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Figure 1: Prototypical body shapes. We generate random 3D body shapes, render them as images, and then crowdsource ratings of the
images using words that describe shape. We learn a model of how 3D shape and linguistic descriptions of shape are related. Shown are the
most likely body shapes, conditioned on the words below them. The ratings of “the crowd” suggest that we share an understanding of the 3D
meaning of these shape attributes.

Abstract

Realistic, metrically accurate, 3D human avatars are useful for
games, shopping, virtual reality, and health applications. Such
avatars are not in wide use because solutions for creating them from
high-end scanners, low-cost range cameras, and tailoring measure-
ments all have limitations. Here we propose a simple solution and
show that it is surprisingly accurate. We use crowdsourcing to gen-
erate attribute ratings of 3D body shapes corresponding to standard
linguistic descriptions of 3D shape. We then learn a linear func-
tion relating these ratings to 3D human shape parameters. Given
an image of a new body, we again turn to the crowd for ratings of
the body shape. The collection of linguistic ratings of a photograph
provides remarkably strong constraints on the metric 3D shape. We
call the process crowdshaping and show that our Body Talk system
produces shapes that are perceptually indistinguishable from bod-
ies created from high-resolution scans and that the metric accuracy
is sufficient for many tasks. This makes body “scanning” practical
without a scanner, opening up new applications including database
search, visualization, and extracting avatars from books.
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1 Introduction

He was of medium height, solidly built, wide in the
shoulders, thick in the neck, with a jovial heavy-jawed
red face . . .

Dashiell Hammett, The Maltese Falcon [1929]

Language can create a visual representation of a character in the
mind of the reader. That is, words conjure bodies. But do the same
words create the same representation in all of us? To what degree
do we have a shared understanding of language as it relates to 3D
shape? Can we communicate 3D shape to each other (and to a
computer) precisely with words alone? Does one need an expensive
or complex 3D scanner to obtain an accurate model of body shape?

We attempt to answer these questions in the context of human
shape. We hypothesize that 1) people have a shared understanding
of shape that is reflected in our use of language; 2) the collective
judgement of shape attributes by “the crowd” contains a robust sig-
nal about body shape; and 3) correlations in the ratings of shape at-
tributes, and their relationship to shape statistics, provide sufficient
constraints from which to estimate metrically accurate 3D shape.

Bodies and their shape are important for communication, recogni-
tion of identity, and conveying emotion. Shape further is an indica-
tor of gender, age, health, and fitness. Arguably, the human body is
the object with which we are most familiar and, not surprisingly, our
language for communicating body shape is rich. These properties
make human bodies a good test case for modeling the relationship
between language and shape.

We also focus on the body because the demand for realistic 3D
digital avatars is expanding with applications in games, virtual re-
ality, on-line shopping, and visual effects. Realistic 3D bodies can
be created from high-end scanners, low-cost range cameras, and
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tailoring measurements. High-end scanners (laser, structured light,
stereo) produce realistic avatars [Allen et al. 2003; Allen et al. 2006;
Anguelov et al. 2005; Hasler et al. 2009; Hirshberg et al. 2012;
Loper et al. 2015] but are costly and not widely available. There are
many methods that extract avatars from range cameras [Bogo et al.
2015; Li et al. 2013; Shapiro et al. 2014; Weiss et al. 2011], typi-
cally with lower quality, but even these sensors are not yet widely
available. Traditional tailoring measurements can be taken by any-
one with a tape measure, and have been used to create avatars [Allen
et al. 2003; Hasler et al. 2009; Seo and Magnenat-Thalmann 2003;
Seo et al. 2003], but the approach is error prone. Naive subjects
exhibit significant variance in measurements [Gorber et al. 2007;
Spencer et al. 2002] as do even experienced anthropometrists, us-
ing a well defined protocol [Gordon et al. 1989]. For the wide use of
realistic 3D avatars in shopping, games, fitness, etc., a simple, easy
to use, low-technology, and fun body creation solution is required.
In this paper we propose a novel method for estimating perceptu-
ally and metrically accurate 3D geometry of human bodies in an
intuitive and technologically inexpensive way.

Our Body Talk system requires only one photograph of a person and
15 people who rate the body shape in the photo using 30 words (or
fewer). In a training phase, we first crowdsource linguistic descrip-
tions of synthetic bodies and perform linear regression to model
the mapping from linguistic body descriptions to the geometric de-
scription of body shape. This model allows us to generate 3D digital
bodies from verbal descriptions and vice versa. We call this process
crowdshaping. While we can create a body with ratings from a sin-
gle person, we show that accuracy increases as more people rate
the body shape. A collective view of body shape emerges and the
varied linguistic descriptions constrain body shape with surprising
metric accuracy.

By relating the crowd-sourced attributes to body shapes we can
explore this collective linguistic understanding of shape by creat-
ing and visualizing bodies that correspond to attribute dimensions
(cf. [Blanz and Vetter 1999]). We do this by conditioning our model
on one or more shape attributes and generating the body shape most
consistent with these. Figure 1 shows several examples of body
shapes generated from our model in this way.

The geometric body space underlying Body Talk is provided by
the SMPL model [Loper et al. 2015]. SMPL is a vertex-based 3D
model that accurately represents a wide variety of body shapes and
poses in a low dimensional parameter space. SMPL uses principal
component analysis (PCA) to learn a pose-independent Euclidean
representation of body shape. We use the first eight principal com-
ponents (PCs) of the publicly available shape model.

In contrast to recent work that uses comparative or relative ratings
[Chaudhuri et al. 2013; Liu et al. 2015; Lun et al. 2015] we directly
crowdsource scalar ratings of body shapes on a 5-point scale. Using
only these attribute ratings, Body Talk produces 3D crowdshaped
models with an average Euclidean vertex-to-vertex error of about
9 mm, compared with ground truth meshes. We can include self-
reported (noisy) height and weight in the model, reducing the error
to about 8 mm. We also quantitatively evaluate the prediction of
anthropometric measurements and find that average absolute error
in linear measurements is 6.68 mm and 8.90 mm for circumferen-
tial measurements. These errors are low enough to be useful for
clothing sizing applications. We further show that the crowdshaped
bodies are perceptually accurate. In fact, we found that they are
perceptually indistinguishable from bodies constructed from high-
resolution scans. Thus, our model provides a good tradeoff between
simplicity and geometric accuracy without compromising the per-
ceptual fidelity of the bodies.

