
F ACU LTY OF S C I EN CE

U N I V E R S I T Y O F C O P E N H A G E N

PhD Thesis
Søren Hauberg

Spatial Models of Human Motion

Supervisor: Kim Steenstrup Pedersen

October 31, 2011



“Simplicity is the ultimate sophistication”

Leonardo da Vinci



Notation

In this thesis the following notation will be used mostly consistently; in individual
papers notation might differ slightly. In general, lower case bold face will denote
vectors, while upper case bold face denotes matrices.

θt The joint angles of the kinematic skeleton at time t.
F (θt) The forward kinematics function applied to the pose vector θt.
Θ The set of legal joint angles.
M The kinematic manifold.
Jθ The Jacobian of the forward kinematics function evaluated in θ.
gt The goal position of selected limbs.
Zt or Xt The observation at time t.
a ∝ b a is proportional to b; often the constant of proportionality is

irrelevant.
a ≡ b a is defined to be equal to b.
A1:t Short-hand notation for the sequence {A1, . . . ,At}.
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Thesis Overview

This document is a PhD thesis in Computer Science from the University of Copen-
hagen, Denmark. The thesis is concerned with statistical models of human motion
that are suitable for performing articulated tracking. Our main hypothesis is that
it is not only possible but also beneficial to create motion models in the spatial do-
main, rather than in the traditional joint angle space. The thesis contributes to the
field by providing both statistical models expressed in the spatial domain as well as
practical algorithms for working with these models. Furthermore, several of the con-
tributed algorithms are suitable for solving general filtering problems on Riemannian
manifolds.

This thesis consists of a set of papers written in the last three years along with
an introductory text that motivates the modelling decision behind the papers. The
papers are presented in their original form with an exception of page numbers. The
introductory text is given in the first chapter of the thesis, while the papers are in the
following ones. Finally, a few finishing remarks are given in the last chapter.

All Stories have a Beginning. . .

This thesis started with me being told to implement an off the shelf articulated
tracking algorithm; “then we’ll have something to compare with” my supervisor said.
This was a frustrating experience: too much problem-specific tweaking was needed
to get things working. The main practical problem I kept facing was that the prior
(or regularisor) was very sensitive, which made parameter estimation unstable. We
came up with a quick “hack” Hauberg et al. [2009], where we changed the state space
of the tracker from the joint angles into the coordinates of the hands and head; the
intuition was that this reduced the dimensionality of the state space, which should
improve stability. We then used an inverse kinematics system to compute joint angles
from hand and head positions. Surprisingly, this worked remarkably well. The major
focus of the thesis then became to determine why it worked. This opened up a box
of fascination that sent me into the interplay of statistics and geometry.

Included Papers

Most chapters of this thesis are papers that I have first-authored during my PhD
studies. These papers are as follows.

Søren Hauberg and Kim Steenstrup Pedersen. Predicting articulated human motion
from spatial processes. International Journal of Computer Vision, 94:317–334,
2011a.

Søren Hauberg, Stefan Sommer, and Kim Steenstrup Pedersen. Gaussian-like spatial
priors for articulated tracking. In K. Daniilidis, P. Maragos, , and N. Paragios,
editors, ECCV, volume 6311 of LNCS, pages 425–437. Springer, 2010.

Søren Hauberg and Kim S. Pedersen. Stick It! Articulated Tracking using Spatial
Rigid Object Priors. In ACCV 2010. Springer-Verlag, 2010.
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Søren Hauberg and Kim Steenstrup Pedersen. Data-driven importance distributions
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ods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Sci-
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Søren Hauberg, François Lauze, and Kim Steenstrup Pedersen. Unscented kalman
filtering on riemannian manifolds. Journal of Mathematical Imaging and Vision
(under review), 2011b.

Excluded Papers

While I admit to being a simple-minded creature, I cannot claim to have a one track
mind. While this thesis is concerned with articulated tracking I have also collaborated
with others on other projects; this has resulted in the following publications. These
papers make interesting points and contributions, but, alas, they either do not fit into
the story told in this thesis or I was not first author, so they had to be excluded.

Aasa Feragen, Søren Hauberg, Mads Nielsen, and François Lauze. Means in spaces of
tree-like shapes. In International Conference on Computer Vision, 2011.

Peter Mysling, Søren Hauberg, and Kim Steenstrup Pedersen. An empirical study
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347–354. Springer, Heidelberg, 2011.
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Summary

The thesis addresses the problem of designing spatial models of human motion, when
poses are represented using the kinematic skeleton. This data structure enforces con-
stant bone length, which makes the space of joint positions a non-linear Riemannian
manifold. The thesis contributes with two basic models of how joint positions move
and a series of algorithms and specialisations.

The first model is a Bayesian interpretation of inverse kinematics. Assuming we
know where the human wishes to place his/her hands, we derive the natural condi-
tional distribution of joint angles that reaches this goal. To work with the model in
practice we derive a second order approximation to the Bootstrap filter. This allows
us to create both general-purpose activity independent models as well as a motion
specific physiotherapeutic model and a model of motion during object interaction.

