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Abstract. Three-dimensional (3D) shape models are powerful because
they enable the inference of object shape from incomplete, noisy, or am-
biguous 2D or 3D data. For example, realistic parameterized 3D human
body models have been used to infer the shape and pose of people from
images. To train such models, a corpus of 3D body scans is typically
brought into registration by aligning a common 3D human-shaped tem-
plate to each scan. This is an ill-posed problem that typically involves
solving an optimization problem with regularization terms that penalize
implausible deformations of the template. When aligning a corpus, how-
ever, we can do better than generic regularization. If we have a model of
how the template can deform then alignments can be regularized by this
model. Constructing a model of deformations, however, requires having a
corpus that is already registered. We address this chicken-and-egg prob-
lem by approaching modeling and registration together. By minimizing
a single objective function, we reliably obtain high quality registration
of noisy, incomplete, laser scans, while simultaneously learning a highly
realistic articulated body model. The model greatly improves robustness
to noise and missing data. Since the model explains a corpus of body
scans, it captures how body shape varies across people and poses.

1 Introduction

Strong 3D shape priors enable robust and accurate inference. Building strong
shape priors from data, however, is difficult, even with dense accurate measure-
ments from high-end 3D scanners. Methods for learning shape models depend on
identifying corresponding points across many 3D scans; that is, registered data.
Establishing such correspondences is particularly difficult for articulated shapes
such as people with highly varied shapes and poses. Across such scans one can
usually identify some key anatomical landmarks (e.g . the tip of the nose, the
corners of the eyes) but there are large regions of the body where it is difficult
to find useful correspondences, automatically or manually.

Registering a corpus of human body scans involves bringing them into align-
ment with a common human-shaped template. In this process, the template is
typically aligned (i.e. deformed) to each scan in isolation (Fig. 1). The tradi-
tional data likelihoods used to guide template-to-scan alignment measure dis-
tance between the two surfaces and distance between corresponding localizable
landmarks. This leaves the alignment severely under constrained away from land-
marks; motion of non-landmarked template vertices along the scan surface is not
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Fig. 1: Corpus registration and learning. A person-shaped template mesh
T ∗ is aligned to several laser scans, S1 and S2, of a single person in multiple
poses. The alignments T 1 and T 2 should accurately reflect the shape of each
scan and be in good point-to-point correspondence. From the registered training
data an articulated model, M , is learned that accurately expresses new poses.

measured, allowing these vertices to be positioned inconsistently (i.e. slide) across
scans. If available, image texture can provide an additional cue, especially when
motion between scans is small, but many scanners do not provide texture data,
and it may not be useful when registering scans of different people.

To provide plausible alignments of ambiguous meshes, existing alignment
algorithms tend to employ simple priors motivated by analogy to deformations of
physical objects – the template should deform elastically like rubber, or smoothly
like taffy. When registering scans with a common template mesh, such priors
yield geometric regularization terms that prevent the template from undergoing
wildly implausible deformations. Unfortunately, it is difficult to get adequate
constraints from these priors while retaining the flexibility to fit a wide range of
poses and shapes.

In this paper, we offer an alternative that regularizes alignments using an
articulated 3D model of human shape and pose. Unlike previous work that uses a
simple articulated model for initialization [1, 2], we use a richer, learned, model of
body shape for accurate registration. Our key novelty is to integrate the learning
of this model with the registration process.

This concurrent approach to scan alignment and model building, which we
term coregistration, offers a significant advantage over the traditional two-stage
approach in which one first aligns each training example with the template mesh,
and then builds a shape model from the aligned data. It provides a well-defined
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objective function for registering a corpus of scans. As explained in Sec. 4, a good
set of alignments must tightly fit the surface of each scan, while simultaneously
remaining consistent with an underlying articulated shape model. A surface fit-
ting term ensures that each alignment accurately captures the shape of each
scan, while a model term ensures that template registration remain consistent
across scans. The value of simultaneously aligning a corpus comes from: 1) the
ability to leverage good data to explain poor or missing data; 2) the consistency
of each individual’s shape across poses; 3) similarities in the deformations of
different bodies as they change pose; 4) the presence of ambiguities in pairwise
alignment that can be resolved by modeling a class of objects.