We show several novel applications of Body Talk including crowd-

sourcing body shapes of celebrities from photographs, creating
characters from books, and creating 3D bodies corresponding to
the classical somatotypes (Endomorph, Ectomorph, Mesomorph).
We also invert our model to compute semantic attributes for all the
bodies in the CAESAR dataset [Robinette et al. 2002], enabling
semantic queries for bodies with particular shapes.

In summary, we make several unique contributions relative to the
prior art: 1) We create bodies from generic adjectives and adjecti-
val phrases describing shape attributes, rather than words related to
metric properties. 2) We do this using scalar ratings rather than rel-
ative judgements. 3) We show that crowd-sourced linguistic ratings
provide a robust signal about body shape. 4) We show that, from
these ratings, we can recover perceptually and metrically accurate
body shapes (crowdshaping). 5) We demonstrate several novel ap-
plications that exploit crowd-sourced body shape. 6) We provide a
website (http://bodytalk.is.tue.mpg.de/) that lets users create avatars
with linguistic sliders, understand relationships between words and
body shape, and download meshes for research purposes.

2 Related work

Body models. Since the introduction of the CAESAR dataset
[Robinette et al. 2002], there has been significant work on learning
statistical models of 3D human body shape. Allen et al. [2003;
2004] were the first to learn a statistical body model and relate
it to measurements. They align a template to 250 people in the
CAESAR dataset and, without factoring out pose variation, per-
form PCA. They then learn a linear function relating anthropomet-
ric measurements to the PC coefficients. They show how to create
and edit bodies using “sliders” that vary the coefficients along the
principal component directions.

Seo and Magnet-Thalmann [2003] take a similar approach to relat-
ing shape to measurements using a non-linear mapping (radial basis
functions). More relevant to our problem, Seo et al. [2003] sug-
gest trying to relate attributes such as “hourglass” or “pear/apple”
to body shape but conclude that these are too abstract to measure.
Consequently, they focus instead on relating shape to numerical
quantities that they can estimate: hip-to-waist ratio (HWR), fat per-
centage (estimated from other measurements), and height.

Hasler et al. [2009] describe a method to rotate a body shape PCA
space to create a “semantic model basis.” They represent body
shape using triangle deformations [Sumner 2005]. In addition to
defining morphing vectors based on measurements like height and
weight they model more semantic directions like “muscularity.”
They argue that it is hard for humans to rate muscularity so they
present subjects with pairs of bodies and ask them to determine
which is more muscular. They convert these pairwise judgements
into a semantic direction that can be used to change body shape
[Jain et al. 2010]. Also Zhou et al. [2010] use “semantic” attributes
to edit body shape in images but their “semantic” attributes are met-
ric quantities like height, weight, and girths. We refer to these as
“metric” rather than semantic because they are directly measurable
on the mesh or in the world. We show how to recover body shape
without metric attributes using semantic attributes like “hourglass”
and “feminine”.

The above do not show how to create accurate bodies directly from
linguistic descriptions and do not use crowdsourcing. In contrast
to previous methods we show that it is not necessary to resort to
pairwise judgements and that the collective ratings of the crowd
carry significant metric information.

Face models. The ability for police sketch artists to create im-
ages from verbal descriptions is a proof of concept that humans
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have a shared visual vocabulary that can be used to transmit an im-
age to another person. Previous work in computer vision attempts
to relate verbal descriptions to images of faces (see [Klare et al.
2014] for a recent example) without modeling 3D shape.

Blanz and Vetter [1999] pioneered the relationship between at-
tributes and facial shape. They take a similar approach to ours
but work only with face shape and appearance. For each exem-
plar face, they define a vector representing how it differs from the
mean face shape and appearance. Then for different attributes like
“hooked nose,” “distinctiveness,” and gender, the experimenters as-
sign weights to the exemplars. From this they construct 1D vectors
representing variation along that attribute direction in shape and ap-
pearance space. They do not use crowd-sourced data and do not
model correlations in the attributes ratings. While they demonstrate
face shape editing using attributes, they do not show that metrically
accurate faces can be constructed from words alone.

Using the 3D model of Blanz and Vetter [1999], O’Toole et
al. [1999] ask subjects to rate faces for age and attractiveness on
a 5-point scale. They relate the ratings to 3D shape to create new
faces with varying age and attractiveness. Face images have also
been rated for semantic attributes such as trustworthiness and the
ratings have been used to morph 2D face images to make them more
or less trustworthy [Little et al. 2012].

Reid et al. [2013; 2014] describe “soft biometrics”, which relate
human verbal descriptions to physical or behavioral traits. Their
focus is on creating soft biometric signatures for recognition of in-
dividuals rather than metric reconstruction of shape. Like others,
they focus on comparative ratings.

Computer graphics and vision. There is recent work in com-
puter graphics on relating physical properties to perceptually salient
semantic attributes. The motivation is typically to provide more in-
tuitive controls for animating complex physical processes. For ex-
ample, Sigal et al. [2015] learn a mapping between semantic ratings
of simulations and cloth parameters, enabling animators to con-
trol cloth simulations in a more natural way. Similar approaches
have been taken in modeling fonts [O’Donovan et al. 2014], BRDFs
[Matusik et al. 2003], and crowd simulations [Guy et al. 2011].

Similar in spirit to our work, Yumer et al. [2015] relate semantic
attributes to 3D object shape. Like Hasler et al. [2009], they use
pairwise judgements; two objects are shown and the subjects rate
their similarity along different semantic axes. In contrast to our
body shapes, which are in correspondence, they deal with the chal-
lenging case of objects where correspondence cannot be easily es-
tablished. They do not, however, create shapes from crowd-sourced
data or evaluate metric accuracy.

Lun et al. [2015] use crowd-sourced ratings to learn a measure of
style similarity that attempts to match human judgements of style.
They deal with man-made objects and focus on the similarity of ob-
ject parts. They use pairwise comparisons of style and also convert
this into a distance function. Liu et al. [2015] address style compat-
ibility of 3D furniture using triplets of relative style compatibility
ratings. Using style-aware shape retrieval, the approach generates
discrete suggestions of scenes based on the learned compatibility of
object shapes. Xia et al. [2015], describe a system for style trans-
fer in the context of motion capture animation. They mocap peo-
ple doing specific actions in various styles, giving them pre-labeled
semantic attributes; hence they do not use crowd-sourced ratings.
Chaudhuri et al. [2013] describe a system for creating models from
parts with different semantic attributes. They use relative attribute
ratings to create a ranking of discrete sets of parts along seman-
tic axes. They do not address metric accuracy nor do they create
shapes from language alone or from verbal description of photos.