The second model takes a geometric point of view to the problem. We show that
the space of all joint positions is confined to a Riemannian manifold, which we call the
kinematic manifold. In this model, inverse kinematics can be viewed as a projection
operator from embedding space to the manifold. The metric on this manifold is the
physically natural measure of how far individual joints move in the world coordinate
system, which provides a good base for doing statistics. For motion models we both
derive a Brownian motion model and a projected model, which can be viewed as
an efficient approximation to the Brownian model. These models allow us to easily
control the variance of joint positions, which gives rise to good low-pass filtering prop-
erties. This is an inherently hard problem in the joint angle domain. Furthermore, we
show how the model can be extended to describe interactions with the environment
and how it can be used to provide efficient data-driven importance distributions for
particle filters.

We also contribute a generalisation of the unscented Kalman filter to Riemannian
manifolds. The resulting filter is very general and only requires information about how
to compute parallel transports, exponential maps and logarithm maps. As these can
be computed numerically on many manifolds, the suggested filter is widely applicable.
A nice property of the filter is that it is remarkably simple, which is a hint that perhaps
Riemannian models need not be overly complicated in practice.

Contributions

This thesis contributes the following novelties to the field:

• A probabilistic interpretation of inverse kinematics, which is suitable for tracking
[21].

• A geometric interpretation of the kinematic skeleton in the kinematic manifold.
In this line of thinking, inverse kinematics becomes a projection operator [24].
The metric on this manifold becomes a physically natural measure of the size of
motions [26].

• Different models of human motion during interaction with the environment [19,
21].

• An approximation strategy for designing data-driven importance distributions
for articulated tracking [20].
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• A Brownian motion model on embedded manifolds along with a novel numeri-
cal scheme for simulating the underlying manifold valued stochastic differential
equation [26].

• A Riemannian generalisation of the unscented Kalman filter, which provides
general-purpose tools for both filtering and optimisation on Riemannian man-
ifolds [25].
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Resumé (in Danish)

[Hauberg sez: Oversættelse af forrige afsnit til dansk.]
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Chapter 1

Modelling Concerns in Articulated
Tracking

In this thesis we attack the problem of articulated
tracking, which is also known as human motion cap-
ture. This is the process of estimating the pose of a
person in each frame of an image sequence [41]; an ex-
ample of the type of results we are looking for is shown
in fig. 1.1. Uses of such tracking systems range from
rehabilitation and biomechanics to film production and
human computer interaction, e.g. in computer games.
We can think of this problem as “fitting a skeleton” to
the image data, which can be done in a multitude of
ways as will be reviewed in the following section.

First, we briefly introduce the skeleton represen-
tation; a more detailed description will be provided
in later chapters. As the basic pose representation,
we use the kinematic skeleton [14], which is a “stick
figure” model, where individual bones have constant
length (see fig. 1.2). Due to the constant bone lengths,
only the joint angles, i.e. the angles between connected
bones, appear as degrees of freedom in the model; the
vector containing all these angles is denoted θt, where
the subscript indicates a temporal frame index. From
joint angles, the position of each joint can be computed
using Forward Kinematics [14]. We will denote these
positions F (θt), where F denotes the forward kinemat-
ics function. We will define this function in a later
chapter; for now it suffices to note that it is highly
non-linear.

1.1 Different Approaches

One of the first successful approaches to articulated
tracking was that of Bregler and Malik [6], who phrased
the problem as one of differential motion estimation.
This approach is similar in spirit to the classical ap-
proach in optical flow [27], where changes in pixel in-
tensities can be related to flow vectors from an intensity
constancy assumption. Using the twists and products
of exponential maps framework from the robotics lit-
erature [36], Bregler and Malik showed how to relate
changes in pixel intensities to changes in joint angles.
This leads to a differential equation which can be solved
to estimate the human pose sequentially. In practice,

Figure 1.1 Examples of results attained with an articulated
tracker.

this approach is not very flexible as it is hard to change
the criterion being optimised, and the gradient descent
style optimisation often diverges.

To overcome these issues, Sidenbladh et al. [45] sug-
gested a Bayesian model consisting of two parts: 1)
a likelihood model that relates the image information
to the skeleton, and 2) a motion prior that encodes
any information available about the observed motion.
This split makes the approach highly flexible as both

Figure 1.2 Left: An illustration of the kinematic skeleton
used to represent human poses. Bone lengths are kept
constant such that joint angles are the only degrees of
freedom in the model. Right: an image showing a human
in the pose represented by the skeleton to the left.
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the likelihood and the motion prior can easily be re-
placed. To perform maximum a posteriori (MAP) es-
timation, Sidenbladh et al. suggested using a particle
filter, which allows several possible optima to be traced
simultaneously. This makes the approach very general,
but as it is based on sampling the computational de-
mands grows exponentially with the dimensionality of
the state space.

