequences and hence evaluates how well MoSh explains marker
motions due to changes in both shape and pose.

Example 3D scans of several subjects are shown in Fig. 7 (row 1).
For each subject we align a template mesh to the scan and this tem-
plate mesh has the same topology as the MoSh body model (Fig. 7
row two); this produces a registered mesh that we use for evalua-
tion. Note that the registered meshes faithfully represent the scans
and conform to the mesh topology of our model but do not have
holes. Registration error is a measure of how well we can explain a
subject’s registered mesh in terms of average vertex-to-vertex mesh
distance. Recovered body shapes using 67 markers are shown in
Fig. 7 row three. Here we pose the MoSh result in the same pose
as the scan. Given that MoSh results in a shape vector β, we ad-
just {θ, γ} for a body model to minimize model-to-registration dis-
tance. The heat map in the bottom row of Fig. 7 shows the distance
from the MoSh shape to the registered mesh, illustrating how well
MoSh approximates the shape from 67 markers.

This registration error is shown in Fig. 6 (left). Registration er-
ror behaves much like held-out marker error, except it is uniformly
smaller. Unlike the held-out experiment, here we only need to ex-
plain shape and not both pose and shape. Shape estimates are ob-
tained from 12 mocap frames and are well constrained.

While large marker sets like those used in [Park and Hodgins 2006]
certainly contain more information, we see in Fig. 6 (left) diminish-
ing returns with larger marker sets. The ideal number of markers is
likely related to the resolution of the mesh.

To give some insight into what these numbers mean, Fig. 8 shows
body shape for one subject reconstructed using different numbers
of markers. Here we selected markers based on our greedy evalu-
ation strategy. What is surprising is that with only 10 markers, we
get a shape that roughly captures the person’s size. Note that the
registration error decreases as we add more markers; the numerical
results show the registration error in m.

For the 10 models, scans, aligned meshes, mocap sequences, and
MoSh fits are provided for research purposes here:

http://ps.is.tuebingen.mpg.de/project/MoSh

This data allows others to estimate shape from the same sequences
and compare with both the ground truth shape and our results.

8.2 Archival Mocap (CMU)

While we do not have ground truth shape for the CMU dataset,
we can evaluate results qualitatively. A visual inspection of shape
recovery from CMU can be seen in Fig. 9, where video frames
are shown above the bodies and poses estimated from 47 standard
markers. To be clear, MoSh does not use this video frame; we show
it here only for a visual evaluation of rough shape. Since the CMU

http://ps.is.tuebingen.mpg.de/project/MoSh


Figure 6: Effects of marker number on reconstruction error. The mean and standard deviations of distance residuals indicate how the
marker number affects reconstruction. Left: Shape reconstruction error. This is computed as the mean absolute distance between the true
body shape (as represented by the alignment of the template to a scan) and the body shape estimated by MoSh reposed to match the registered
mesh. Right: Held-out marker error across all sequences. This measures errors in both shape and pose but is inflated by marker placement
error and marker movement. In both plots, 68.2% (±1σ) of the residuals are contained between the error bars.

dataset has no anthropometric data, a quantitative evaluation is not
possible.

8.3 Gender Estimation

For the above CMU results we used sequences for which the gen-
der of the subject could be determined using accompanying video
footage. Next we ask whether we can estimate gender from the
markers automatically (cf. [Livne et al. 2012]). We use a linear
support vector machine to predict gender from body model param-
eters. First we fit a gender-neutral body model to all subjects in
the CAESAR dataset to obtain linear shape coefficients. We then
train the SVM to predict known gender given the shape parameters.
We then evaluate gender classification on body shape parameters
estimated by MoSh from the CMU dataset with the gender-neutral
body model. For the 39 subjects with known gender we correctly
predicted it 89.7% of the time; this is comparable to [Livne et al.
2012], which is not surprising since both methods rely on essen-
tially the same kind of marker data.

8.4 Pose Estimation Results

Given our estimate of intrinsic shape, β, and the marker locations,
M̃ , we now optimize the pose across a mocap sequence. We com-
pute the pose for 39 subjects across 722 different mocap sequences
in the CMU dataset. Figure 10 shows some representative frames
from some representative sequences in the CMU dataset. Even with
47 markers we can capture some soft tissue deformation and the re-
sults shown here allow body shape deformation over time. The vi-
sual nuance of pose reconstruction is difficult to illustrate in a static
image but is apparent in the accompanying video. Note that this is
fully automatic.