Talton et al. [2009] describe a method for “exploratory modeling”
and show examples with human bodies. They use the PCA shape
space of Allen et al. [2003] and define an interface that shows 124
exemplar bodies. Users create new bodies by interacting with this
space and the space itself is updated with the models people cre-
ate. Each body is created by one person; the shapes are not crowd-
sourced. This work does not address metric accuracy of the created
shapes and does not relate these shapes to words.

Extracting semantic attributes from images is widely studied in
computer vision but a thorough review is outside the scope of this
paper. For example, Parikh and Grauman [2011] learn how to rec-
ognize attributes from image data. Such work does not address our
synthesis problem and does not focus on 3D shape. Pons-Moll et
al. [2014] relate 3D articulated human pose to semantic attributes
but do not consider body shape.

Psychology. Sheldon [1940] proposes “a three-dimensional sys-
tem for the description of the human physique.” This system for
classifying body shapes, or somatotyping, is based on photographs
and measurements, resulting in three categories of bodies: Endo-
morph, Mesomorph, and Ectomorph [Carter and Heath 1990]. Note
that Sheldon does not use standard adjectival words for shape. In-
stead he creates specific, novel, shape categories and then classifies
bodies into these categories. The theory has been generally discred-
ited, not because of the shape categorization but because it tries to
relate these body shapes to “temperament.” We do something quite
different in that we explore how our shared vocabulary for shape
description is related to 3D shape.

The most related modern work in psychology is [Hill et al. 2015].
In that work, humans rated photographs of people using shape ad-
jectives. For each word, subjects rated photos with one of three
values: does not apply, applies somewhat, or applies perfectly to
the body. The authors then computed a space of word ratings using
correspondence analysis (CA) [Greenacre 2007]. CA was applied
to ratings of photos from 164 females, using only the ratings that
“applied perfectly.” This created a space of verbal descriptions of
bodies.

Separately, they took a PCA space of body shapes represented using
deformation gradients [Anguelov et al. 2005; Hirshberg et al. 2012;
Sumner 2005]. They noted a qualitative similarity between the first
5 axes of the shape and linguistic spaces (though the ordering of the
components was different) and they manually reordered the axes
so that they appeared to capture similar properties. They showed
that the reordered axes of the two spaces were highly correlated.
They synthesized 3D bodies by taking the coefficients from the lan-
guage space and using these exact values in the reordered shape
space. These recovered 3D body models were then described by
human subjects, following the same procedure applied to the pho-
tographs. The descriptions of the photographs and the synthesized
bodies were strongly correlated. The findings demonstrate that hu-
man language descriptions capture perceptually salient variations
in human body shape and that these descriptions can be transferred
to a body shape space to create 3D bodies.

We go beyond that work in several important ways. First, we use
crowdsourcing and show that it is reliable. Second, we have people
rate 3D bodies and directly learn a linear mapping from ratings to
shape parameters. We use the same shape adjectives here but have
people rate 3D shapes using a 5-point Likert scale. Third, we use
a different body model with shape represented as principal com-
ponents in Euclidean vertex space [Loper et al. 2015; SMP 2015].
This captures more body shape variation than the model used in
[Hill et al. 2015]. Fourth, we perform our analysis with both male
and female bodies. Fifth, we learn the correlations in the ratings, al-
lowing us to condition on particular ratings to infer the rest. This al-



Average Big Broad Shoulders Built
Curvy Feminine Fit Heavyset
Lean Long Legs Long Torso Long
Masculine Muscular Pear Shaped Petite
Proportioned Rectangular Round Apple Short Legs
Short Torso Short Skinny Small
Stocky Sturdy Tall Attractive
Sexy Hourglass

Table 1: Shape attributes. Linguistic descriptors used in rating
body shape. See text.

lows us to construct bodies with particular shape properties. Sixth,
we demonstrate the metric accuracy of bodies created from words
in multiple ways. Finally, we show how this method can be used
for a variety of novel applications.

3 Methods

Our goal is to learn a mapping between a linguistic body space and
a geometric body space.

The geometric body space is provided by the identity shape com-
ponent of SMPL [Loper et al. 2015]. The body is represented by a
3D template mesh with 6890 vertices. The template mesh is regis-
tered to high-resolution body scans in the CAESAR dataset [Robi-
nette et al. 2002], resulting in 1700 registred meshes for males and
2100 for females. Variations in pose are removed to create a shape
training dataset for PCA. A body shape is represented by a mean
mesh and a linear combination of deviations from the mean along
the principal component directions. In this study we use the first 8
principal shape components downloaded from [SMP 2015]. These
account for 96.56% of the identity-related body shape deformations
in the shape training dataset.

The linguistic space is represented in terms of 30 body descriptor
words (e.g. curvy, fit, heavyset, round-apple) as suggested in [Hill
et al. 2015]. They collected these words by asking human partici-
pants to tag photographs of female bodies using adjectives. Their
linguistic space represents a vector of the 27 most frequently used
adjectives. Table 1 shows the complete list, including three addi-
tional words in italics that were not used in [Hill et al. 2015]. Using
Amazon Mechanical Turk (MTurk) we collected ratings of bodies
with respect to these words. Each body was rated by at least 15
raters and there were a total of 256 raters in the study.

3.1 Data Collection

We used the identity component of SMPL to generate 128 synthetic
female and 128 synthetic male bodies in a neutral pose by randomly
sampling the first 8 principal shape directions. We tried several dif-
ferent ways of generating training bodies including, sampling uni-
formly along each PC direction, taking bodies at fixed distances
from the mean, and sampling bodies at random from the CAESAR
dataset. We found that sampling bodies from a Gaussian distribu-
tion, using the variances given by PCA, gave the best results.

The resulting 128 female and 128 male meshes represent synthetic
bodies that express the global features of expected body shape vari-
ation in the female and male population as captured by CAESAR.
We set the pose of the bodies to the mean pose of women and men
in the CAESAR dataset respectively. Figure 2 shows an example
stimulus image of a random female body. Each synthetic body
was rendered in Maya using the same camera model for all sub-
jects. The viewing direction and lighting were the same for all
stimuli; bodies were only shown with a frontal orientation. The

Figure 2: HIT. Example of the task shown to MTurk raters.

feet were always in the same vertical location, meaning that the
height of the person in the image conveyed relative information
about the person’s 3D height. One can see examples and obtain
the meshes for research purposes from https://ps.is.tuebingen.mpg.
de/research projects/bodies-from-words.

