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Abstract

Pictorial Structures (PS) define a probabilistic model of

2D articulated objects in images. Typical PS models as-

sume an object can be represented by a set of rigid parts

connected with pairwise constraints that define the prior

probability of part configurations. These models are widely

used to represent non-rigid articulated objects such as hu-

mans and animals despite the fact that such objects have

parts that deform non-rigidly. Here we define a new De-

formable Structures (DS) model that is a natural extension

of previous PS models and that captures the non-rigid shape

deformation of the parts. Each part in a DS model is repre-

sented by a low-dimensional shape deformation space and

pairwise potentials between parts capture how the shape

varies with pose and the shape of neighboring parts. A

key advantage of such a model is that it more accurately

models object boundaries. This enables image likelihood

models that are more discriminative than previous PS like-

lihoods. This likelihood is learned using training imagery

annotated using a DS “puppet.” We focus on a human DS

model learned from 2D projections of a realistic 3D human

body model and use it to infer human poses in images using

a form of non-parametric belief propagation.

1. Introduction

Pictorial Structures (PS) represent objects as a collection

of rigid parts that can be connected in a range of spatial rela-

tionships [14]. The variability in the spatial configuration of

the parts enables such models to represent variability within

an object class; for example, they can capture the articulated

structure of the human body in which parts are related to

each other by relative rotations. In current uses such mod-

els map conveniently to a probabilistic graphical model for-

mulation that combines image observations with pairwise

potential functions encoding spatial relationships. Conse-

quently, PS models are in wide use [3, 9, 13, 27, 29, 30].

A key limitation of PS models is that the parts them-

Figure 1. Deformable structures (right model in each pair) are sim-

ilar to PS models but capture 2D body shape deformations.

selves are treated as rigid templates (with some exceptions

to allow foreshortening, e.g. [32]). This limits the expres-

sive power of the model. While PS models are often called

deformable, the deformation is in terms of the relative spa-

tial arrangement of the parts. In general, however, the parts

of natural articulated objects vary in shape as a function of

their spatial arrangement. For example, rotation of a hu-

man upper arm causes changes in shoulder shape.

Here we define a new Deformable Structures (DS) model

as illustrated in Figure 1. The DS model has several key

differences from standard PS models. First, each part is

represented by a deformable contour. The shape of the con-

tour lies in a low-dimensional linear subspace learned using

Principal Component Analysis. The model is learned from a

realistic part-based 3D body model that is projected into the

image, producing 2D part contours. Second, the pairwise

potentials between parts capture how the part shapes vary.

The shape of a part depends on the shape of its neighbor-

ing parts and the relative angles between them. We model

these variations with simple linear Gaussian models; while

simple, this works well in practice.

Typical PS models [3] use a likelihood term learned from

labeled training data. This data does not specifically define

the bounding contour of the person and the shape variation

of the person is accounted for implicitly in the learned like-

lihood model. Our approach is quite different. By mak-

ing body shape explicit, we reduce the work required of the
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likelihood, enabling it to be more precise. We then train a

likelihood model using similar features to previous work but

with features defined relative to the location of the part con-

tour. Our approach is in line with recent work on building

structured, longer-range, descriptors of 2D human appear-

ance [2, 5, 30, 35, 36].

Our focus is on defining the DS model representing nat-

ural human body shapes. We systematically evaluate its

performance in 2D human pose estimation on the Buffy the

Vampire Slayer data set [13]. Finally, while we develop the

model in the context of 2D human body pose and shape, the

model itself is fully general and can be used to represent

other articulated objects with non-rigidly deforming parts.

2. Background and Related Work

Likelihoods versus priors. PS models are effective for

detecting people in images in a variety of poses [3, 9, 13,

27, 29, 30]. The rectangular parts in current methods how-

ever, do not capture the shape of real body parts. Rather,

PS models provide a prior probability distribution over the

articulated structure of the body. In a Bayesian framework,

this leaves the likelihood model to capture all the non-rigid

structure of the limbs. A good likelihood model has proven

critical for good PS performance.

Most accurate PS methods learn a likelihood function as

the normalized score of a classifier trained on rectangular

boxes containing body parts. The features used for the clas-

sifier can vary and include shape contexts [3], histograms of

orientated gradients (HOG) [8, 30], and raw image pixels

[28]. Boosted classifiers or SVMs are then typically used

for learning. Despite advances, current likelihoods are ac-

tually quite bad at body part detection [24].