1.1.1 Dimensionality Reduction

One of the most fundamental issues with the general
solution based on a particle filter is the dimensionality
of the problem. In the most general case, we need to in-
fer all joint angles in the human body, which often gives
rise to more than 50 degrees of freedom. This makes
the approach computationally demanding as well as po-
tentially unstable due to the many chances of failure in
high dimensional spaces. The most obvious solution
to this problem is to reduce the number of degrees of
freedom in the model, which has been done in many
different ways.

Manifold Learning

One solution was presented in the original paper by
Sidenbladh et al. [45]: from motion capture data of a
specific activity (often walking) learn a low-dimensional
probabilistic model and use this as the motion prior.
This immediately lowers the dimensionality of the
problem and tracking becomes fast and stable. In the
seminal work of Sidenbladh et al., it was suggested to
apply a linear motion model in a linear subspace of the
joint angle domain that was learned using PCA. This
fairly straight forward approach turned out to work
quite well: better results could be attained using fewer
computational resources. The authors, however, ques-
tioned the strategy by providing an experiment in their
paper, where the image information was neglected by
the tracker. The results, which are replicated in fig. 1.3,
provide insights into the prior. As can be seen, the
prior alone is actually able to track the motion for sev-
eral frames without considering the data at all. This in-
dicates that the prior provides a good description of the
motion. The resulting tracker, however, simply “plays
back the prior” rather than interpreting the data, so
we should be careful when applying such priors to new
sequences.

Since the work of Sidenbladh et al. the idea of learn-
ing the motion prior has been extended in several ways.
Some [47] use Laplacian Eigenmaps [5] to learn a non-
linear motion manifold, while others [33] use a Lapla-
cian Eigenmaps Latent Variable Model [8]. The meth-
ods used for learning the manifolds assumes that data
are densely sampled on the manifold. This either re-
quires vast amounts of data or a low-dimensional man-
ifold [37]. In the mentioned papers [33, 47], a one-
dimensional manifold corresponding to walking is stud-
ied. It remains to be seen if the approach scales to

Figure 1.3 How strong is the walking prior? Tracking re-
sults for frames 0, 10, 20, 30, 40, 50, when no image
information is taken into account. Figure adapted from
[45] (courtesy of Michael J. Black). [Hauberg sez: I
need to ask for permission to use this picture!]

higher dimensional manifolds.
Instead of just learning a manifold and restricting

the tracking to this, it seems reasonable to also use the
density of the training data on this manifold. Urtasun
et al. [48] suggested to learn a prior distribution in a low
dimensional latent space using a Scaled Gaussian Pro-
cess Latent Variable Model (Scaled GPLVM) [18]. This
not only restricts the tracking to a low dimensional la-
tent space, but also makes parts of this space more
likely than others. Our experience, however, seems to
indicate that this type of prior is too “tight” to gener-
alise. Fig. 1.4 shows a two-dimensional model learned
with a Scaled GPLVM learned from walking data for
three different persons. As can be seen, the model fails
at learning the similarities between how different peo-
ple walk, which indicates that the model will not be
able to generalise to unseen data.

Environment Interaction

An alternative to learning a low dimensional model is
to design a model with fewer degrees of freedom. One
approach is to model the fact that most human mo-

Figure 1.4 A Scaled GPLVM model of walking performed
by three different person (colours indicate different per-
sons); the model fails to capture the similarities be-
tween persons. Figure courtesy of Anders Boesen Lindbo
Larsen [32].
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tion happens during interaction with the environment:
humans often touch the ground plane, pick up objects,
lean against walls and so forth. This knowledge can
be used to reduce the degrees of freedom in the model,
which can improve tracking quality and robustness.

An obvious phenomena to include in the model is
interaction with the ground plane as this is often a
simple flat surface, which simplifies the mathematical
model. Yamamoto and Yagishita [53] do this using a
linear approximation of the motion path by linearising
the forward kinematics function. As this is a highly
non-linear function and motion paths in general are
non-linear, this modelling decision seems to be made
out of sheer practicality. Promising results are, how-
ever, shown on constrained situations, such as when
the position and orientation of a persons feet is known.

When modelling interactions with the environment,
inverse kinematics is an essential tool as it provides
a mapping from the spatial world coordinate system
to the joint angle space. Rosenhahn et al. [43] use
this to model interaction with sports equipment, such
as bicycles and snowboards. They use the previously
mentioned formalism of twists and products of expo-
nential maps to derive an approximate gradient descent
scheme for estimating poses. In a similar spirit, Kjell-
ström et al. [30] model interaction with a stick-like ob-
ject. They solve the inverse kinematics problem using
rejection sampling in joint angle space, leading to a
computationally expensive approach due to the high
dimensionality of the joint angle space.

Physics-based Models

A further development in the direction of including the
environment is to model the physics of the situation.
One such approach is given by Vondrak et al. [51] who
suggest using a physical simulation as part of the mo-
tion prior. This allows for modelling of human mo-
tion dynamics, ground contact and environment inter-
action, resulting in a high dimensional state space. To
make optimisation feasible an exemplar-based model
is used to reduce the effective dimensionality of state
space.