Consider an area like the armpit or crotch where data is often missing in
laser scans. If the person is seen in multiple poses, some of these may have
complete data in these regions. Coregistration allows the shape learned with
good data to constrain the alignment, while ignoring missing data. This is in
contrast to most traditional methods, which rely on generic regularization in
each scan to deal with this missing data. The few methods which describe model-
specific regularization do not propose or optimize an objective function which
encompasses both the quality of the model and that of the alignments.

To demonstrate the effectiveness of coregistration we apply it to multiple
collections of 3D body data and obtain accurate alignments and highly-realistic
articulated models for all subjects.

2 Prior Work

There is a huge literature on general mesh registration methods which is too
large to review here. Additionally many of these methods focus on registering
(i.e. aligning) only two meshes. Here we focus on the human body and the
simultaneous registration of many meshes with a common template; this corpus
registration problem is quite different and admits our solution that integrates
registration with model building. Furthermore, most methods for registering
many human bodies focus on aligning a template to bodies of different shapes
in a canonical pose [3–5]. Here we focus on registering many different bodies in
different poses, which is a much harder problem and has received less attention [1,
2]. It is worth noting that the registration of human bodies remains a challenging
task despite many published methods.

Building a model of the body typically has three stages: 1) initialization, 2)
registration, and 3) model building. Initialization is often done using manually
placed markers on the scans and the template mesh [1, 3] but there have been
several automated methods proposed [2, 4]. While the problem of reliably obtain-
ing rough initializations is important, we do not address it here. The registration
stage deforms the template to closely match the scan and must deal with missing
data and noise. Previous work relies on fairly generic spatial smoothness con-
straints. The third stage uses registered scans to learn a body model or perform
statistical analysis of body shape. Here we combine these last two stages and
show that this results in both better models and better alignments.
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2.1 Registration

3D scans of articulated, highly non-planar objects like hands and bodies are
typically aligned using nonrigid ICP [1, 3, 6] or variants using soft or sliding
correspondences [7, 8]. Faces, more often than not, are aligned using nonrigid ICP
as well [9, 10], but there is history of face registration in 2D parameterizations
using optical flow [11]. When a template is deformed to fit scan data, good point-
to-point registration is typically maintained using simple, physically-motivated
regularization terms on the deformation of the template.

The common regularization terms used during mesh registration fall into two
classes. Both act on the deformations of the template surface. These are ‘smooth-
ness’ terms, which penalize deformations changing rapidly over the surface of the
template, and ‘as rigid as possible’ terms, which penalize local estimates of the
deformation as they deviate from rigidity. As rigid as possible regularization
is used for near-isometric deformations, such as those that occur when aligning
scans of the same person [6, 8], and for interactively manipulating a mesh [12, 13]
while maintaining its perceived character. Maintaining rigidity is less desirable
when aligning different body shapes, so corpus registrations [1, 3, 14] usually rely
only on smoothness regularization. Smoothness provides only a second order con-
straint on mesh registration; adjacent triangles must deform similarly. Smooth
template deformations can still result in inconsistent registration across scans.
Neither ‘smoothness’ nor ‘as rigid as possible’ regularizations are as informative
as having an accurate class-specific shape model.

Anguelov et al . [15] automatically detect initial correspondences between
70 scans of one person in different poses and then perform registration using
standard regularization. They do not register multiple people in different poses
but Wuhrer et al . [2] do. They use automatically-detected landmarks to estimate
a rough body pose and then use this to deform a linear-blend-skinned template.
This provides a reasonable starting point for traditional, regularized, pairwise
mesh registration. They do not address model learning.