Many recent methods address the problem of learning

and using richer likelihoods. Sapp et al. [29] use cues

based on shape similarity defined by regions and contours.

Another approach learns discriminative appearance models

that depend on pose by first clustering the space of possi-

ble poses [18, 20, 37]. To train such models, Johnson et al.

use Amazon Mechanical Turk to collect a large data set of

annotations [21]. Alternatively, 3D body models with vary-

ing shape and pose can be used to generate synthetic train-

ing images [25]. Wang et al. [38] argue that the anatomi-

cal concept of a “part” is a limiting construct of part based

models. Instead, they propose a hierarchical representation

based on Poselets [5] where parts can include more than

one anatomical limb. Another approach defines part type

as an indicator of semantic and geometric attributes (e.g.

a “stretched” or “fore-shortened” arm) enabling the shar-

ing of example parts of similar shape across different object

poses [35]. More complex likelihoods, however, come with

a computational cost. To deal with this, Sapp et al. [30]

use a cascade approach to sequentially prune the state space

while using increasingly complex models.

Our work is similar in spirit to the above but takes a dif-

ferent approach. We use a body shape model to capture the

predictable variability in body shape. The image likelihood

term then is required to do less; it can focus on modeling

how the body shape model relates to image measurements

rather than modeling body shape itself.

The potential of potentials. The PS model is a tree-

structured graphical model with parts represented by nodes

in the graph and the spatial relationships between parts

represented by potential functions [12, 14]. These poten-

tial functions typically define a probability distribution over

part-joint locations (e.g. like a spring) and the relative an-

gles between parts. Felzenszwalb and Huttenlocher [12]

also define a scale factor for each part to account for fore-

shortening and a Gaussian potential over the difference of

scale between neighboring parts. A Gaussian formulation

of the potentials admits efficient inference [11]. We go be-

yond scaling the parts and allow them to have a range of de-

formations learned from training examples. Like previous

methods the potentials are Gaussian but are defined jointly

over pose and shape parameters. The distribution over the

shape, location, and pose of a part is conditioned on the

shape, pose, and location of its neighbors.

Other 2D models. Active Shape Models [7] represent

shape with eigenvectors of the covariance matrix of the con-

tour points in a training set of aligned shapes. Our model of

parts is similar but we go further to define how part shapes

change with articulation.

Several methods go beyond PS and tie pose estimation

to segmentation, making a model of 2D body shape im-

portant. ObjCut is a generative deformable object-specific

MRF model that combines elements of PS models with spa-

tial MRFs [22]. PoseCut [6] optimizes 3D body pose to best

segment an image but relies on a crude 2D shape model.

Predicting body shape from 2D poses enables Wang and

Koller [36] to improve pose estimation.

The DS model is similar to the Contour Person (CP) [15]

which is also a 2D model of body shape learned from 3D

models of people in different poses. CP, however, is quite

different in that it is a “global” model. While CP “factors”

camera view, shape, and pose, it is not factored in the sense

of a PS model. DS and PS provide a Bayesian factorization

of the posterior probability, admitting tree-based inference

algorithms. In DS, the local part-based shape representa-

tion allows independent rendering of body parts contours,

supporting local evaluation of part-based likelihoods.

3. Model definition

The basic PS model. Following [12], let Θ denote the

parameters of the model, I the image data, and L a configu-

ration of the object, namely the location and orientation for

each object’s part. The posterior distribution characterizing

the probability of the object configuration given the model
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and the image can be expressed following Bayes’ rule as

p(L|I,Θ) ∝ p(I|L,Θ)p(L|Θ) (1)

where p(I|L,Θ) is the image likelihood given the model

configuration and its parameters, and p(L|Θ) is the prior

probability of the configuration of the model, given the

model parameters. For pictorial structures the likelihood

term is approximated as the product of the likelihoods of

the individual parts. This assumes conditionally indepen-

dence of part likelihoods, which is not true when parts can

overlap but simplifies the inference problem. With this fac-

tored likelihood we rewrite (1) as

p(L|I,Θ) =
1

Z

∏

i=1..M

φi(li)
∏

(i,j)∈E

ψij(li, lj |Θij) (2)

whereM is the number of parts,E is the set of pairs of con-

nected parts, Z is the partition function, li is the configura-

tion of part i, φi(li) are the unary potentials that include the

likelihood of part i and any other part-specific prior infor-

mation, and ψij(li, lj |Θij) are the pairwise potentials with

parameters Θij .