A more constrained model was suggested by
Brubaker et al. [7] who describe a biomechanical model
of walking. This is a three-dimensional extension of a
planar model, which allows for modelling of both bal-
ance and ground contact. This gives a robust model
that gives good results even when occlusions occur.
The model does, however, not easily generalise to other
types of motion.

1.1.2 Improved Optimisation Schemes

Instead of improving the models one might ask if we
simply need to improve the tools? Many have reported
improved tracking results by replacing the particle fil-
ter with alternative optimisation tools.

One of the most popular choices is to use the An-
nealed Particle Filter suggested by Duetscher et al.
[10]. This filter borrows ideas from simulated anneal-
ing and iteratively samples from a prior with smaller
and smaller variance, while exponentially increasing
the likelihood such that modes become more exagger-
ated. This forces the particles to focus more on the
modes of the likelihood, which most often improves
tracking quality substantially. One downside is that
the Bayesian interpretation is lost, in the sense that
we only get mode estimates and not an estimate of the
entire a posteriori distribution. This can be of interest
if the human pose is a latent variable in a larger system,
such that the pose variable should be marginalised.

In a similar spirit, Gall et al. [15] suggested using
a multi-layer approach, where simulated annealing is
used in the first layer to roughly estimate mode posi-
tions and local optimisation is used in the second layer
to refine the mode estimates. Again, the Bayesian in-
terpretation is lost.

Another approach is to use the hierarchical struc-
ture of the kinematic skeleton to improve the particle
filter. Bandouch and Beetz [3] suggest using a hierar-
chical sampling scheme such that the torso is fitted to
the data before the arms. This approach is potentially
more efficient, but it is more sensitive to local minima
as one incorrectly fitted body part makes it impossible
to fit the remaining parts.

One problem with the particle filter is that parti-
cles are often sampled directly from the motion prior.
This disregards the likelihood such that particles are of-
ten far away from the likelihood modes. To overcome
this issue Poon and Fleet [40] suggested using a hybrid
Monte Carlo filter, where samples are moved closer to
the modes of the likelihood according to the gradient
of the likelihood. In some sense this is similar to the
framework suggested by Gall et al. [15], but the hybrid
Monte Carlo approach preserves the Bayesian interpre-
tation. On the downside, the filter is highly specialised
to the specific likelihood model.

1.1.3 Non-visual Sensors

One of the sources for many problems in visual artic-
ulated tracking is that certain joint configurations are
inherently hard to determine visually. For example,
the rotation of limbs around their own axes are prac-
tically impossible to determine from silhouette images.
One way around such difficulties is to use extra sen-
sors that are capable of determining this information.
One example of this approach is the work of Pons-Moll
et al. [38] where inertial orientation sensors are used to
determine the orientation of hands and feet. This con-
straint is incorporated into a gradient descent scheme
similar to the work of Bregler and Malik [6]. A later
version of the work extended this approach to be part
of a more robust particle filter [39].
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1.1.4 Part Detection

Another way to constrain the tracker, and thereby re-
duce the degrees of freedom, is to detect positions of
selected body parts and only consider pose estimates
that are in tune with the detections.

One way to achieve this was suggested by Sigal
et al. [46], who loosen the hard “constant bone length”
constraint of the kinematic skeleton to a soft con-
straint. Individual limbs are then detected and com-
bined to a complete pose using loopy belief propaga-
tion in Bayesian network, where nodes correspond to
joint positions and edges to connections in the skele-
ton structure. This effectively allows for tracking with-
out the need for initialisation. A similar approach was
taken by Ramanan and Forsyth [42], who also show
that the method is robust with respect to occlusions
and that it can recover from failures.

Ganapathi et al. [16] suggest detecting selected body
parts and using inverse kinematics to relate the de-
tected positions to the joint angles of the skeleton. This
is incorporated in a Bayesian tracker using a probabilis-
tic interpretation of inverse kinematics that is based on
the unscented transform [28]. The resulting system is
simple enough to be able to almost run in real time.

The, so far, most successful approach to tracking
based on part detectors is the work of Shotton et al.
[44]. In the previous approaches, the part detectors
looked at small patches; in contrast, Shotton et al. clas-
sify every single pixel into a set of body parts. From
this, body parts are detected by looking at clusters of
pixels of the same body part and a skeleton model is
extracted. The resulting tracker runs in real time, is
quite robust to tracking errors and requires no initial-
isation. The solution is, however, designed for the Mi-
crosoft Kinect depth camera and does not immediately
generalise to colour cameras.

1.2 Our Approach

In this thesis we start from the work of Sidenbladh
et al. [45], but instead of building upon it, we stop to
re-examine the most basic motion prior. This should
encode whatever knowledge of the motion we posses,
so we start by reviewing neurological studies of human
motion. As it turns, out these studies points in a direc-
tion that gives rise to good temporal low-pass filters, as
well as models that makes it strikingly easy to model
interaction with the environment and so forth.

In the rest of this chapter, we discuss some of the
modelling thoughts that went into designing our new
motion priors. The remaining chapters then present
individual models and applications of these.

1.3 How do Humans Move?

As we will focus on the motion prior, we first need to
acquire some insights into how people move; this can

then serve as a design guideline. For these insights, we
turn to experimental neurology, where the subject of
motion planning has been researched for years.