The above registration methods employ a static template for regularization.
However, Amberg [9] incorporates a deformable model into his method for reg-
istering a head template to face scans. The model is coupled to the aligned
template by a prior that measures smoothness of the deformation between the
registration and an optimized fit of the deformed model.

2.2 Human Shape Models

Once a series of 3D scans have been registered to a common template, standard
multivariate statistical methods can be used to model the distribution of shapes.
In the case of faces [9–11] and bodies scanned in a single pose [3], low-dimensional
models have been obtained by performing principal component analysis (PCA)
on the aligned vertices. For scans of multiple poses, articulated body models
have been proposed that represent both the shape and pose of each registered
scan [1, 15, 16]. We employ the SCAPE model here [15], although our method
readily generalizes to other models.
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Template T∗ Rigid R(θ) Blended B(θ) +Identity Dp +Non-Rigid Q(θ)

Fig. 2: SCAPE and BlendSCAPE. Deforming a template with BlendSCAPE;
see text.

When a model is learned from registered scan data, the quality of that model
is heavily dependent on the quality of registration. In some cases, registrations
have been improved by using them to learn a model, then using the model to
initialize a second round of registration. Blanz and Vetter [11] use such iteration
to improve correspondence in their optical flow-based registration method.

In contrast we define the first objective function that combines model build-
ing and registration. This approach brings a corpus of differently shaped bodies
in varying pose into registration while learning a model of human pose-dependent
shape variation. The result is quantitatively better registrations and a better ar-
ticulated body shape model.

3 SCAPE and BlendSCAPE

SCAPE [15] is a model of human body shape learned from registered scans. It
defines how to deform a human-shaped triangulated template mesh, T ∗, to take
on different poses and identities (body shapes). Let T ∗ be pre-segmented into
parts (color coded in Fig. 2) connected in a kinematic tree structure. The relative
rotations between neighboring parts in the tree are represented as Rodrigues
vectors. Let θ be a vector collecting all the relative rotations and R(θ) represent
the absolute rotations of the triangles in a part. In SCAPE, every triangle within
a part has the same rotation. LetD represent the deformations that transform T ∗

into the shape of a specific person. Finally, let Q(θ) define non-rigid deformations
of the triangles of T ∗ that capture shape change as a function of pose θ.

The template is deformed in three steps. First T ∗ is decomposed, or “un-
stitched,” into disconnected triangles, T ∗f . Each unstitched triangle is represented
by a pair of its edge vectors, “forgetting” its location but retaining its shape and
orientation. Second, each unstitched triangle is individually deformed according
to a sequence of pose- and shape-dependent 3× 3 linear deformations. Each un-
stitched triangle T ∗f is “posed” by a rotation Rf (θ) and deformed to represent a
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person’s body shape using a 3×3 matrix Df . It is also deformed by a 3×3 matrix
Qf (θ) that accounts for pose-dependent shape changes like muscle bulging and
skin wrinkling and corrects for deviations between the rigidly posed model and
the true shape. A transformed triangle is written

Tf = Rf (θ)DfQf (θ)T ∗f . (1)

These deformed triangles are recomposed, or “stitched,” to define the vertices of
a watertight mesh, M(θ,D,Q). Because triangles are transformed independently,
and will disagree at shared edges, we solve for the final vertex locations of the
mesh using least-squares (cf. [15, 17]).

SCAPE uses a partition of the template triangles into rigid parts to define
its model for R. Since each part is independently rotated, the final stitched body
surface can collapse, crease or fold near joints (see Fig. 2). Q can be trained to
correct these artifacts given artifact-free alignments, but if these artifacts are
sufficiently severe they can cause convergence problems during coregistration.