The potentials, ψij(li, lj |Θij), take the form of unnor-

malized Gaussian distributions over the difference between

part joint locations; this is analogous to having “springs”

connecting parts [14]. The basic potentials also define a

probability distribution over the angle between parts.

Training data. The DS model keeps the PS representa-

tion of pose and adds parameters that provide a more real-

istic generative model for 2D body shape. The DS model is

learned from training contours derived from SCAPE [4], a

parametric 3D model of articulated human shape. Using an

approach similar to [15] we generate random SCAPE poses

from random cameras within a range of poses and viewing

directions and project these into the image plane to create

2D training contours. We generate separate training sam-

ples for males and females using a single body shape for

each; each DS model is learned from 3000 mirrored sam-

ples. Figure 2 shows example poses in the training set for

the female body in the frontal view; note the variability of

pose and orientation of the body relative to the camera.

Each part is rendered as a separate 2D closed contour

and discretized into a fixed number of contour points plus

two additional “joint” locations at the proximal and distal

ends of the part. The two “joints” define a local coordinate

system for the part and the line through them divides the

part into two sides. Each side of the part is sampled to a fix

number of points, evenly spaced according to the arclength.

Below we experiment with models having different num-

bers of body parts: 10 parts, consisting of the head, torso,

upper and lower limbs, where the hands and feet are in-

cluded in the lower limbs; and 14 parts with hands and feet

treated as independent parts. We use the 10-part model dur-

ing inference for a more direct comparison to traditional

Figure 2. Examples of training poses. Note the variability in pose

as well as in camera location. The red dots correspond to joint

locations or other control points (zoom for detail).

PS models. Additionally we can learn separate DS mod-

els from different viewpoints (e.g. from the side); we do not

pursue this here.

Part deformations. The shape of each part is learned in-

dependently and then these shapes are coupled in the graph-

ical model with pairwise potentials. The training examples

for each part are aligned to a common coordinate system

and we vectorize the set of contour points and joint points to

form training vectors. The variability in part shape is mod-

eled using Principal Component Analysis (PCA). Specifi-

cally, we learn a low-dimensional linear model
[

si

pi

]

= Bizi + mi (3)

where si is a vector of contour points and pi is a vector

of joint points. The vector mi represents the mean contour

(and joints) of part i. Bi is a matrix containing the eigen-

vectors of the training data corresponding to the dominant

eigenvalues. Finally, zi is a vector of linear shape coeffi-

cients that are used to represent different part shapes.

Figure 3 shows the mean contour and joint points for

the head, upper leg and torso, together with contours and

joint points at 2 standard deviations from the mean, for the

first three PCA basis components. Most of the joint points

correspond to the centers of rotation for the parts. The ex-

tremities (head, hands and feet) have one distal point that is

not an anatomical center of rotation. The torso has 6 joint

points: shoulders, hips, neck and belly button. While not

an anatomical joint, the belly button is used to compute the

part orientation and length as described below. The first

component of the PCA representation typically corresponds

approximately to foreshortening along the major axis. For

the lower arms and legs (10-part model) the first component

also accounts for some rotation of the hand or foot.

The basic deformable structures model follows the PS

formulation and has the same basic parts (Figure 3). How-

ever we extend the state space for each part to be

li = (ci, sin(θi), cos(θi), zi) (4)

where ci represents the location of the part center and θi

is its orientation. Unique to the DS model are the shape

parameters, zi, which define the part shape and the location

of the part joints.
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Figure 3. DS part deformations. (left) Deformations for three ex-

ample parts. Black is the mean contour. Red and blue are ±2

standard deviations from the mean along the first 3 principal com-

ponent directions. Stars mark the joint locations which deform

with the contour. (right) Mean part shapes for the female and male

body (14-part model). The dots represent joint points (see text).

Pairwise potentials. The DS pairwise potentials relate

the shape coefficients of a part to the shapes and relative

orientations of neighboring parts. While these relationships

could be quite complex, we find that a reasonable model is

obtained with a simple Gaussian model.

