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Abstract

The 3D shape of the human body is useful for applica-

tions in fitness, games and apparel. Accurate body scan-

ners, however, are expensive, limiting the availability of 3D

body models. We present a method for human shape recon-

struction from noisy monocular image and range data using

a single inexpensive commodity sensor. The approach com-

bines low-resolution image silhouettes with coarse range

data to estimate a parametric model of the body. Accu-

rate 3D shape estimates are obtained by combining mul-

tiple monocular views of a person moving in front of the

sensor. To cope with varying body pose, we use a SCAPE

body model which factors 3D body shape and pose vari-

ations. This enables the estimation of a single consistent

shape while allowing pose to vary. Additionally, we de-

scribe a novel method to minimize the distance between

the projected 3D body contour and the image silhouette

that uses analytic derivatives of the objective function. We

propose a simple method to estimate standard body mea-

surements from the recovered SCAPE model and show that

the accuracy of our method is competitive with commercial

body scanning systems costing orders of magnitude more.

1. Introduction

For many applications an accurate 3D model of the hu-

man body is needed. The standard approach involves scan-

ning the body using a commercial system such as a laser

range scanner or special-purpose structured-light system.

Several such body scanners exist, costing anywhere from

$35,000 to $500,000. The size and cost of such scanners

limit the applications for 3D body models. Many computer

vision solutions suffer the same problems and require cal-

ibrated multi-camera capture systems. Here we describe a

solution that produces accurate body scans using consumer

hardware that can work in a person’s living room (Fig. 1).

This opens the door to a wide range of new applications.

Recently there have been several approaches to capturing

3D body shape from a monocular image [15, 16, 19, 26], a

(a)

(b) (c)

Figure 1: Overview. (1a) Microsoft Kinect [1]. (1b) 3D

point cloud of a human in a cluttered home environment.

(1c) Recovered shape transformed into a new pose.

small number of synchronized camera images [5], or from

several unsynchronized cameras [17]. We restrict our at-

tention to the monocular case, where the common approach

is to segment the person from the background and to esti-

mate the 3D shape of the body such that the silhouette of

the body matches the image silhouette. The wide variation

in body shape, the articulated nature of the body, and self

occlusions in a single view, however, all limit the useful-

ness of image silhouettes alone. To cope with these issues

we combine image silhouettes with coarse monocular range

data captured with a single Microsoft Kinect sensor [1].

The resolution and accuracy of the sensor is relatively

poor and our key contribution is a method to accurately es-

timate human body pose and shape from a set of monocu-

lar low resolution images with aligned but noisy depth in-

formation. To be scanned, a person moves in front of a
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Figure 2: Overview. (2a) Four views of the body in different poses are captured from a single Kinect. (2b) 3D point cloud

and segmented 3D point cloud with ground plane for four frames (one shown). (2c) Recovered pose and shape (4 frames).

(2d) Recovered shape in new pose.

single sensor to capture a sequence of monocular images

and depth maps that show the body from multiple angles

(Fig. 2). As the person moves, their body shape changes

making rigid 3D alignment impossible. We solve for the

pose in each frame and for a single common shape across

all frames. To do so, we use the SCAPE model [4] which

is a parametric 3D model that factors the complex non-rigid

deformations induced by both pose and shape variation and

is learned from a database of several thousand laser scans.

We estimate model parameters in a generative frame-

work using an objective function that combines a silhou-

ette overlap term, the difference between the observed range

data and the depth predicted by our model, and an optional

pose prior that favors similarity of poses between frames.

The silhouette term uses a novel symmetric shape dissim-

ilarity function that we locally minimize using a standard

quasi-Newton method. Our silhouette formulation has sig-

nificant advantages over previous methods (such as ICP)

and enables accurate optimization of body shape and pose

in a very high-dimensional space.

In summary our contributions are: 1) A system for at

home body scanning; 2) The combination of multiple low-

resolution, noisy, monocular views (range and/or silhou-

ettes) to estimate a consistent 3D body shape with vary-

ing pose; 3) A new method for matching 3D models to sil-

houettes using an objective function that is correspondence-

free, bidirectional, and can be optimized with standard

methods requiring derivatives of the objective function; 4)

A simple method to predict 3D body measurements from

SCAPE model parameters using linear regression; 5) A

quantitative comparison with a commercial state-of-the-art

solution for scanning and measuring the body.