To address this we introduce a BlendSCAPE model, in which each triangle’s

rotation is a linear blend, Bf (θ)
def
=
∑
i wfiR

i, of the rotations, Ri, of the parts,
indexed by i, in the kinematic tree. These weights, wfi can be estimated along
with the other parameters of the model, but in this work we define them manually
by smoothing our SCAPE segmentation across part boundaries. The template
posed with BlendSCAPE is shown in Fig. 2. Clearly Bf (θ) itself does not provide
a realistic model of body pose deformation, but rather reduces the work that Q
must do to correct its errors. We have found that this improves model fitting to
scans and, consequently, registration (Fig. 3)

We assume a corpus of body scans containing multiple people, each in mul-
tiple poses, and that we know which scans correspond to which people. After
coregistration, each scan is modeled by a person-specific Dp that represents that
individual’s body shape, a scan specific pose, θs, and a pose-dependent Q(θs) for
each scan in which the function Q is the same all across people. As in previous
work [15], the deformation Q is a linear function of the Rodrigues vectors de-
scribing the relative orientations of adjacent parts: Q(θ) = Q0 +

∑
c θcQ

c where
θc is the cth element of the pose vector θ, and Q0, Qc contain the linear co-
efficients and are learned from the corpus of registered bodies. This model is
constrained so only the orientations of parts near a triangle contribute to its
deformation (i.e. Qc is kept sparse).

Previous SCAPE models [15, 18] have been built using two body scan corpora:
one containing people of different shapes in roughly a fixed pose and the other
containing one person in many poses. This is in contrast to Hasler et al . [1] who
train a model with correlation between shape and pose using scans of several
people in different poses. Here we learn the first SCAPE pose model, Q, trained
from multiple people in multiple poses. This improves our ability to model the
deformations of different people. In summary, we approximate a scan in the
corpus with a model M(θs, Dp, Q) that poses the model using B(θs), deforms it
to the identity of the person using Dp, and accounts for non-rigid shape changes
using Q, which are a function of pose, θs.
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Fig. 3: SCAPE vs BlendSCAPE. Rigid part rotations, R, can introduce sig-
nificant artifacts early in the fitting process, particularly when scan noise (e.g .
holes) coincides with part boundaries of the model. Coregistration has difficultly
eliminating these artifacts. In contrast, B from the BlendSCAPE model intro-
duces smoother, less significant artifacts, which coregistration rapidly corrects

4 Coregistration

Coregistration aligns a triangulated template mesh to a corpus of 3D scans while
simultaneously training a BlendSCAPE model. Below we define a data penalty
term that seeks to deform our template to match a scan and a novel coupling term
that constrains this deformation to be similar to a learned BlendSCAPE model.
Optimization involves solving for both the alignment and the model parameters.

To train our model, we must estimate a pose θs for each scan in the corpus,
a shape Dp for each person in our corpus, and a single linear pose-dependent
deformation model Q(θ). Once coregistration is complete, each scan should be
tightly fit by a deformed template mesh and should also closely match the corre-
sponding BlendSCAPE body, M(θs, Dp, Q). Note that before training we have
an “untrained” BlendSCAPE model in which D and Q are the identity. At the
start of coregistration, we roughly align the template by posing and scaling the
untrained BlendSCAPE model. For this step we use a set of landmarks associ-
ated with each scan (cf. [2]). Note, however, during coregistration the landmarks
are discarded, in contrast to [3].

Given a scan S, we define the following data term, ES , evaluating the fit of
the deformed template T to the surface of the scan S

ES(T ;S) =
1

aS

∫
xs∈S

ρ

(
min
xt∈T

||xs − xt||
)

(2)

where ρ is the Geman-McClure robust error function ρ(x) = x2

σ2+x2 [19], S is the
scan surface, aS is the scan’s surface area, and T is the surface of the aligned tem-
plate. We approximate the data error using a fixed set of locations xs, uniformly
sampled over the surface of the scan S. It is also possible to add a landmark
term into ES that would constrain known locations on the template to be close
to measured locations on the scan.
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To address the correspondence ambiguity inherent to ES , we add a coupling
term penalizing differences between the aligned template and the current model