Let i and j be two connected parts. The pairwise

model between part i and part j is a multivariate Gaussian

ψij(li, lj |Θij) =

N (zj , sin(θji), cos(θji), qji, tj , zi, ti|µij ,Σij) (5)

where θji is the relative angle of j with respect to i. The

vector qji defines the distance between the joints of the

parts; that is, qji = (pji − pij), where pji is the joint point

of part j connecting j with part i and pij is the joint point of

part i. The points pji and pij are both defined in the local

coordinate system of the part i, which has its origin ci at

the midpoint between the joint points, and is aligned with

the main axis of the part. Note that the vector qji is analo-

gous to the spring that connects two parts in the PS model

representation. The scalars ti and tj are the lengths of the

two parts, defined as the distance between the part joints.

For the torso, the part length is defined by the distance be-

tween the neck joint and the belly button. Finally, the mean

and covariance Θij = (µij ,Σij) of the Gaussian model are

learned using the training samples described above.

The DS model is unique in that it is a distributed repre-

sentation of body shape. The assumption is that the shape

of an individual body part predicts something about the lo-

cation and shape of parts that share a joint with it. Figure

4 illustrates the learned model by showing samples from it.

Given a part shape we generate samples from the pairwise

model for the part neighbors outwards along the tree. Note

how the shape of the torso defines a distribution for the ori-

entation of the upper arms.

Figure 4 (left) shows two different torso shapes that are

used as starting points for sampling from the model. Note

that the sampled poses are very different from these differ-

Figure 4. Sampling from the DS model. (left) Two different torso

shapes are outlined in black. Samples from the DS model are

shown as dotted black lines. These are generated by starting with

the torso and moving out along the tree structure. The red con-

tour shows the most likely pose and shape for the parts. (right)

Two more examples starting from different shapes of the upper

arm (the model is rendered in the coordinate system of the arm).

Figure 5. Examples of the DS model in a variety of poses. Note

how much the model’s left calf (magenta) varies in shape.

ent starting torso shapes. This is due to the fact that torso

shape is very much related to body pose. In contrast, Fig-

ure 4 (right) shows sampled poses starting from differently

shaped upper arms; a single arm shape does not say nearly

as much about the overall pose and shape of the body. Taken

together however, the collection of body parts and their spa-

tial relationships say a good deal about body shape. Exam-

ples of various posed models are shown in Figure 5. These

provide a fairly realistic representation of 2D body shape.

4. The DS “puppet”

There are several tools for annotating human pose in im-

ages but most give fairly crude descriptions of the body in

terms of “sticks” [13]. Bourdev and Malik [5] annotate im-

ages of people with joint locations, infer a 3D body pose,

and label super pixels as corresponding to different body

parts or clothing. We exploit the DS shape model to pro-

vide a new annotation tool that is easy to use and directly

manipulates the 2D body shape.

The interface allows a user to selectively move or lock

the joint points described in the previous section. The shape

of the model is inferred conditioned on these fixed points.

The user sees the model deforming as he or she moves the

points and can thus position it over an image.

We collected an annotated data set of 217 images. Ex-

ample annotations are shown in Figure 6. These annotations

are used for training the likelihood model in the following

section.
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Figure 6. DS puppets. The annotation tool has a Web interface for posing a draggable DS puppet over an image.

Figure 7. Contour likelihood. The image shows the location of the

HOG cells along a limb contour. Cells are located on the boundary,

just inside, and just outside.

5. Likelihood

The unary potentials, φi(li), represent the probability of

a part in a specific location in the image. Since DS defines

contour points for each body part, we are able to focus the

likelihood computation on the part boundary. Additionally,

since we know inside from outside, it is straightforward to

formulate likelihood models of skin color or textural ap-

pearance. We define the unary potentials as:

φi(li) = φcontour
i (li)φ

color
i (li). (6)

The contour based likelihood is given by

φcontour
i (li) =

1

1 + exp(aifi(hi(li)) + bi))
(7)

where fi(hi(li)) is the output of a linear SVM classifier ap-

plied to the feature vector hi(li), and ai and bi are scalar

parameters [26].

The feature vector consists of a set of HOG descriptors

computed along the part contour (cf. [23]). For a part i, we

take a set of points at fixed locations in the contour vector

si (3) where we compute three HOG descriptors: one at the

contour point, one inside and one outside the part contour

(Figure 7). All the gradients recorded by the descriptors

are steered according to the local contour orientation [31].

The HOG descriptors are computed with an adaptive cell

dimension, which is set on the basis of the size of the puppet

in the annotated training image.