One of the first experiments was performed by
Morasso [35], who measured joint angles and hand po-
sitions while people moved their hand to a given target.
Later, Abend et al. [1] expanded on this experiment,
and introduced obstacles that the hand had to move
around. Both made the same observation: joint an-
gles show great variation between both persons and
trials, while hand positions consistently followed the
same path with low variation. Recently, Ganesh [17]
made similar observations for actions like punching and
grasping in a computer vision based tele-immersion
system. One interpretation of these results is that the
hand trajectories describe the generic, i.e. the person
independent, part of the motion.

This result is a strong indication that humans plan
body motion in terms of spatial hand trajectories
rather than joint angles. It, thus, seems reasonable
to express the motion prior in terms of these trajecto-
ries. One can arrive at the same conclusion by taking
a purely statistical point of view: the above-mentioned
experiments showed less variation in hand positions
compared to joint angles. Thus, it seems more robust
to build models in terms of spatial hand positions.

1.4 The Gold Standard

As we have seen that there are dangers associated with
learning motion specific priors, we take a step back-
wards to analyse activity independent models. Such
models appear both in activity independent trackers
and as regularisers for learning schemes. However, not
much work has gone into designing good models for
activity independent motion priors.

The most popular model is a Brownian motion
model1 in joint angle space, i.e.

p(θt|θt−1) = N (θt|θt−1,Σ) , (1.1)

where Σ denotes the (often diagonal) covariance. This
model has, amongst many, been used by itself in [2, 4,
30, 45] and in [33, 45, 47–50, 52] where the prior is used
as part of learning schemes.

At a first glance, eq. 1.1 seems like the obvious model
choice: it is simple, easy to work with and easy to un-
derstand. It, however, has several undesirable proper-
ties, which both lead to poor performance and makes
the model hard to extend.

1.4.1 Connections to the Human Plan

As discussed in sec. 1.3, there is evidence that humans
plan their motion in the spatial domain. It is our belief

1Technically, it is an instance of Itô diffusion due to the non-
isotropic covariance, but we shall informally call it a Brownian
motion.
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Figure 1.5 Human poses sampled from eq. 1.1 where the
covariance is learned from motion data. Notice how the
variance accumulates along the spine.

that the best possible prediction of human motion can
be crafted by “guessing” at the next step in the human
plan. In this line of thinking, it does not seem natural
to model how joint angles change; instead, we should
focus on the movement of joint positions!

1.4.2 Accumulated Variance

The model in eq. 1.1 provides a covariance in joint angle
space. In the end, we are, however, more interested
in the covariance of joint positions as this is what is
observed in the data. So, how do joint positions vary
when we change the joint angles?

This question immediately leads to two observations:

1. Long bones move more. When a joint angle
is changed, it affects bones connected to the joint.
If the connected bone is short, then the change in
joint position will be small, but if the bone is long,
the positional change will be large. In principle, we
can compensate for this by scaling the covariance
appropriately, but such a strategy would rule out
learning a covariance from motion data.

2. Variance accumulates. A change in a joint an-
gle in the beginning of a kinematic chain affects
all joint positions further down the chain. As an
example, consider changing an angle in the shoul-
der joint: this moves the position of all joints in
the arm. This means that joint positions further
down the kinematic chains will exhibit larger vari-
ance than those in the beginning of the chains. As
an example, the hand position will have a larger
variance than the shoulder position as it depends
on more joint angles.

Neither of these phenomena seem particularly natu-
ral and both are consequences of the fact that eq. 1.1
ignores the skeleton configuration, i.e. bone sizes and
how they are connected to each other. Their effect is
quite evident in fig. 1.5, where samples from eq. 1.1
are shown; notice how the variance increases along the
spine.

Figure 1.6 Three motions of “equal size” under the
isotropic joint angle metric.

While these phenomena are not particularly natural,
one might ask whether they matter? Both phenomena
lead to increases in the variance of joint positions. In
practice, the main purpose of the motion prior is to
act as a temporal low-pass filter to suppress noise in
the likelihood function. As the noise in the likelihood
stems from noise in the observed image data it is es-
sential that the motion prior has good low-pass proper-
ties in the image domain, i.e. the spatial domain. The
large joint position variance of eq. 1.1 is simply another
way of saying that this motion prior performs poorly
as a low-pass filter in the spatial domain. As this is
the data domain, the large spatial variance essentially
means that eq. 1.1 fails at its most fundamental task!

1.4.3 Unnatural Metric

The motion prior in eq. 1.1 is a Brownian motion model
in joint angle space, which is well-established as the
least-committed motion prior. This model is sensitive
to the underlying distance measure, so one way to gain
insights into the unnatural variance behaviour of the
model is to study the metric in joint angle space. If
we assume an isotropic covariance, then the joint angle
metric can be written as

dist2(θa, θb) = ‖θa − θb‖2

= (θa − θb)T (θa − θb) ,
(1.2)

i.e. a measure of change in angles. This measure has
little physical intuition, which is illustrated in fig. 1.6.
Here, three motions of size 45 degrees are shown; each
motion has been constructed by changing one joint an-
gle. While the motions numerically are equally “big”,
they appear substantially different. This observation
is quite troublesome, as practically all statistical mod-
els (esp. eq. 1.1) are highly dependent on the metric.
The unnatural variance behaviour and the unnatural
distance measure are both due to the fact that joint
angle models ignores the skeleton structure. This gives
us the hint that we can improve the variance behaviour
by improving the metric.