EC(T, θ,D,Q) =
∑
f

af

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ Tf︸︷︷︸
unstitched

alignment triangle

− Bf (θ)DfQf (θ)T ∗f︸ ︷︷ ︸
unstitched

model triangle

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

F

(3)

where Tf represents the pair of edge vectors of the unstitched triangle f of T ,
Bf (θ)DfQf (θ)T ∗f is the corresponding unstitched triangle of M(θ,D,Q), and af
is the area of f on the template mesh, T ∗. The squared Frobenius norm is used
to measure the difference between corresponding unstitched triangles of T and
M(θ,D,Q). This is simply the sum of squared distances between corresponding
pairs of edge vectors.

Additionally, we use simple regularization terms to constrain the body shape
deformations, D, and the pose-dependent deformation model, Q. The first term
promotes spatial smoothness of the deformations, D, that map the template
mesh to an observed person (cf. [9]). The second term penalizes the magnitude
of the effect of the pose-dependent deformation model

ED(D) =
∑

adjacent faces i,j

aij
||Di −Dj ||2F

h2ij

EQ(Q) =
∑

faces f

af

(∣∣∣∣Q0
f − I

∣∣∣∣2
F

+
∑
c

∣∣∣∣Qcf ∣∣∣∣2F
)
.

(4)

Here hij is the distance between the centroids of template triangles i and j, af is

the area of triangle f , and aij =
ai+aj

3 is the area of the diamond-shaped region
defined by the centroids of triangles i and j and the endpoints of their shared
edge.

We also use a weakly informative pose prior, Eθ, which penalizes deviation
from the template pose. This regularizes the pose when the scan provides little
useful information.

If D and the function Q were known, a single scan could be reliably aligned
by optimizing ES(T ;S) +EC(T, θ;D,Q). Since D and Q are not known, coreg-
istration seeks to align all scans in parallel while simultaneously solving for D
and Q across scans. Summing over all scans and adding our model regularization
yields the following coregistration optimization problem

min
{Tk},{θk},{Dp},Q

∑
scans k

[ES(T k;Sk) + λC(EC(T k, θk, Dpk , Q) + λθEθ(θ
k))]

+λC [λD
∑
p

ED(Dp) + λQEQ(Q)].
(5)

Here p indexes people, k indexes scans, and pk identifies the person in each scan.
The λ’s control the relative influence of terms. λC is particularly important; it
controls how much the alignments can deviate from the model.
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5 Optimization

Our objective function is non-linear and the state space of solutions is very high-
dimensional. Fortunately its structure admits a tractable alternating optimiza-
tion scheme. Fixing the shapes Dp and the pose-dependent deformation model
Q(·) decouples the scans; we minimize (5) by solving one non-linear problem of
the form minTk,θk ES(T k;Sk)+λC(EC(T k, θk;Dpk , Q)+λθEθ(θ

k)) for each scan.
In essence, these subproblems are standard pairwise registration problems with
a strong regularization toward the posable model (i.e. minθ EC(·, θ;Dpk , Q)).
We solve these subproblems using MATLAB’s lsqnonlin (MathWorks, Natick
MA). Solving 8 such problems takes 3 minutes on an 8-core Opteron processor.

With all T k and Q(·) fixed, minimization with respect to each person’s Dp

is an independent linear least squares problem for each person p. Similarly, with
all T k and Dp fixed, minimization with respect to Qf (·) is an independent linear
least squares problem for each triangle f . These sparse least squares problems
can be solved efficiently, thus our method’s runtime largely depends on its rate
of convergence and our ability to compute registration subproblems in parallel.

We initialize coregistration by fitting an untrained BlendSCAPE model to
each scan using ES and landmark correspondences. This simple model uses a
trivial pose-dependent deformation model Qf (θ) = I ∀θ. Pose is allowed to
vary freely, but shape varies only by isotropically scaling the template. The
model fit to scan Sk initializes T k and θk. Each person’s shape Dp is initialized
by averaging the scale of the fits for their scans. Q is initialized to the identity.