In order to establish a relationship between the geometric shape
space and the linguistic shape space, 256 MTurk users rated images
of the synthetic bodies using 30 descriptive words; 128 rated fe-
males and 128 rated males. While viewing a synthetic body on the
screen, participants rated the body shape according to each word on
a 5-point Likert scale: [(1) does not apply at all, (2) does not apply,
(3) average, (4) does apply, (5) completely applies]. While such
scalar ratings are common in psychology, recent work in graphics
has focused on relative ratings that compare attributes between pairs
or triples of images. The argument is that relative ratings are easier
for users to make. Such ratings are typically used in discrete clas-
sification tasks, where they work well. Our goal is to recover met-
ric, scalar, properties of body shape and converting relative ratings
into metric distances remains an open research problem [Kleindess-
ner and von Luxburg 2015]. While the scalar ratings of individual
raters are not reliable, we find that the combined scalar ratings of
“the crowd” are sufficient for metric reconstruction.

Each human intelligent task (HIT) consisted of a qualification test,
the rating of 15 synthetic bodies, and the rating of 2 extra bodies,
which were used as catch trials. An example HIT is illustrated in
Fig. 2. Each participant performed only one HIT. The catch tri-
als consisted of the presentation of an extremely “skinny” or “big”
body. Participants who did not rate the catch trials correctly were
excluded from the experiment (approx. 10% of the participants).
In order to ensure that participants understood the shape attribute
words, we performed a language qualification test, which required
participants to find the right synonyms for different adjectives. Only
those participants who passed the qualification test were allowed to
participate in the HIT. During the HIT, each rating task was dis-
played for at least 30 seconds, to make sure that the participants
were not assigning ratings randomly without carefully considering
the word descriptors. Since we aimed to test fluent English speakers
we restricted the participants to those located in the US.

Participants accepted voluntarily to join the study and they were
rewarded with 2.5 USD, corresponding roughly to a wage of 6.00
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USD per hour. After each session, we collected demographic data
(e.g. gender, age, nationality). The final collected dataset consists
of at least 15 ratings for every word descriptor for each of the 256
synthetic bodies. The dataset is split into the ratings for the 128
female and 128 male synthetic bodies.

3.2 Training

Consider a single gender. Let the shape of body i ∈ 1, . . . , 128 be a
vector yi = [β1, . . . , β8]T where the β’s are the linear coefficients
that represent body shape in the PCA space. Let the vector of rat-
ings for each rater k and body i be a vector [r1,i,k, . . . , rW,i,k]T ,
where W = 30 words. The individual ratings are noisy and we
found it useful to average the ratings for a body over the raters, giv-
ing 128 rating vectors that we denote xi = [r̄1,i, . . . , r̄W,i]

T . We
also tested median rating vectors with similar results.

Our observation matrix is then

X =

 1 xT
1

...
...

1 xT
128

 (1)

and the bodies are represented in Y = [y1, . . . ,y128]T with one
body per row. Assuming a linear relationship between ratings and
shape coefficients, we solve for the regression coefficients B in

Y = XB + ε (2)

using least squares.

This defines our words-to-shape model (w2s). Given a new rating
vector x, we multiply by B to obtain the body shape coefficients y,
which define the shape in the SMPL PCA space.

Conditioning on ratings. Different shape descriptors like
“skinny” and “petite” are correlated and it is important to model
this.

Let X ′ = X − µ be the zero mean rating matrix, where we have
subtracted the mean rating vector, µ. The covariance matrixX ′TX ′

represents correlations in the ratings of different words and defines
a multi-variate Gaussian distribution over the word ratings. This is
useful because we can condition on one or more shape attributes
(setting them to a constant) and generate the most likely ratings of
the other words.

Consider the images in Fig. 1. To generate the body exemplified by
a particular word, we compute the standard deviation of the ratings
of that word. We then set the rating value for the word to its mean
rating plus 4 times the standard deviation. We condition the Gaus-
sian on this value and estimate the expected value of the remaining
ratings, obtaining a synthetic rating vector. We then use the w2s
model to generate the body shape for the predicted ratings.

Additional cues. As we show below, the w2s model is able to
recover surprisingly accurate 3D body shapes. For some appli-
cations we might have more input data and may want higher ac-
curacy. Specifically, most people roughly know their height and
weight. We can include height, weight, or both in the rating vector
as xi = [hi, wi, r̄1,i, . . . , r̄W,i]

T , where hi and wi represent the
(possibly wrong) height and weight of subject i. We augment the
rating vectors in this way and train two additional models: “words
and height” (wh2s) and “words, height and weight” (whw2s).

Shape to words. While our focus is on mapping from words to
shape, it will be useful for several applications to do the reverse.
To do so, we simply invert the linear regression in Eq. 2 of the
w2s model to create a shape-to-words (s2w) model. Then given the
8 shape parameters of any body, we can predict a vector of word
ratings.

3.3 Synthetic test data

To evaluate metric accuracy, we use the training meshes in a leave-
one-out cross-validation approach. In addition to the ratings of each
body (described above), we need the equivalent of “self-reported”
height and weight to test the wh2s and whw2s models. To that
end, we extract the ground truth height from the test meshes by
taking the difference between the maximum and minimum vertex
position in the vertical axis of the mesh. We calculated the weight
of the training bodies by computing their volume and applying a
standard approximation of body density. In the linear regression
we use the cube root of weight as it is more linearly related to other
measurements.

It is well known that people have systematic bias in self-reporting
height and weight. For example, in one study, Spencer et al. [2002]
found that men and women overestimated height by 1.23 (2.57) cm
and 0.60 (2.68) cm, respectively (standard deviation in parenthe-
ses). Men and women also underestimated their weight by 1.85
(2.92) kg and 1.40 (2.45) kg, respectively, with heavier people un-
derestimating more. With self reported measurements, one can cor-
rect for the known biases. For our test data, we assume the bias
has been corrected and we add zero-mean Gaussian noise using the
standard deviations above to simulate human self reporting error.

3.4 CAESAR test data

In addition to the synthetic bodies we randomly selected 50 female
bodies from the CAESAR dataset [Robinette et al. 2002] and fit
them with SMPL, using 300 principal components (effectively per-
fect reconstruction). The bodies were also fit with 8 components
and the rendered images of these were rated as before but by dif-
ferent raters than those used in training the model. We use this
dataset to test generalization performance and to evaluate how well
our method captures realistic body shapes.

4 Model Evaluation

We evaluate our w2s model in terms of metric (geometric), mea-
surement (anthropometric), and perceptual accuracy.