The color likelihood assumes that the lower arms are

likely to be skin colored and the upper arms are likely to

have the same colors as the upper torso. The color-based

probability of a limb is then defined in terms of the color

probability of its pixels. The probability of a pixel being

skin is represented by a histogram of skin colors computed

from a publicly available data set1 and from the head re-

gions of our training set. The probability of a pixel having

the color of the upper torso is image specific, and is com-

puted using the histogram of the pixels covered by the upper

region of the torso and the head once an initial torso estima-

tion has been provided by the inference algorithm.

6. Inference: Pose and Shape

To use the DS model for 2D pose estimation we must ex-

tend traditional PS inference to include the additional shape

parameters. Like PS models, the factored form of the DS

model means that inference can be done using Belief Prop-

agation. Unfortunately, efficient BP algorithms assume a

discrete (or discretized) space. When the state space of a

variable cannot be enumerated, and the potentials do not al-

low the computation of messages in closed form, sampling

approaches can be used [17, 19, 34]. Such non-parametric

methods have been applied successfully in human pose es-

timation in 2D [32] and 3D [33]. Here we adopt a method

inspired by Particle Belief Propagation (PBP) [17].

In the DS graphical model, the node variables (4) are in

part discrete (joint locations in global coordinates) and con-

tinuous (angle and shape parameters). Given the large num-

ber of variables (we use 4 shape parameters per part), we

formulate our inference problem as one of selecting the best

configuration among discrete sets of part samples. This en-

tails defining samples at each node, and using Max-Product

BP to derive the most likely configuration. The message

from node i to node j is defined over the discrete sets of N

node samples, and takes the form:

m̂
(q)
ij = max

p=1..N
[ψij(l

(p)
i , l

(q)
j )φi(l

(p)
i )

∏

u∈Γ(i)\j

m̂uil
(p)
i ] (8)

1http://acouchis.helmholtz-muenchen.de/staff/giovani/colour/
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where p and q are sample indexes at node i and j respec-

tively.

The key to obtaining good results with non-parametric

BP in high dimensions is to have good proposal functions.

We therefore rely on an update phase, inspired by PBP [17],

where we resample parts at each node based on the current

state of the neighbors’ nodes. In order to provide the in-

ference algorithm with good initial samples, we first run a

person detector [13] to obtain an estimate of the scale of

the person in the image. The scale is then fixed, but the DS

model has been learned with variability in the camera loca-

tion, and can represent some size variation in the parts. Ad-

ditionally, to provide a good initialization for the part loca-

tion and orientation, we run a standard PS inference method

[3] as a pre-processing stage. Running a simple PS model

to prune the search space is a common strategy [30, 36].

We generate part samples for body parts in three ways: 1)

Starting with the PS solution, take the part locations and

orientations and draw a shape at random from a prior over

part shapes; 2) Draw a random body from our DS prior, 3)

Draw parts independently from a prior over locations, ori-

entations, and shapes. These independent part priors are

learned from an annotated training set of DS models (see

next section).

A first iteration of BP estimates the location of the torso.

The appearance color model is then built as a histogram in

CIE a*b* space from the pixels that correspond to the head

and upper part of the torso. During each subsequent itera-

tion of BP, samples are generated at each node (part) by a

random walk from the current samples or proposed by the

neighbors: for example, given a likely torso and a likely

lower arm, a new upper arm is sampled conditioned on the

parent shape and the child location. The conditioned pro-

posal exploits the part length parameter in the model formu-

lation (5) to generate a sample that is likely to connect the

torso and the lower arm. For each new sample, we evaluate

its acceptance probability as in PBP [17], with the differ-

ence that good samples are never removed from the node.

Since the DS model is learned from SCAPE, the joint po-

sitions of neighboring parts overlap exactly. This means the

learned model variance in the springs is zero, which makes

inference difficult. Consequently, for inference, we artifi-

cially inflate the variance for the springs connecting parts to

give non-zero probability to configurations of parts that are

not connected. This creates a loosely connected DS model.

7. Experiments

Our central hypothesis is that a more accurate model of

body shape should result in a more discriminative likelihood

model and consequently more precise estimation of body

pose in images. To test this hypothesis, we perform sev-

eral experiments and compare our results with the published

state of the art. Experiments are run on the Buffy dataset as

used in Sapp et al. [30]. To learn the independent part priors

used in sampling, we annotated images in a Buffy training

dataset, not present in the test set, using the annotation tool

described in Section 4. The features for the likelihood are

learned from the training set of images in Section 4, none

of which are from the Buffy series. The scalar parameters

in the likelihood are estimated from the Buffy training set

using the method in [26].