2. Related Work

The Microsoft Kinect provides one of the first inexpen-

sive and widely available range sensors. Existing commer-

cial and research systems solve the problem of rough body

pose estimation from this type of sensor data [12, 23] but, to

date, there are no methods for accurate body shape estima-

tion. To estimate body shape accurately, we must deal with

data that is monocular, low resolution, and noisy.

Anguelov et al. [4] describe a partial solution. They

show that, given a high resolution range image from a sin-

gle view, the SCAPE model can be fit to the observed data.

The observed data constrains the full 3D shape, enabling

them to hallucinate unseen parts of the body (shape com-

pletion). For our purposes, this is not sufficient since we

seek an accurate model of the full body shape. We must

therefore combine multiple views of the person and several

low-resolution scans to obtain an accurate representation.

If the person remained rigid, or we used multiple sen-

sors, then it would be straightforward to rigidly align mul-

tiple views to recover a composite 3D body. In our case,

people move relative to a single sensor and, even if they

try to maintain the same pose, there will be non-rigid varia-

tions in their shape. To cope with this we need to integrate

the consistent 3D body shape information across views and

poses. To do so we use the SCAPE model [4] which factors

body shape and pose information.

Balan and Black [6] use a similar idea to solve for body

shape under clothing. They capture dressed people in mul-

tiple poses with a multi-camera system and a green-screen

background. Like us, they assume that body shape is con-

sistent across pose variations and combine information from

multiple poses to estimate body shape. Our work is different

in that we use monocular data. Every time instant captures

the person in a different pose, so we never see the same pose

from multiple views.

There have been several recent methods that estimate

body shape from monocular images. For example, image

contours have been used in several graphics applications

[19, 26] where the metric accuracy of the body shape is

not important. The recovered shapes are used for animation

purposes to change the shape of people in images or videos.

To achieve metrically accurate results, more information is

required. Guan et al. [15] show that silhouettes alone are not

sufficient for this task and introduce two innovations. First

they provide a height- and weight-constrained subspace of



body shape variation to constrain the problem. Second, and

more importantly, they integrate a shape from shading cue

into the body shape optimization (similar to [9]). The shad-

ing cue gives information about the shape inside the body

contour and they show that adding this improves the recov-

ered shape accuracy.

Shading is a relatively weak cue and if range data is

available, it can provide more information about shape. In

early work on body shape estimation, Plänckers and Fua

[22] use depth information from a stereo camera to estimate

rough body shape in a frontal view. Grest et al. [14] fit pa-

rameters of a simplified body model to silhouettes and then

use these parameters to improve pose tracking from range

data.

3. Sensor and preprocessing

The Microsoft Kinect sensor that we use consists of an

IR camera, an RGB camera, and an IR projector that casts

a fixed speckle pattern. Conversion of the pattern, as seen

by the IR camera, to a depth map happens on the device.

It has a USB interface and images can be captured using

a library developed by the OpenKinect project [2]. This

library provides access to both the depth map and the raw

IR video, as well as to the RGB video and data from a built

in accelerometer. The video streams are VGA resolution

and both the RGB and IR (either raw or the depth map) can

be captured synchronized at 30 fps. 1

Intrinsic calibration. Intrinsic calibration of the RGB

camera is carried out with a checkerboard and standard cal-

ibration techniques [7]. To calibrate the IR camera we cover

the projector so that the calibration grid is not corrupted by

the projected pattern; otherwise calibration is identical to

that of the RGB camera. We correct for a known offset be-

tween the raw IR image and the depth map; see [21].

Stereo calibration. Stereo calibration between the depth

and RGB cameras can be achieved with standard stereo cal-

ibration methods [7]. We use this only for visualization to

map the color image onto the point cloud.