4.1 Metric evaluation (Reconstruction Error)

Metric analysis is performed on the training data using leave-one-
out cross validation. For each gender, we train the w2s model 128
times, leaving out one body and its ratings each time. The ratings
for the held-out bodies are used to predict the w2s body shape vec-
tor, giving us 256 predicted body shape vectors, each representing
one of the synthetic bodies. Using SMPL we reconstruct the body
meshes using each predicted body shape vector. We then compare
the original synthetic bodies with the predicted bodies to quantify
the prediction accuracy of our words-to-shape (w2s) model.

We define prediction accuracy in terms of “reconstruction error”
(RE), which is the mean absolute distance between each vertex in
the original body mesh and the corresponding vertex in the mesh
that is reconstructed from the words. The RE is calculated for each
of the 128 female and 128 male bodies. The results give an RE
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of 10.595mm (SD = 8.233 mm) for female bodies and an RE of
11.011mm (SD=8.457) for male bodies.

We also evaluate linear models trained using various combinations
of words, height and weight. Recall that height and weight here
include realistic synthetic noise derived from [Spencer et al. 2002].
The results are summarized in Fig. 3. As a baseline we report ac-
curacy using the average body as well as using body shapes ran-
domly sampled from SMPL. We see that words alone can predict
shape well even though the ratings contain no explicit metric infor-
mation. Height and weight alone give reasonable metric accuracy,
but combining them with words is even better. The words provide
additional metric information.

The most accurate model is the whw2s model that uses words,
height and weight. This gives an RE of 8.06 mm (SD=5.93) for
female bodies and an RE of 9.05 mm (SD=6.42) for male bodies.
For comparison, a commercial scanning solution using 10 Kinect
frames has an error of 3.4 mm [Bogo et al. 2015] in a lab setting on
different subjects.

To test the significance, we conduct dependent t-tests of the mean
RE scores obtained from the cross validation procedure. The t-
test reveals a significant difference between the mean RE obtained
from the w2s model and the mean RE obtained from using words,
height and weight together, t = 6.686, p < 0.001. Further, there
is a significant difference between the RE obtained from the height
and weight model and the RE scores obtained from the model with
all three, t = 5.545, p < 0.001. The difference in RE between
the w2s model and using only height and weight is not significant,
t = 0.986, p = 0.325.

Given the similarity observed for RE in men and women (Fig. 3), in
the remainder of the paper we report results only for women, unless
otherwise stated.

Figure 4 shows examples of reconstructions of female body meshes
from word ratings (column 2, “words”). The errors in the pre-
diction are mostly at the extremities and can be attributed primar-
ily to errors in estimating the height of the body. The qualitative
shape is similar to the true body. Bodies predicted from just height
and weight fail to capture body shape while the model combining

Figure 4: Words to shape estimation. Selection of original and
reconstructed female body meshes. The first column shows the syn-
thetic body shape used to collect word ratings (rendered differently
here). The color scale indicates the reconstruction error (RE); Blue
= 0 mm and red> 30 mm. Column 2 shows the predicted mesh from
words only. The meshes in columns 3-5 are predicted from height
and weight without words. Column 6 shows the meshes predicted
by combining words, height, and weight.

words, height and eight (whw2s) results in predictions that are both
visually similar to the truth and metrically more accurate.

Generalization. To evaluate the sensitivity of the whw2s model
to a particular set of raters and bodies, we use the model trained
with the synthetic dataset and test on the CAESAR test data
(Sec. 3.4). The raters of the training and test data do not overlap.
We evaluate the prediction of the 8-dimensional fit to the CAESAR
data using the whw2s model. The RE for these bodies is 8.848mm,
which is consistent with our results on held out synthetic data. This
suggests that shape accuracy is not dependent on a particular set of
raters and that the model generalizes to new raters and real bodies.

The first 8 PCs of the SMPL PCA space capture 96.56% of the
variance in 2000 body shapes but are noticeably less detailed than
bodies reconstructed using the full PCA space. For a real task, we
want to reconstruct high-dimensional bodies accurately. To evalu-
ate this we use the estimated bodies from the generalization exper-
iment above and compute the RE to detailed realistic body shapes.
To that end we use the 50 bodies from the CAESAR dataset recon-
structed with 300 PCs, which represent 99.8% of the vertex vari-
ance.

The baseline RE between ground truth bodies represented with 8
and 300 PCs is 5.2mm. The RE between bodies reconstructed using
whw2s with 8 PCs and the 300 PC ground truth is 10.653mm As
expected, rating and estimating the 8-PCs shapes and comparing
this to real body shape produces slightly higher errors (1.805mm)
than the results above.
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Figure 5: How many ratings are needed? Reconstruction error
(RE) in millimeters versus the number of ratings per image.

full figured long neck high-breasted slender
narrow hands narrow feet ample bosom thin
desirably plump short arms big hands angular
skinny legs skinny arms small-breasted tall
pliantly slender full bodied slim waist willowy
rounded stomach high waist big head plump
cinched waist flat chested large breasts
narrow shoulders androgynous full hips

Table 2: Shape attributes extension. New set of 30 shape at-
tributes.

How many ratings? For all experiments in this paper we use 15
ratings per word and per body. Figure 5 shows the effect of the
number of ratings on accuracy; this uses all 30 words. Using only
one rater does not produce metrically accurate results. It is the “wis-
dom of the crowd” that enables the accuracy. It is well known that
averages of scalar ratings by the crowd can produce accurate met-
ric judgements despite the fact that any individual rating is far from
accurate [Treynor 1987]. We observe this behavior here. From the
plot it appears that even more ratings could further reduce the error.

Model optimization. The relationship between body shape pa-
rameters and ratings is not always linear. We tried several non-
linear regression methods and achieved slightly better results (lower
RE) using support vector regression with an RBF kernel. The lin-
ear model, however, is presented here because it is nearly as good
and is easy to interpret. We also used ridge regression for the w2s
and obtained a reduction in RE to 9.77 mm for female bodies and
10.378 mm for male bodies. These results suggest that with more
training data and more sophisticated models, lower errors may be
possible.

Of our original 30 attributes, 27 were selected based on the findings
of [Hill et al. 2015]. The meaning of some of the attributes in this
set are similar, for example heavy set and stocky, which suggests
that their ratings may be highly correlated. There are also many
other ways to describe body shape. For the experiments below we
collected 30 more words from literary texts and linguistic descrip-
tions of female bodies (Table 2). We obtained ratings for these, with
new raters, as before, resulting in a total of 60 words with 15 ratings
for every training body.