The Buffy dataset comes with “stickmen” annotations,

defining the ground truth end points for each body part. Er-

ror is computed as the Percentage of Correctly estimated

body Parts (PCP). A body part is correctly estimated if its

end points lie within half of the ground truth segment’s

length from the ground truth end points [10]. The stick-

men ground truth data has joints in different locations than

the DS body model. Consequently we estimate a correc-

tion term mapping the DS joint points to the stickmen joints

using annotated images from the Buffy training set. This

correction term is simply the mean 2D offset of the joint

location in the coordinate system of each part.

We test 3 different versions of our model: 1) The full

model but with a uniform likelihood function (NL). This

tests that our inference method is actually exploiting the

likelihood and is not just based on the good initial propos-

als. 2) A model with no shape variation (NS). This uses

the mean shape of the DS puppet and lets us tease apart the

effect of our likelihood function from the shape model. 3)

The full DS model (DS), with 4 shape coefficients per part.

Since our inference relies on a PS model [3] for initial-

ization, we take this to be the baseline. A more discrimi-

native likelihood should improve performance. A fully fair

comparison with the PS baseline is difficult. It is not possi-

ble to simply interchange the three key components: infer-

ence, model (prior), and likelihood. They interact in ways

that make separate analysis difficult. The PS model in [3],

for example, uses a discretized state space and optimal in-

ference. Our method is at a disadvantage in that the infer-

ence is stochastic.

Performance results are reported in Table 7. In our infer-

ence framework the DS model effectively refines the results

of the baseline method. Additionally the value of the shape

space is seen in the significant improvement over the mean

shape model (NS). In Table 7 we also report results from

[1], which is not an articulated model, but represents parts

with mixtures of non-oriented pictorial structures.

Figure 8 shows several representative examples where

the DS model (solid red) improves the baseline PS result

(dashed green). The performance of the inference is depen-

dent on the performance of the baseline PS model in provid-

ing a good initialization, and on the correctness of the scale

estimation. Figure 9 shows some representative examples

of failures.

Our results are essentially the same as the CPS method
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Figure 8. Estimated body pose – examples where the DS model improves on the PS baseline. DS is solid red, PS is dashed green.

Figure 9. Estimated body pose – representative failure cases. DS is solid red, PS is dashed green.

Method Torso Head U. Arms L. Arms Total

Baseline (PS) 97.0 92.3 86.3 52.1 77.7

Our (NL) 99.2 97.9 90.9 10.4 66.6

Our (NS) 99.2 97.5 94.0 50.4 80.9

Our (DS) 99.6 99.2 94.7 62.8 85.6

Eichner et al. 98.7 97.9 82.8 59.8 80.1

CPS 100 96.2 95.3 63.0 85.5

Yang et al. 100 99.6 96.6 70.9 89.1

Table 1. PCP scores (see text) for our model without likelihood

(NL), our model with a fixed shape (NS), and our full model (DS),

with shape variation. PS is the implementation of [3]. We also

compare with the current state of the art: CPS [30] and Yang et

al. [1].

[30] which uses a more a sophisticated cascade search

method and richer likelihood models that span multiple

parts. Both cascaded search and the extended likelihoods

are well suited to the DS shape model, suggesting room for

further improvement.

8. Conclusions

Deformable structures are a generative model of 2D hu-

man shape in images and define a prior probability of body

shape and pose. The DS model is learned from 3D bodies

covering a wide range of poses and camera views. While the

formulation is simple, using Gaussian potentials, it is ex-

pressive enough to capture significant shape deformations.

It has the benefits of pictorial structures and yet also mod-

els pose-dependent body shape. What differentiates the DS

model from other 2D shape representations is the fact that

the shape of a person is expressed as a factored probability

over parts. We exploit the shape representation to learn a

likelihood model that takes into account the part contours.

To do so, we use the DS model as a novel puppet for an-

notating training imagery. We show improved human pose

estimation over the basic pictorial structures model and es-

sentially the same accuracy as the CPS method which uses
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more sophisticated inference and likelihood models [30].

In future work we will expand the range of camera views

and include separate DS models for side views which we

did not consider here. Additionally, the SCAPE model rep-

resents a wide range of body shapes. We will consider DS

models with individual body shape variation. This could in-

volve local shape terms in the parts or a loopy model with

a global shape parameterization. Finally, we have seen that

the DS model captures body shapes in real images but this

might be improved by adding a clothing model [16].
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