It is useful to perform the optimization in stages. We begin with a low cou-
pling weight λC so that the crude initial model provides only a rough guide to
the registration. We then increase λC from 0.25 to between 1 and 5 over sev-
eral iterations, tightening the fit of the model to the scans. In each iteration,
we minimize w.r.t. T k and θ, then w.r.t. D and Q. As λC increases, the esti-
mated model has more influence on the alignments, which enables information
from good alignments to inform the registration of noisy scans. In addition, we
gradually decrease the scale parameter σ of the robust error function in ES , as
is frequently done with non-convex error functions; σ, starts at 1 meter and de-
creases to 5cm, 1cm, and 5mm. We observe that the result are not very sensitive
to the precise sequence of values of these parameters, or to whether intermediate
optimization steps are run to convergence.

6 Experiments

To demonstrate the accuracy and robustness of coregistration, we register sev-
eral body scan corpora. Each corpus consists of multiple individuals in a wide
range of poses. By visual appraisal, at least 96% of the scans in each corpus are
registered well, and we obtain high quality models from both corpora. Images of
the alignment to each scan, as well as an examination of our registration failures,
are available in [20]. No scans were excluded due to registration failure.
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Quantitative analysis. For quantitative evaluation we use a dataset of 124 scans
of two females in a wide range of standing and sitting poses. One of the two
women was scanned during two separate sessions two years apart with different
clothing and different hair styles. For the purpose of coregistration, the corpus
was treated as containing three individuals, each with distinct body shapes.
This dataset has extremely challenging poses (more varied than [1]), scans with
significant holes, and hand-placed landmarks that allow evaluation.

Initialization (see Sec. 5) used twelve hand-placed landmarks on each scan.
Coregistration was then run as described in Sec. 4 without any landmarks. In
eight iterations, good registrations were obtained for all but four scans. Hands
were sometimes slightly misaligned, as hand scan data was often quite noisy.
Figure 4 shows plots of two indicators of registration quality over the course
of the coregistration process. The “Distance from scan” captures how faithful
the alignment is to the scan surface. We use statistics of the distance between
uniformly sampled points on the scan surface and their nearest points on the
aligned template. Because an alignment can be close to a scan without having
anatomically meaningful correspondence, we use “Landmark prediction error”
to rate correspondence as well. Twenty-four hand-designated landmark vertices
(which were not used in registration) are used to predict the location of anatom-
ical landmarks on the scan. These predictions are compared to the locations of
these landmarks marked on each scan by a human annotator.

In the first iteration, the alignment surface snaps to within about 1mm of the
scan, but the alignment-scan gap widens afterward. The alignments are pulled
toward shapes representable by the model as the alignment-model coupling con-
stant λC increases between iterations 1 and 3. This results in alignments with
better correspondence, as seen by the decrease in landmark prediction error and
model to scan error. For evaluation, we withhold 30 scans of the same individu-
als. The model’s ability to fit these held out scans improves with each iteration
(see the green lines on Fig. 4).

Figure 5 shows some representative alignments and models. Note that many
of the scans contain significant amounts of noise and missing data; e.g. the chest
and back of the bent-over subject. Coregistration is able to use the data present
in a scan and to propagate information learned from other scans. We consider
the lower right example of a failure of our model. While the registration is good,
the model does not fully capture the deformation of the shoulders.