We then search for a smaller set of words that compactly describes
body shape. Using a greedy search algorithm and the w2s model
with ridge regression, we rank words based on how much they im-
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Figure 6: Words ranked by RE improvement. Using greedy
search, we ranked our extended set of shape attributes (60 words)
to understand which words are most relevant for female body shape
reconstruction. Here, words that start with a capital letter belong
to the original set of shape attributes.

prove the RE of held-out data. Figure 6 shows the best 30 words
and how the RE decreases as each new word is added. Notice that
already with the best 10 words the RE is 9.70 mm and with 25 it is
9.03 mm. Note that these errors are lower than using the original
set of 30 words. As we see below, it is easy to add new words as
needed for particular tasks.

4.2 Anthropomorphic Evaluation

For applications such as clothing sizing, measurements like lengths
and girths are important. To evaluate errors in such anthropometric
measurements, we extract the measurements from the reconstructed
meshes by calculating distances between joint locations (e.g. upper
arm length is calculated as the distance between the shoulder joint
and the elbow joint) or by calculating circumferences around spe-
cific body parts such as hips, waist, or neck. Using the synthetic
data and cross validation as above, we compute the average absolute
errors between the anthropomorphic measurements of the predicted
bodies and those of the true bodies.

Table 3 shows the mean absolute prediction error (MAE) for each
measurement. Scalar ratings with words alone constrain measure-
ments surprisingly well, reflecting the “wisdom of the crowd” phe-
nomenon [Treynor 1987]. For example, the raters have no absolute
cues about height, yet estimate it with an average error of 2.6 cm.
This is equivalent to one standard deviation of self reported error
in height [Spencer et al. 2002]. When noisy height and weight are
added, the errors decrease significantly.

We also list the allowable error (AE) as specified by the US Army
[Gordon et al. 1989]. AE is derived from the repeatability of
expert human measurements of the body. Note that in Tsoli et
al. [2014] it is clear that many sizing methods that use high-
resolution scans have trouble achieving errors below the AE. While
computed lengths and girths do not correspond directly to those in
the Army study, these are provided in the table as a rough rule of
thumb as to what would be a good error value for these measure-
ments. We selected measurements from that study that are most
similar to ours; there is not always a corresponding measure. In
Tsoli et al. [2014] they report an error of 10.02 mm on 40 anthro-
pometric measurements extracted from high-resolution CAESAR



w2s whw2s
Measurement MAE SD MAE SD AE
height 26.21 20.80 15.51 11.6 10
weight 4.21 3.19 1.87 1.42
lower leg length 7.94 6.16 6.28 4.89 6
upper leg length 7.01 5.33 5.64 4.34 6
upper arm length 5.09 4.19 4.07 3.51 6
lower arm length 5.49 4.12 4.45 3.78
neck length 2.86 2.18 2.52 1.92
torso length 11.40 7.95 8.32 6.35
shoulder width 6.67 4.75 4.21 3.41
average linear 9.43 7.26 6.69 5.21
calf girth 9.05 7.37 5.46 4.59
thigh girth 17.50 15.00 12.17 9.76 6
waist girth 23.83 18.30 16.16 14.4
chest girth 23.39 19.00 15.43 14.2 15
hip girth 25.34 20.2 14.44 11.9 12
neck girth 5.96 4.63 3.56 3.04
head girth 8.26 6.48 5.32 3.77
arm girth 9.77 7.63 5.48 4.49
wrist girth 4.11 3.19 2.12 1.74
average girth 14.14 11.34 8.90 7.57

Table 3: Anthropomorphic measurement errors (women).
Mean absolute errors (MAE) and standard deviations (SD) for sev-
eral body measurements: linear error in mm, weight in kg. A
model using only words is already quite accurate. Errors go down
when self-reported height and weight are used (here with simulated
noise). AE refers to the “allowable error” (see text).

scans. We do not have a full anthropometric measurement system,
making a direct comparison impossible, but the average error on
our subset of measurements is below 10 mm on synthetic bodies,
suggesting that our accuracy may be sufficient to be useful.

Without the use of a scanner, and with noisy height and weight,
whw2s estimates body shapes with errors close to the AE (and be-
low in 2 of the 7 cases). If noiseless height and weight is known,
then all errors drop below the AE with the exception of thigh girth.
New attributes could be added to the model that focus on the thighs,
likely reducing this error.

Figure 7 summarizes the results of the anthropometric analysis of
different models. The two bar plots show the average measurement
errors using the same models in figure 3.

4.3 Perceptual evaluation

In creating avatars, metric accuracy is not the only criterion for suc-
cess. In fact it is easy to construct bodies that have low metric
error but do not look like the subject of interest, and vice versa.
Our perceptual evaluation tests the ability of the word-to-shape
model to produce perceptually believable 3D digital bodies. In
[Hill et al. 2015] they show strong agreement between ratings of
photographs and ratings of 3D models constructed from the ratings
of photographs. Here we take a different approach and test whether
human subjects can tell the difference between bodies constructed
from ratings of photos and those constructed from a high-resolution
3D scan.

We use two different methods for generating personalized digital
bodies and compare the results in a similarity rating experiment.
For Method 1 we scanned 6 human subjects with different body
shapes using a high-resolution 3D scanner (3dMD, Atlanta, Geor-
gia). Subjects gave informed, written, consent. We aligned a SMPL
model to each of the scans by optimizing the pose and shape param-
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Figure 7: Anthropometric measurement errors. This figure sum-
marizes the measurement errors for linear measurements and cir-
cumferences (girths).

Method MSS SD
Method 1 (scan fit) 5.265 1.403
Method 2 (w2s) 5.537 1.295
Average 3.659 1.761

Table 4: Perceptual study. Mean similarity score (MSS) and stan-
dard deviation (SD) (7=extremely similar, 1= not similar at all) of
different meshes compared to a photo of a person. The body shape
created from words alone is visually as realistic as a body created
from a high-resolution 3D scan of the person. Both are significantly
more similar to the subject than an average body.

eters to fit the scan data. For consistency with our w2s method, we
optimized only the first 8 principal shape directions. We rendered
images of the bodies as in the training data.

We also took a color digital photograph of each of the subjects. In
Method 2 we had 30 MTurk users rate the photographs using the 30
words. We used w2s to estimate the body shape parameters from
the ratings and generated the 3D body meshes. These were rendered
as in Method 1. Figure 8 shows the data: the photograph and the
two rendered bodies.