Depth calibration. The Kinect reports depth discretized

into 2047 levels, with a final value reserved to mark pixels

for which no depth can be calculated. These discrete lev-

els are not uniformly distributed, but are much denser close

to the device. We calibrate the depth by lining up a pla-

nar target parallel to the Kinect such that the depth values

are as uniform as possible across its surface; the distance is

then measured and the process repeated with depths ranging

from 0.5m to 3m in 0.1m increments. A curve of the form:

d(x) = 1
ax+b

is fit to this data, yielding the distance d(x) in

meters given the discrete depth level x. The resulting depth

1As of this writing, software tools for working with the Kinect are

evolving rapidly. In addition to the OpenKinect libraries we use, options

now include OpenNI and Microsoft’s Kinect SDK, both of which provide

additional functionality.

maps can be visualized either as a range image or as a point

cloud, see Fig. 2.

Ground plane. We obtain an estimate of the ground

plane by robustly fitting a plane to the bottom of the point

cloud, using the Kinect’s on board accelerometer to initial-

ize such that we locate the floor and not one of the walls.

Segmentation. We segment the body from the surround-

ing environment using background subtraction on the depth

map. Given a depth map Dbg taken without the subject

present and a depth map Df associated with a frame f , we

take the foreground to be Dbg −Df > ǫ, where ǫ is a few

mm. We then apply a morphological opening operation to

remove small isolated false positives.

4. Body model and fitting

In order to estimate a body shape that is invariant to

pose, we need a model that accurately represents non-rigid

shape deformations while factoring deformations caused by

changes in intrinsic shape (height, weight, body type, etc.)

from deformations caused by changes in pose. We use a

SCAPE [4] model with 15 body parts connected in a kine-

matic tree with 3 degrees of freedom between each part.

Non-rigid deformations due to pose variation are modeled

using linear predictors learned from examples. Body shape

deformation is modeled using principal component analy-

sis (PCA) on an aligned database of several thousand bod-

ies. We use the method described in [15] to constrain body

shape to a subspace that is roughly orthogonal to height

variation, allowing us to freely optimize within the subspace

of bodies with the subject’s reported height. Our model

has 48 pose parameters per frame and 60 shape parameters

(i.e. 252 parameters for 4 frames).

4.1. Pose initialization

We assume a gross initial pose estimate; a complete, end

to end system would be obtained by combining the method

we describe here with an existing coarse pose tracking al-

gorithm [12, 23]. The subject provides their height and the

initial body shape is taken to be the average shape for the

subject’s height and gender [15]. We initialize the body

model in the scene using the ground plane and the centroid

of the point cloud. Examples of initializations for two trials

can be seen in Fig. 4.

4.2. Depth objective

For a body model represented as a triangulated 3D mesh

with pose and shape parameters θ, we associate a trian-

gle tx(θ) with every pixel x in the overlap between the

model silhouette S(θ) and observed silhouette T by find-

ing the front most triangle that projects into x. Let U(θ) =
{(x1, tx1

(θ)), . . .} for all x in S(θ) ∩ T . For each pixel we

have the observed depth D̆x, and for the corresponding tri-

angle t we find the depth, Dx,t(θ), along a ray through the



pixel center to the plane of the triangle. Taking ρ to be a ro-

bust error function (here, Geman-McClure [13]), our depth

objective is

Ed(θ;U) =
1

|U |

∑

(x,t)∈U

ρ
(

Dx,t(θ) − D̆x

)

.

4.3. Silhouette objective

Methods for fitting 3D models to silhouettes usually ap-

proximate one of these two integrals

∫

~x∈S

min
~y∈T

ρ(||~x− ~y||) (1)

∫

~x∈∂S

min
~y∈∂T

ρ(||~x− ~y||). (2)

Here S and T are silhouettes, ∂S and ∂T are their bound-

aries, and ρ is a non-decreasing function (e.g. Geman-

McClure [13]). Frequently, approximations to (1) use a dis-

crete distance map [5, 24] and approximations to (2) use

a discrete distance map or a correspondence-based scheme

like ICP [10, 17]. The integrand of the latter is illustrated

in Fig. 3. Integrals like these are often used to define shape

distances [8], but are not widely used with parametric 3D

models under projection.

Accurately fitting a body to the image evidence benefits

from bi-directional shape distance functions [24] that com-

pute the distance from the model to the image contour and

vice versa. Minimizing the distance from the image to the

model ensures that all image measurements are explained

while minimizing the distance from the model to the im-

age ensures that visible body parts are entirely explained by

image evidence. Modeling the distance from the model to

the image is straightforward using the Euclidean distance

transform to approximate the distance function to the im-

age silhouette, as this does not change during optimization.