1.4.4 Model of Intrinsic Parameters

The basic idea behind eq. 1.1 is to assume a simple
model in the parameter space of the kinematic skele-
ton. As we have seen, this choice leads to an increase in
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spatial variance due to an unnatural metric. While one
might be tempted to accept this due to the benefits of
having such a simple model, there are other downsides
to the model. As the relationship between the param-
eter space (joint angle space) and the spatial domain
is inherently non-linear it quickly becomes non-trivial
to expand upon the model in eq. 1.1.

As human motion only rarely happens in empty
spaces, the first extension we shall consider is to model
interaction with the environment. Most often humans
are interacting with their surroundings, they are pick-
ing up objects, moving them, putting them down and
so forth. It, thus, seems reasonable to include knowl-
edge of object interaction in the models. As the sur-
roundings are inherently spatial, it becomes non-trivial
to model the interaction in the joint angle domain due
to the non-linear relationship between angles and posi-
tions. On the other hand, it turns out to be (almost em-
barrassingly) simple to perform such modelling when
we model joint positions rather than angles.

On the more technical side, particle filters, which
are used for estimating the pose, can be drastically
improved by drawing samples from the optimal impor-
tance distribution [9, 22]. This distribution is on the
form p(θt|θt−1,Zt), where Zt denotes the current ob-
servation. In other words: we can improve the particle
filter if we are able to draw samples from a distribu-
tion that depends on both the previous pose as well as
the current observation. Again, we observe that such
distributions can be simple to design in the spatial do-
main, as this can easily be linked to the observation.

1.5 Modelling Summary

So far, we have seen that the commonly used Brownian
motion model in joint angle space has several down-
sides. First, the choice of metric leads to large vari-
ances in joint position space, which makes the model
perform poorly as a low-pass filter. Second, the choice
of modelling joint angles makes it hard to extend the
model. Third, the model seems to have little in com-
mon with how neurologists believe humans plan their
motion. All these issues can swiftly be solved if we are
able to create motion priors that are expressed directly
in the spatial joint position domain. This will be the
main focus of the included papers.

1.5.1 Thesis Organisation

The rest of this thesis is a set of papers followed by
some concluding remarks in the last chapter. Each pa-
per is introduced with a short statement that highlights
the connections between the different papers and how
the specific paper fits into the larger picture.

In the first paper, we formalise the notion of proba-
bilistic inverse kinematics. In an attempt to build spa-
tial motion priors, we introduce spatial goal positions

of a few selected joints. We then derive the distribu-
tion of joint angles that reach this goal as closely as
possible. Furthermore, we derive a sampling scheme
for this distribution that allows us to use the model as
a motion prior in a particle filter.

In the first paper, we depend on the joint angle met-
ric for regularisation, which is somewhat dissatisfying.
The second paper addresses this issue by modelling all
joint positions instead of a few selected ones. This
strategy turns out to put our models on a Riemannian
manifold, which we call the kinematic manifold. From
this view-point inverse kinematics becomes a projec-
tion operator onto the manifold. This allows to define a
new statistical model, called the projected prior, where
a Gaussian is projected onto the manifold. As before,
we show how this can be simulated and thereby used
in particle filters.

The third paper is a reaction to another paper [30],
published around the same time as the second paper.
This paper is concerned with interaction with the en-
vironment. The third paper argues that such models
should be expressed in the spatial domain rather than
in terms of joint angles. This leads to improvements in
both speed and accuracy, while the model is conceptu-
ally remarkably simple.

The fourth paper tries to improve the particle fil-
ter by changing the importance distribution such that
samples are drawn closer to the modes of the likeli-
hood. The main point of the paper is that such work is
vastly simplified when working directly in the spatial
domain. In practice, we present two similar approaches
that improve accuracy quite a bit, while requiring little
extra computational effort.

The second, third, and fourth papers are based on
a somewhat ad hoc statistical model where a Gaussian
is projected onto a Riemannian manifold. The fifth
paper introduces a Brownian motion model expressed
directly on the manifold along with a numerical scheme
for working with this model in practice. This allows us
to use more well-known statistical models even if we
are working in a non-Euclidean domain.

All of the previous papers have been based on par-
ticle filters. When working on non-trivial Riemannian
manifolds, such Monte Carlo-style methods have been
the only available tool for filtering problems. This can
be seen as an argument against using Riemannian mod-
els, as having more simple tools available can improve
algorithmic development. In order to counter this ar-
gument, we show in the sixth paper how to generalise
the unscented Kalman filter to Riemannian manifolds.