In a perceptual similarity study, 30 MTurk users rated the similarity
between the photographs and 1) an average shape, 2) bodies from
scans (Method 1), and 3) bodies from words (Method 2). Similar-
ity was assessed using a 7-point Likert scale ranging from (1) not
similar at all to (7) extremely similar. Raters rated a total of 18
similarity comparisons (6 models times 3 comparisons).

For each condition we compute the mean similarity score (MSS).
The results are summarized in Table 4. Remarkably the w2s body
is judged as slightly more similar to the image than a body fit di-
rectly to the 3D scan of the person, though the difference is not
significant (paired t-test, t=1.297, p=0.251). Both methods produce
bodies significantly more similar to the photograph than the average
body (paired t-test).

This suggests that the visual shape ratings capture perceptually
salient information about body shape. This could be important, for
example, in clothing shopping where stylistic elements of clothing
may be related to the perceived shape of the body in addition to
measurements.

5 Applications

Visualizing word meaning. What does the word “pear-shaped”
or “hourglass” mean in terms of 3D body shape? Our model al-
lows us to visualize this, revealing what is “in our heads” when we



Figure 8: Perceptual Evaluation. Example stimuli. (left) Pho-
tographs. (middle) Images of 3D meshes generated by aligning
a SMPL model to high-resolution 3D body scans of the people in
the photos (reposed to our standard pose). (right) Images of 3D
body meshes predicted from the word ratings of the photographs
using w2s. Mechanical Turk users rated the similarity between the
photographs and the corresponding rendered meshes as well to an
average body.

use these words to describe bodies. Using the Gaussian model of
ratings, we condition on a particular value of a rating as described
in Sec. 3.2. Figures 1 and 9 show the most likely body shapes for
which the rating of word displayed is set to 4 standard deviations
from the mean of that rating. This exaggerates a particular dimen-
sion, revealing how raters interpret the word in terms of body shape.
What is interesting is that the shapes are immediately recognizable
as prototypical examples of the word.

Generation of bodies with attributes. We provide a web in-
terface to allow people to create bodies using the attributes; see
Fig. 10. Users can move attribute sliders to manipulate the body
shape in real time, similar to previous systems [Jain et al. 2010].
One can use the sliders in a correlated way or can decouple them
to manipulate particular attributes [Yumer et al. 2015; Jain et al.
2010]. Unconstrained attributes are estimated by conditioning the
Gaussian model. The user can switch between editing with princi-
pal components or with attributes. When editing with PCs the user

Endomorph
Soft body Underdeveloped muscles Round shaped

Mesomorph
Hard Muscular body Mature appearance

Ectomorph
Thin Flat chest Delicate build
Young Lightly muscled Stoop-shouldered
Tall

Miss Wonderly
Tall Pliantly slender High-breasted
Angular Narrow hands Narrow feet
Slender Long legs

Miles Archer
Solidly built Medium height Wide shoulders
Thick neck Jovial face Heavy jawed

Table 5: Additional words. We elicited additional ratings of the
training bodies for these words associated with somatotypes and
characters in the Maltese Falcon. Words in bold are already part
of the original set of 30 words, while italics indicates words in the
expansion set of 30 words (Table 2).

sees the linguistic description of the body as a “word cloud,” which
visually illustrates how body shape and language are related. The
website is available for research purposes at http://bodytalk.is.tue.
mpg.de/.

Somatotypes. Bodies are described in many ways. Consider
the classical breakdown into three body types: Mesomorph, Ec-
tomorph, and Endomorph [Sheldon 1940]. Our goal is to uncover
the 3D shapes that represent these body types. To do so, we took
words associated with these shapes from [Som 2016] and collected
new ratings of our 256 male and female training bodies. Note that
we only used words and phrases associated with shape (Table 5);
we did not use words associated with personality traits. Since the
ratings are on the same bodies as before, we can simply expand our
rating vectors to include the old and new words.

To construct the body shapes, we take the words associated with
each type, set them to fixed values of 4.5 (out of 5), condition on
these and estimate the remaining ratings. Figure 11 shows the re-
constructed bodies. We believe this is the first time that realistic
versions of these body shapes have been created from a statistical
model of body shape.

3D Paparazzi. Can we take a photo of any person (e.g. a
celebrity) and estimate a plausible 3D avatar? Here we take photos
of famous people and submit them to MTurk for 15 ratings each us-
ing our original set of 30 words. We then reconstruct the body shape
from the average ratings using the w2s model. Figure 12 shows a
few of such images and the reconstructed body shape. We manu-
ally posed the body to be similar to the photo. The resemblance to
the actual person is qualitatively reasonable when the person in the
photo wears tight or minimal clothing. Clothing may obscure body
shape making it harder for raters to judge (e.g. in Fig. 12 right, the
person appears too slim). Results could be made more accurate us-
ing height and weight information readily available on the Internet.

Database search. Given a database of body shapes, our method
is capable of indexing it with body descriptors and therefore, allow-
ing descriptive queries over the bodies. The bodies in the CAESAR

http://bodytalk.is.tue.mpg.de/
http://bodytalk.is.tue.mpg.de/


Figure 9: Visualizing words as shapes. Prototype bodies are created by conditioning on an individual word rating and estimating the
remaining ratings using correlations in the training ratings. We then generate the body shape using the rating vector with the w2s model (see
text). These prototype bodies reveal the meaning that the crowd associated with each word.

database are aligned using the SMPL model and, for each body,
we generate shape attributes corresponding to our words. Unlike
all the other experiments here, we do not do collect ratings for the
CAESAR bodies. Instead we automatically generate ratings using
the inverse shape-to-word (s2w) model, which takes body shape pa-
rameters and predicts the rating vector. We then store these words
and their rating values in the database with each body.

Now it is possible to query the database in the usual ways. Figure
13 presents sample queries over the CAESAR database. Searches
for a particular shape attribute return meshes of real bodies that all
share this property but exhibit significant variation in other dimen-
sions. Notice that the bodies associated with the search for “long
legs” all have a similar slender body shape. This semantic search
is quite different from searching on “inseam,” which would have



Figure 10: Web interface. Screenshot showing the creation of a
body (center) with attribute sliders (right) and principal component
sliders (upper left). As the body shape changes so does the word
cloud describing the body shape (lower left).

returned bodies with wide range of body mass indexes (BMI). In-
stead, here we see the concept that the raters had of long legs. The
“pear shaped” search returns bodies of varying height and BMI, that
all have significant lower body fat as compared to their upper body.
Finally, the search for “feminine” is maybe the most interesting.
This is not a search that could be performed with standard measure-
ments. It also reveals what our population of US MTurk users think
is the feminine ideal; the women vary significantly in height and ap-
parent ethnic background but have a slight build, small breasts, are
slim, and are relatively fit. They are almost adolescent in appear-
ance. This suggests that Body Talk, together with the CAESAR
dataset, provides and interesting and powerful tool for exploring
and understanding cultural ideals and attitudes towards body shape.