The best way to evaluate accuracy of pose and shape together is in
terms of held out marker error. For this we used 20 subjects and 73
mocap sequences acquired with our extended marker set. We use
67 markers for estimation and 22 to compute held-out error. This
error is 3.4cm and corresponds to the rightmost point on the right
plot in Fig. 6 (right).

With a small marker set, noise in any one marker can have an im-
pact. In the shape estimation stage, the shape and marker place-
ment are estimated from many poses, so variation in any individual
marker should not unduly harm shape or marker placement estima-
tion. During pose estimation, velocity constancy helps reduce the
effect of single marker noise. Future work should address methods
to automatically detect and downweight missing markers or mark-
ers that have moved.

9 Soft Tissue Deformation Results

Our body model was learned to represent both shape and pose-
dependent deformations from registered meshes of static subjects.
Many other subtle body shape deformations were not explicitly
learned by our model, including static muscle contraction, breath-
ing, gravity, external forces, and dynamics. What we show is that
the space of body shapes learned from different people captures
variations in shape that can approximate soft tissue motions. Note
that we do not model the dynamics of soft tissue. We only fit the
effects of such motions that are apparent in the marker data.

Figure 11 shows examples from several sequences. We show the
estimated body shape with a single body shape, β, per subject (left
image in each pair) and the results allowing deviations, βt, from
this shape (right image in each pair). Note the markers on the chest
and belly. Red are the simulated markers predicted by our model
and green are the observed markers. With changing body shape,
we more accurately fit the markers undergoing soft-tissue deforma-
tion. This is not surprising, but what is important is that the shape
remains “natural” and continues to look like the person.

Numerically we see the mean observed marker error go down from
0.79cm to 0.62cm with dynamics. Again this is not surprising since
we are allowing the shape to deform to fit these markers. We also
tested held out marker error; these are markers that were not used to
estimate shape. Here too we see the mean error go from 3.41cm to
3.39cm. This is not a significant improvement, but rather a valida-
tion that fitting the soft-tissue motion does not hurt held-out marker
error. This confirms our subjective impression that the body shape
does not deform unnaturally and the non-rigid motions, away from



Figure 7: Shape reconstruction. First row: raw 3D scans from a high-resolution scanner. Second row: registered meshes obtained by
precisely aligning a template mesh, with the same topology as our model, to the scans. These registered meshes faithfully capture the body
shape and are used for our quantitative analysis. Third row: our model with shape, β, estimated from only 67 markers. Here we estimate
the pose, θ, of our model to match the registered meshes to facilitate comparison. Bottom row: Distance between second and third rows. The
heat map shows Euclidean distance from the registered mesh to the nearest point on the surface of the body estimated by MoSh; blue means
zero and red means ≥ 4 cm.

the tracked markers, reflect realistic body deformations. While, of
course, we cannot capture fine ripples with a sparse set of markers,
it is surprising how much realistic deformation MoSh can estimate.

See the accompanying video for better visualizations and more
results. In the video one sees the observed markers “swimming”
around relative to the estimated shape when we do not model dy-
namics. There we also compare 47 markers with our 67-marker set
and find that the extra markers placed on the soft tissue are impor-
tant.

9.1 Exaggerated Soft-Tissue Deformation

Our soft tissue deformations correspond to directions in the space of
human body shapes. We can vary the amount of deformation along
these directions to either attenuate or amplify the effect. Specif-
ically we magnify the 3D motion by multiplying βt by a user-
specified constant to exaggerate the soft tissue deformations.

This is difficult to show in print but the video shows examples of
the same sequence with different levels of exaggeration. We found
that we could magnify the deformations by a factor of 1.5 or 2 while
retaining something like natural motion. Pushing the exaggeration
by a factor of 4 sometimes produce interesting effects and, other
times, unnatural body shapes.

This tool could be useful to animators to produce reference material
since it highlights how soft tissue deforms. It could also be used to
create new effects that exaggerate human actions but in a way that
is based on physically realistic deformations.