Finally, the thesis is concluded with a brief sum-
mary of the presented results and a discussion of future
work.

6



Paper 1: Predicting Articulated Human Motion from
Spatial Processes

Authors: Søren Hauberg and Kim S. Pedersen.
Status: Published at the International Journal of Computer Vision [21].

Figure 2.1 An illustration of the
goal-based model: a few selected
limbs are assigned a goal position.
On the figure only one hand is as-
signed a goal.

The model presented in the first paper is in-
spired by the theory stated by Morasso [35] and
Abend et al. [1], saying that humans plan many
actions based on spatial goals. More specifically,
it was found that humans plan their motion by
determining where in space they want to position
selected body parts (e.g. the hands). This will be
the starting point of the first model: we will as-
sume that we know a goal and will then derive
the distribution of joint angles that reach for this
goal. The resulting model is called Probabilistic
Inverse Kinematics.

The paper contributes with, to the best of our
knowledge, the first Bayesian model of temporal
inverse kinematics. In order to apply the model
in practice, we derive a second order approxima-
tion to the Bootstrap filter. Early versions of this paper were presented in [12, 23],
but the included paper supersedes these papers completely.
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Abstract We present a probabilistic interpretation of
inverse kinematics and extend it to sequential data.
The resulting model is used to estimate articulated hu-

man motion in visual data. The approach allows us
to express the prior temporal models in spatial limb
coordinates, which is in contrast to most recent work

where prior models are derived in terms of joint angles.
This approach has several advantages. First of all, it al-
lows us to construct motion models in low dimensional
spaces, which makes motion estimation more robust.

Secondly, as many types of motion are easily expressed
in spatial coordinates, the approach allows us to con-
struct high quality application specific motion models

with little effort. Thirdly, the state space is a real vec-
tor space, which allows us to use off-the-shelf stochas-
tic processes as motion models, which is rarely possi-

ble when working with joint angles. Fourthly, we avoid
the problem of accumulated variance, where noise in
one joint affects all joints further down the kinematic
chains. All this combined allows us to more easily con-

struct high quality motion models. In the evaluation, we
show that an activity independent version of our model
is superior to the corresponding state-of-the-art model.

We also give examples of activity dependent models
that would be hard to phrase directly in terms of joint
angles.
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1 Introduction

Three dimensional articulated human motion analysis

is the process of estimating the configuration of body
parts over time from sensor input (Poppe, 2007). One
approach to this estimation is to use motion capture

equipment where e.g. electromagnetic markers are at-
tached to the body and then tracked in three dimen-
sions. While this approach gives accurate results, it is
intrusive and cannot be used outside laboratory set-

tings. Alternatively, computer vision systems can be
used for non-intrusive analysis. These systems usually
perform some sort of optimisation for finding the best

configuration of body parts. Such optimisation is often
guided by a system for predicting future motion. This
paper concerns a framework for building such predic-
tive systems. Unlike most previous work, we build the

actual predictive models in spatial coordinates, e.g. by
studying hand trajectories, instead of working directly
in the space of configuration parameters. This approach

not only simplifies certain mathematical aspects of the
modelling, but also provides a framework that is more
in tune with how humans plan, think about and discuss

motion.

Our approach is inspired by results from neurology
(Morasso, 1981; Abend et al, 1982) that indicates that

humans plan their motions in spatial coordinates. Our
working hypothesis is that the best possible predictive
system is one that mimics the motion plan. That is,
we claim that predictions of future motion should be

phrased in the same terms as the motion plan, i.e. in
spatial coordinates. This is in contrast to most ongoing
research in the vision community where predictions are

performed in terms of the pose representation, e.g. the
joint configuration of the kinematic skeleton.
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Fig. 1 A rendering of the kinematic skeleton. Each bone is

computed as a rotation and a translation relative to its parent.
Any subset of the circles, are collectively referred to as the end-

effectors.

For long, researchers in computer animation have
arrived at similar conclusions (Kerlow, 2003; Erleben

et al, 2005). It is quite difficult to pose a figure in terms
of its internal representation. For most work, animators
instead pose individual bones of the figure in spatial co-
ordinates using an inverse kinematics system. Such a

system usually seeks a configuration of the joints that
minimises the distance between a goal and an attained
spatial coordinate by solving a nonlinear least-squares

problem. In this paper, we recast the least-squares op-
timisation problem in a probabilistic setting. This then
allows us to extend the model to sequential data, which
in turn allows us to work with motion models in spatial

coordinates rather than joint angles.

2 The Pose Representation

Before discussing the issues of human motion analysis,
we pause to introduce the actual representation of the

human pose. In this paper, we use the kinematic skele-
ton (see fig. 1), which, amongst others, was also used
by Sidenbladh et al (2000) and Sminchisescu and Triggs
(2003). The representation is a collection of connected

rigid bones organised in a tree structure. Each bone
can be rotated at the point of connection between the
bone and its parent. We will refer to such a point of

connection as a joint.