Bodies from books. We began the paper with a quote from the
Maltese Falcon describing the character of Miles Archer. Here we
take another, describing Miss Wonderly:

She was tall and pliantly slender, without angularity
anywhere. Her body was erect and high-breasted, her
legs long, her hands and feet narrow.

We took the words from these two quotes (Table 5) and had the
training set rated with them as above. Note that some of the words
describe face shape, which may be correlated with body shape.

We added the words to the w2s model, set the ratings for these
words to 3 standard deviations from the mean values, and estimated
the most likely rating vector conditioned on these. Note that we
rated “angular” but the text above reads “without angularity”. In
this case we set the rating to minus 3 standard deviations from the
mean. The estimated body shapes are shown in Fig. 14 and both
resemble the descriptions. Creating bodies from new words is as
simple as having the training set rated with these words. There are
several applications of this including creating avatars for games,
printing physical models of characters for the blind, or casting ac-
tors with the physical characteristics described in a book or script.

6 Conclusions & Discussion

It is a longstanding question as to whether humans veridically rep-
resent the 3D world in the brain. It is unlikely that the brain would
represent 3D shape either as a mesh as we do in the computer or

Figure 11: Somatotypes. (top) Typical artist depiction of the so-
matotypes: Ectomorph, Mesomorph, and Endomorph. (Source:
Wikipedia, Artist: Granito diaz, Creative Commons Attribution-
Share Alike 4.0 International license). (bottom) Crowdshaping re-
sults from Body Talk.

as a collection of words. Our results, however, suggest that hu-
mans do maintain a veridical 3D representation and can make the
transformation from images to this representation and from the rep-
resentation to a linguistic description. That is, our results suggest
that brains maintain a general internal model of 3D shape that can
mediate between perception and language. Moreover our results
support the idea that this representation is metric. The results fur-
ther suggest that the classical “wisdom of the crowd” extends to 3D
body shape analysis. While any individual is a poor judge of shape
(Fig. 5) the average of the crowd (here 15 raters) is accurate.

Limitations. Here we use a body shape space with 8 principal
components. While this captures significant variance in the human
population, some bodies may fall outside this space. Some words
may correspond to rare shapes that are only captured by principal
components with lower eigenvalues. Future work should explore
extending the method to use more components.

We have assumed a linear relationship between ratings and shape
coefficients. This is not true for all words. Some words like
“skinny” are more categorical. Almost all bodies are “not skinny”
and only bodies below some BMI are judged to be skinny. This
suggests that a non-linear model would be better, but we suspect
that more training data will be required to prevent overfitting.

Here we only show training bodies in a frontal view. This pre-
vents rating some aspects of shape. Future work should present
raters with side and/or rear views (either together or separately).
This might result in a richer model of body shape. Future work
should also evaluate whether pose influences shape perception
(cf. [Sekunova et al. 2013]).



Figure 12: Celebrity bodies. Crowdshaping a few famous bodies using photos from the Internet1. The rightmost example represents a
“failure” case, where clothing obscures shape and the resulting body appears too slim.

Our perceptual and metric evaluations focus on bodies with mini-
mal clothing so that body shape is readily visible. How well can
humans judge the shape of clothed people? The 3D paparazzi ex-
ample suggests shape judgements of clothed people may be erro-
neous. This is not surprising since clothing is often worn to change
the appearance of shape. Our tools could be used to study the ef-
fects of clothing on shape estimation, in particular how different
clothing styles influence viewers’ perceptions of shape.

Future work. Our results suggest the ability to predict anthro-
pometric measurements from words. Future work should include
a bigger study with more standard measurements. Since we have
found that words contain metric information, we will explore
whether it is possible to learn a direct mapping (possibly non-linear)
from ratings to measurements, without first reconstructing a 3D
body shape. For particular applications, like sizing jeans, additional
words may be needed to capture the shapes of body parts (thighs,
buttocks, etc.) that are relevant to fit.

Our web-based tool allows body creation using either word sliders
or PCA sliders. We hypothesize that word sliders are easier to use
for body creation by a single person since they are more perceptu-
ally intuitive than PCA sliders. We plan a user study to evaluate the
speed and accuracy of creating bodies using different input meth-
ods.

We restricted our MTurk raters to English speakers in the United
States. Clearly this study could be extended to other languages.
More interesting, however, would be to use our tools to understand
cross-cultural attitudes towards how bodies are perceived and how
language is used to describe them.

Similarly, the way a body is rated may be correlated with the rater’s
own body and gender. In future work we will explore this by col-
lecting body shapes of our raters. If true, collecting the body shape
of the rater could be used to effectively normalize their ratings and
increase prediction accuracy.

Our work here focuses exclusively on the body. There is previous
work with faces that suggests the same methods will work there as
well. More interesting, however, is the combination of faces and
bodies. It is known that there are significant correlations between
face and body shape but these are not well quantified. How much
of body shape can be predicted by verbal descriptions of faces and
vice versa is an open question.

1Credits: c©Marco Sagliocco / PR Photos; c©Ian MacNicol / Getty
Images; c©Christopher Polk / Getty Images; c©Stefanie Keenan / Getty Im-
ages; respectively.

Conclusions. We have described a linear model that produces
realistic 3D meshes of the human body from linguistic ratings of
photographs. The approach uses ratings obtained by crowd sourc-
ing and we show that the collection of such ratings, though not
metric themselves, constrains body shape significantly. Our key
observation is that these “crowdshaped” bodies are both perceptu-
ally and metrically accurate. Realistic 3D representations can be
created using as few as 10 words. We demonstrate accuracy on the
order necessary for many applications.

Body Talk can be used to generate a detailed 3D body shape if
no scanning technology is available or applicable. For instance,
the tool could allow users to generate a 3D representation of their
own body by asking other users to rate a photograph of them. Our
model allows us to visualize mental representations of human body
shape and how this shape relates to our use of language. This work
is useful for many fields (including psychology, medicine, cultural
studies, art, etc.) where the study of body shape is important and
simple tools are needed to create stimuli that probe human shape
perception.
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