In order to compare coregistration with existing corpus registration methods,
we also registered our corpus of 124 scans using two algorithms representative of
the methods discussed in Sec. 2.1. In Algorithm I each scan is registered inde-
pendently using traditional “model-free” registration, and then all registrations
are used to learn a model using the same optimization performed in the learning
stage of coregistration. Model-free registration is performed using scan-to-mesh
distance ES , twelve landmark points, and a nonlinear smoothness regularization
from [9]. In Algorithm II, Algorithm I is iterated as in [11]. After each itera-
tion, the resulting model is fit to each scan and used to reinitialize a fresh run
of Algorithm I.
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Fig. 4: Convergence of quality indicators. Iteration 0 is initialization. Only
six iterations are shown as there was no visible change afterward

All methods yield a registration of the model template and a model fit to
each scan. Coregistration alignments give more accurate predictions of the 24
evaluation landmarks, with a mean landmark error of 2.0±2.1cm versus 3.0±2.8
for Algorithm I and 2.7 ± 2.7 for Algorithm II. Coregistration also yields
better models. Models trained using coregistration are better able to fit scans,
with a mean scan to model-fit distance of 0.25 ± 0.32cm on our 30 test scans.
Algorithms I and II have distances of 0.34± 0.43 and 0.29± 0.31 respectively.
Coregistration models give a mean landmark prediction error of 2.4± 2.8cm on
the 30 test scans, whereas the models generated by I and II have errors of
3.4± 6.3 and 2.9± 2.3.

Large scale registration. To evaluate our method on a larger corpus with a wider
range of body shapes, we register a publicly available set of scans provided by
Hasler et al . [1]. The dataset contains 337 scans of 34 different women in 35
poses. Hasler et al . provide alignments as well, which we use to to obtain 36
rough landmark vertices on each scan for initialization. We observe only six bad
registrations, each to a scan of a different woman. Five are in forward bend
poses, in which large portions of the face and chest are missing from the scan.
These failures do not appear to impact the model’s ability to accurately capture
the shapes, D, of the six women. Three successful examples are shown in Fig. 6.
Note the detail and reduction in artifacts in the coregistered meshes.

Improving existing registrations. Because coregistration is able to integrate infor-
mation from multiple scans of the same person and multiple people in different
poses, it can be used to improve extant registered meshes without access to the
original scans. We randomly selected 4 female subjects with 10 poses each from
the Hasler et al . dataset. By fitting our model to a small number of these regis-
trations, we estimate a correspondence between their template and ours. We use
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Fig. 5: Examples from coregistration. Sample scans, alignments, and model
fits from coregistration of 124 scans of three subjects across a range of poses

this correspondence to initialize T k for every body and then use coregistration
to learn a model and registration to their registered meshes. Registering regis-
tered meshes may seem odd, but it has two effects: 1) it denoises the existing
alignments and 2) it learns a model from them. Figure 7 shows examples of the
original registrations and our refinement.

7 Conclusion

In this paper we address the corpus registration problem by approaching model-
ing and alignment simultaneously. Our algorithm for ‘coregistration’ incorporates
a BlendSCAPE term into our registration objective function. This allows us to
optimize over both aligned template meshes and over a shape model, offering a
significant advantage over the traditional two-stage approach to model learning.
By providing a well-defined, model-based objective function that a collection
of registered meshes should minimize, coregistration allows shape information
learned from good data to correct for missing data. To demonstrate the effec-
tiveness of coregistration, we have registered several collections of 3D scans.
Coregistration results in high quality alignments and a realistic BlendSCAPE
model learned from multiple individuals.

Coregistration produces a high quality SCAPE model applicable only to the
registered individuals. A natural extension of this work would be to learn not just
the shape D of each individual, but also a low dimensional shape space capable
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Fig. 6: Coregistration of Hasler et al. data. Each example shows, from left
to right, one of the alignments from [1], our alignment to the same scan, and our
model fit to that scan. See [20] for the full set of results. For privacy reasons,
Hasler et al . replaced the heads of their alignments with generic heads and we
blur over the faces we recover

of approximating all body shapes. This has been done previously with SCAPE
[15, 18], but only using traditional registration techniques. Additionally, previous
attempts to learn a shape space via PCA focus on single scans of individuals.
Since our D estimates are learned across multiple scans of a person, they may
be more reliable than those learned from a single scan. Future work will also
address learning person-specific Q models.
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