9.2 Soft-Tissue Retargeting

An important use of skeletal mocap data is the retargeting of mo-
tion to a new character; the same can be done with MoSh. Consider
the stylized characters in Fig. 12 that were downloaded from the
Internet. For each character, we deform our template towards the



Figure 8: Shape from markers. We show the effect of the number of markers (5, 10, 25, 47, 67) on the registration error (in m) of the
estimated shape. Far right: reference image of the subject.

Figure 9: CMU bodies. Extracted shapes (bottom) and reference images (top) for several CMU subjects. Shape and pose is computed with
MoSh using 47 Vicon markers only.

character using regularized registration, initialized by hand-clicked
correspondences. To model shape deformations from this character
mesh, we simply recenter our PCA model of body shape by re-
placing our original mean shape, µ, with the character’s template
deformations. The soft tissue deformation coefficients, βt, are then
simply applied to this new mean shape. We also directly apply the
estimated translation, γt, and MoSh part rotations, θt, to the parts of
the new character along with the learned non-rigid pose-dependent
shape deformations. This produces plausible animations. Note that,
to get realistic soft-tissue transfer, we use human actors with body
shapes that resemble the stylized character; see Fig. 12. Of course,
these deformations can also be exaggerated.

10 Conclusion and Discussion

MoSh addresses a key criticism of existing motion capture meth-
ods. By estimating a changing body shape over time from sparse
markers, MoSh captures detailed non-rigid motions of the body that
produce lifelike animations. MoSh is completely compatible with
existing industry-standard mocap systems. It can be used alone or
in conjunction with traditional skeletal mocap since no informa-
tion is lost and MoSh can use exactly the same markers as current
systems. Our hope is that MoSh breathes new life into old mocap
datasets and provides an easily adopted tool that extends the value

of existing investments in marker-based mocap.

There are several current limitations that present interesting direc-
tions for future work. For example, we need to roughly know the
marker set and we also assume the markers are in correspondence.
We can correct for some mislabeled markers but we still assume a
largely labeled dataset. Establishing correspondence and cleaning
markers sets is a time consuming part of current mocap practices.
It would be interesting to leverage the body model to try to solve
these problems automatically. For example, we could also use our
simulated markers to detect when a marker is missing or has moved.
If a marker moves between sessions we could then update its loca-
tion on the fly. We could also estimate the noise in each marker
independently and take this into account during pose and shape es-
timation. The estimated body pose could also be used to create a
virtual marker sequence that could replace the original. This would
provide a principled way of fixing occlusions. Simulating a differ-
ent set might be useful for methods that extract skeletal data from
markers.

The quality of MoSh output is very dependent on the quality of the
body model that is used. If our model cannot represent a pose real-
istically, then the output of MoSh will have artifacts. We observed
this for a few poses, for example, both arms pointed forward, el-
bows straight and palms together. This suggests our pose training



Figure 10: CMU mocap. Example meshes extracted from the CMU mocap dataset and representative frames from the animation. All shapes
and poses are estimated automatically using only 47 markers. See accompanying video to see these and other results for CMU.

set should be augmented with new poses.

An interesting direction for future work would be to use other types
of body models. For example, it should be possible to replace our
model with one that uses linear blend skinning and corrective blend
shapes.

Our method for evaluating new marker sets could be used to con-
struct sets to capture specific types of non-rigid deformations such
as breathing. If we had 3D mesh sequences we could extend our
analysis to select marker sets directly relevant for capturing soft-
tissue motion. We did not evaluate which poses are most effective
for estimating body shape; we simply chose 12 at random. Jointly
optimizing the marker set and the poses could make a mocap sys-
tem a more effective “body scanner;” the body scanning protocol
would involve attaching the markers and having the subject assume
the prescribed poses.

Our soft-tissue motions are approximations based on sparse mark-
ers but result in dense deformations. Since it is easy to acquire the
data, it would be interesting to use these to train a more physical
model of how soft tissue moves. That is, possibly we could lever-
age MoSh to learn a more sophisticated body shape model with
dynamics. This could allow generalization of soft-tissue motions to
new body shapes and movements.

We plan to extend our body model and MoSh methods to include
the motion of feet, hands and faces. We think this is relatively

straightforward but likely requires a more sophisticated pose prior
model than the Gaussian one used here. It may be possible to extend
these ideas further for capturing clothing or to couple our marker-
based analysis with video or range data. Finally, we are also work-
ing on speeding up processing using a multi-resolution model to
enable the use of MoSh in virtual production.
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