Modeling the distance from image to the model is more dif-

ficult because the distance function to the model’s silhouette

changes with the parameters being optimized; this makes an

explicit computation of the derivatives difficult.

Consequently, many methods that use distance maps ei-

ther use uni-directional distance, from model silhouette to

static observed silhouette [20, 24] or use a derivative-free

optimizer [5]. Problems with the uni-directional applica-

tion of (1) have been discussed and addressed [24]. Sim-

ilar problems arise with the use of (2) but are not often

mentioned. The use of derivative free methods for a high-

dimensional problem like ours is impractical, so we seek a

method admitting explicit computation of the derivative.

ICP methods are frequently used to minimize (2) for 2D

to 2D and 3D to 3D shape registration problems. They can

be used bidirectionally and optimization is straightforward

because the average point-to-shape distance is bounded by
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Figure 3: Silhouette distance. On the left, the silhouette

of the body model is colored by squared distance to the

grey observed silhouette. On the right, the implicit point

and line correspondence on an arc of the left leg’s silhouette

is shown by coloring the arc to match the colors of points

and lines on the observed silhouette. The squared distance

function along this arc as a function of the y-coordinate is

overlaid in grey to illustrate the effects of changes in cor-

respondence. Colored dashed lines are used to indicate the

boundary of the region where a segment’s point-line dis-

tance applies.

the average distance between corresponding points, which

is a smooth function of the vertices of both shapes. Under

projection we lose this bound because points on the silhou-

ette boundary no longer have a stable relationship to the 3D

geometry. Without this, the use of ICP is problematic, es-

pecially with complex articulated and non-rigid objects.

If we have a set of correspondences between 3D model

vertices on the silhouette boundary and points on the ob-

served silhouette, as we minimize the average distance of

the projected vertices to their corresponding 2D points,

some vertices will disappear from the silhouette boundary

and new vertices will appear. Since these newly visible ver-

tices will not influence the objective function until we re-

compute correspondences, the optimizer may move them

anywhere without penalty. When this happens, the param-

eters being optimized may jump away from low-error fixed

points to a solution from which ICP cannot recover.

We address this problem with a well-behaved new for-

mulation that uses implicit rather than explicit correspon-

dences. We compute the line integral in (2) directly,

replacing the explicit correspondences of ICP with the

continuously changing ones implied by the min func-

tion. Symmetrizing this yields an objective function that

is correspondence-free and bidirectional.

To compute this integral, we must know, for each point

on the integration silhouette, the distance to the nearest

point on the other (reference) silhouette. Each segment of

the integration silhouette is broken up into pieces that are



nearest to the same geometric primitive (vertex or line seg-

ment interior) in the reference silhouette. These breaks, il-

lustrated in Fig. 3, occur in two circumstances: 1) Along

lines emanating from a segment’s vertices and perpendic-

ular to the segment. These lines define the region where

perpendicular distance to the segment is defined (dashed

lines in Fig. 3). 2) On linear or quadratic arcs where two

points (quadratic), two segment interiors (linear), or a seg-

ment interior and a point (quadratic) are equidistant (arrows

of equal distance d in Fig. 3).

The derivative of this integral is easily computed in terms

of the derivative of the path of integration and the derivative

of the integrand [11]. There is, however, a small problem.

At the breaks the integrand is not differentiable with respect

to the reference silhouette, as the the distance functions to

the two equidistant primitives vary independently. Nor is

it differentiable with respect to the point of evaluation x,

as variation in one direction is dictated by one primitive’s

distance function and variation in another will be dictated

by the other’s. If these breaks occur only at points, as they

do for almost every pair of silhouettes, they do not matter.

There are finitely many such breaks, and the value of the

integrand at finitely many points, so long as it is bounded,

does not effect the value of an integral. But, if a segment on

the integration silhouette lies along one of the arcs where

two primitives are equidistant, the non-differentiability of

the integrand is inherited by the integral. Because this hap-

pens only when two constraints are met – the integration

path and arc of equidistance must be parallel and touching –

manifolds where our objective function is non-smooth have

dimension 2 less than the parameter space. There is noth-

ing about these constraints that would push the optimization

trajectory toward these manifolds. In practice we optimize

using a method intended for smooth functions and do not

encounter problems.

De la Gorce et al. [9] use a similar integration-based ap-

proach in the context of articulated hand tracking with a

generative model and formulate a differentiable objective

function. Their objective focuses on a generative model of

image appearance across the interior of the object. They

compute a 2D integral, which allows them differentiabil-

ity despite a 1D discontinuity along the occluding contour

of the body. We could similarly compute a differentiable

version of the area integral in (1), but it would require us

to compute argmin~y∈T ||~x− ~y|| inside a 2D region, which

amounts, in our setting, to computing the Voronoi diagram

for a set of line segments.

Our silhouette objective function is a symmetrized and

scaled version of (2), averaging distance over each silhou-

ette boundary to the other:

Euni(A,B) =
1

2 |∂A|

∫

~x∈∂A

min
~y∈∂B

ρ(||~x− ~y||) (3)

Es(S(θ), T ) = Euni(S(θ), T ) + Euni(T, S(θ)) (4)

where S(θ) is the silhouette of the model with parameters θ

and T is the image silhouette.

4.4. Optimization

To estimate θ, we alternately compute pixel-triangle cor-

respondences Uf (θi) for every frame f and new model pa-

rameters θi+1 by local minimization of Ei(θ;Uf (θi)) =
∑

f Ed(θ;Uf (θi)) + α
∑

f Es(Sf (θ), Tf ) + βEpose(θ),
where Epose(θ) is a simple pose prior. For local minimiza-

tion, we use a SR1 trust region method with exact solution

of the trust region subproblem.

5. Results

We scanned four subjects, having each stand in a T pose

four times: facing the camera, in profile, facing away from

the camera, and rotated 45◦, halfway between frontal and

profile. As demonstrated in Fig. 5, the choice of the four

poses is relatively arbitrary; we found that more than four

poses did not significantly improve the results and fewer

made them worse.

Fitting results for two subjects are shown in Fig. 4. It

is important to remember that these images are not multi-

camera synchronous captures. Because these images are not

captured simultaneously, and the subjects move from frame

to frame, the pose cannot be assumed constant between

frames. Consequently we let pose vary between frames and

use a simple pose prior that penalizes frame-to-frame varia-

tion in the orientation of each body part independently. This

helps keep the pose reasonable in cases like the third frame

(profile view) for the female subject, where the right leg is

not visible from the camera and is thus otherwise uncon-

strained. The foot pose of the female subject shown here is

problematic, with portions of the feet incorrectly segmented

as background and a large region of floor nearby incorrectly

segmented as foreground inducing incorrect ankle rotation.

Despite that, the fit to the remainder of the body is quite

good. With the coarse range and silhouette data used here,

any individual view may not be very accurate, but the robust

combination of body shape across views provides sufficient

constraints to recover shape well.

Figure 5 shows a subject scanned in several widely vary-

ing poses and fit without the pose constancy prior to high-

light the ability of the method to integrate shape across mul-

tiple disparate poses. The pose error in the second frame,

where the lower legs are pulled tightly up to the upper legs,

is due to a segmentation error; the lower legs were incor-

rectly segmented as background, so there was no image ev-

idence to drive the lower legs to remain visible.

Optimization takes approximately 65 minutes per body.

This may seem excessive but recall that the optimization

involves estimating 252 parameters.

From bodies to measurements. One of the reasons to fit

a 3D body model is to extract standard measurements of the



Figure 4: Results. Rows 1-2 male subject. Rows 3-4 female subject. Grey mesh is initialization. Green mesh is fitted result.

Righthand column is fitted result reposed into novel pose.

body (arm length, chest circumference, etc.) that are use-

ful in many applications. To calculate measurements from

shape parameters, we use a method that follows Allen et

al. [3] in spirit, but is the inverse of the problem they de-

scribe. Allen et al. learn a linear function from a set of mea-

surements to shape parameters, allowing them to synthesize

new people with specified measurements. We take the same

data–shape parameters and hand measurements for the sev-

eral thousand subjects of the CAESAR dataset–and perform

linear regression to learn a function from shape parameters

to measurements (with the exception of weight, where we

find it more accurate to regress from the shape parameters

to the cube root of weight).

Accuracy relative to laser scans. We evaluate the met-

ric accuracy of fitting body shape using just image contours

and using both image contours and depth. To do so we

captured reference scans of the subjects using a Vitus laser

scanner (Human Solutions GmbH, Germany) (Fig. 6a). To

test the accuracy of using the Kinect sensor versus a com-

mercial laser scanner, we first fit the SCAPE model to the

laser scans using a standard ICP method (Fig. 6b); we also

fit to Kinect data as described above (Fig. 6c). This al-

lows us to evaluate the accuracy of the fitting method and

sensor data independent of the smoothing effect introduced

by the SCAPE model which represents body shapes in a

low-dimensional linear subspace. The SCAPE fit to the

laser scan represents a “best case scenario” since the data

is high resolution and highly accurate. The difference be-

tween a model fit to laser data and Kinect data is illustrated

in Fig. 6d; the vertex to vertex distances are 0.53mm (mini-

mum), 22.23mm (maximum), 10.17 (mean), 9.91 (median).

Linear measurement accuracy. The second source of

ground truth we use to evaluate accuracy is hand measure-

ments, taken by a professional with both tailoring and an-

thropometric measurement experience. These we compare

to measurements calculated from the optimized shape pa-

rameters using the linear predictors described above.

Figure 7 compares the measurement accuracy from

SCAPE bodies fit to silhouettes alone, silhouettes and

range, and laser data. We find that range and silhouettes

together are more accurate than silhouettes alone. The

measurement accuracy using the Kinect-based fits is only



(a) (b)
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Figure 5: Widely varying poses. (5a) Initialization. (5b),

(5c) Result. (5d) Result reposed into novel pose.

(a) (b) (c) (d)

Figure 6: Comparison to laser scan. (6a) Laser scan. (6b)

SCAPE model fit to laser scan; pose and shape recovered.

(6c) Contour + depth fit to 4 views, reposed to match pose

of laser scan of same subject. (6d) Difference map showing

areas of similarity (blue) and difference (purple) between

6b and 6c (scale in mm).

slightly worse than with the high-resolution full-body laser

scans; median errors generally are within 1cm of the laser

scan measurements.

Additionally, we compare our accuracy with that of

a commercially available laser scan measurement system,

Human Solutions Anthroscan (Human Solutions GmbH,

Germany). This system works on the raw laser scan and,

consequently, factors out the effect of the SCAPE model.

It is interesting to note that our inexpensive system is com-

petitive and even outperforms the commercial system on all

the circumference measurements.

6. Conclusions

Three-dimensional body scanning has so far had a lim-

ited range of applications due to the expense, complexity,

(a) (b) (c)

Figure 8: With and without Ed. (8a) Fit with contour and

depth terms. (8b) Fit with only contour term. (8c) Same as

(8b) but seen from the camera, showing the quality of the

contour match, despite the pose being wildly wrong.

and space requirements of existing scanning systems. All

these systems are based on multiple calibrated cameras and

structured light sources (including lasers). Here we show

that we can achieve similar accuracy with a single inexpen-

sive commodity sensor. We have demonstrated the feasi-

bility of a body scanner that could work in a person’s liv-

ing room by combining information about body shape over

several noisy frames. The key idea is to use the shape con-

stancy of the body across frames to accurately estimate a

single shape and varying pose. The approach combines sil-

houettes and depth with a novel silhouette dissimilarity term

that overcomes problems of previous approaches. We show

that measurements of the body can be reliably predicted us-

ing a simple linear regression approach and compare favor-

ably to expensive commercial systems.

Future work should address the estimation of shape un-

der clothing. This has been demonstrated in a synchronized

multi-camera capture scenario with silhouettes [6] and with

laser scans [18]. We believe that it should work with the

Kinect sensor. We would also like to improve the opti-

mization speed to make it interactive. An interactive system

could provide the user with feedback about how to move to

improve their body model.
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Figure 7: Measurement accuracy. Error of measurements found by regression from fitted shape parameters using contour

cost only (blue, 4 subjects), using contour and depth costs (green, 4 subjects), and of SCAPE fit to laser scan (red, 3 subjects),
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