Since bone lengths tend to change very slowly in
humans (e.g. at the time scale of biological growth),
these are modelled as being constant and effectively we
consider bones as being rigid. Hence, the direction of

each bone constitute the only degrees of freedom in the
kinematic skeleton. The direction in each joint can be
parametrised with a vector of angles, noticing that dif-

ferent joints may have different number of degrees of
freedom. We may collect all joint angle vectors into one
large vector θ representing all joint angles in the model.

Since each element in this vector is an angle, θ must be
confined to the N -dimensional torus, TN .

2.1 Forward Kinematics

From known bone lengths and a joint angle vector θ it

is straight-forward to compute the spatial coordinates
of the bones. Specifically, the purpose is to compute the
spatial coordinates of the end points of each bone. This
process is started at the root of the tree structure and

moves recursively along the branches, which are known
as the kinematic chains.

The root of the tree is placed at the origin of the co-
ordinate system. The end point of the next bone along
a kinematic chain is then computed by rotating the co-

ordinate system and then translating the root along a
fixed axis, i.e.

al = Rl (al−1 + tl) , (1)

where al is the lth end point, and Rl and tl denotes

a rotation and a translation respectively. The rotation
is parametrised by the relevant components of the pose
vector θ and the length of the translation corresponds

to the known length of the bone. We can repeat this
process recursively until the entire kinematic tree has
been traversed. This process is known as Forward Kine-
matics (Erleben et al, 2005).

The rotation matrix Rl of the lth bone is parame-
trised by parts of θ. The actual number of used param-

eters depends on the specific joint. For elbow, knee and
angle joints, we use one parameter, while we use three
parameters to control all other joints. These two differ-

ent joint types are respectively known as hinge joints
and ball joints.

Using forward kinematics, we can compute the spa-
tial coordinates of the end points of the individual bones.
These are collectively referred to as end-effectors. In

fig. 1 these are drawn as circles. In most situations, we
shall only be concerned with some subset of the end-
effectors. Often one is only concerned with body ex-
tremities, such as the head and the hands, hence the

name end -effectors. We will denote the spatial coordi-
nates of these selected end-effectors by F (θ).

2.2 Joint Constraints

In the human body, bones cannot move freely at the
joints. A simple example is the elbow joint, which can

approximately only bend between 0 and 160 degrees.
To represent this, θ is confined to a subset Θ of TN .
For simplicity, this subset is often defined by confining

each component of θ to an interval, i.e.

Θ =

N∏

n=1

[ln, un] , (2)
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where ln and un denote the lower and upper bounds of
the nth component. This type of constraints on the an-
gles is often called box constraints (Erleben et al, 2005).
More realistic joint constraints are also possible, e.g. the

implicit surface models of Herda et al (2004).

3 Challenges of Motion Analysis

Much work has gone into human motion analysis. The
bulk of the work is in non-articulated analysis, i.e. locat-
ing the position of moving humans in image sequences
and classifying their actions. It is, however, beyond the

scope of this paper to give a review of this work. The
interested reader can consult review papers such as the
one by Moeslund et al (2006).

In recent years, focus has shifted to articulated vi-
sual human motion analysis in three dimensions (Poppe,
2007). Here, the objective is to estimate θ in each im-

age in a sequence. When only using a single camera,
or a narrow baseline stereo camera, motion analysis is
inherently difficult due to self-occlusions and visual am-

biguities. This manifests itself in that the distribution
of the human pose is multi-modal with an unknown
number of modes. To reliably estimate this distribution
we need methods that cope well with multi-modal dis-

tributions. Currently, the best method for such prob-
lems is the particle filter (Cappé et al, 2007), which
represents the distribution as a set of weighted sam-

ples. Unfortunately, the particle filter is smitten by the
curse of dimensionality in that the necessary number of
samples grow exponentially with the dimensionality of
state space. The consequence is that the particle filter

is only applicable to low dimensional state spaces. This
is in direct conflict with the fact that the human body
has a great number of degrees of freedom.

The most obvious solution to these problems is to in-
troduce some activity dependent model of the motion,
such that the effective degrees of freedom is lowered.

Here it should be noted that the actual number of de-
grees of freedom in the human body (independently of
representation) is inherently large. So, while this ap-

proach works it does force us into building models that
does not generalise to other types of motion than the
ones modelled.

3.1 Dimensionality Reduction in Motion Analysis

Motion specific models can be constructed by reducing
the dimensionality of the angle space by learning a man-

ifold in angle space to which the motion is restricted.
A predictive motion model can then be learned on this

manifold. Sidenbladh et al (2000) learned a low-dimen-

sional linear subspace using Principal Component Anal-
ysis and used a linear motion model in this subspace.
In the paper a model of walking is learned, which is a

periodic motion, and will therefore be performed in a
nonlinear cyclic subspace of the angle space. The choice
of a linear subspace therefore seems to come from sheer
practicality in order to cope with the high dimension-

ality of the angle space and not from a well-founded
modelling perspective.

Sminchisescu and Jepson (2004) use Laplacian Eigen-
maps (Belkin and Niyogi, 2003) to learn a nonlinear mo-
tion manifold. Similarly, Lu et al (2008) use a Laplacian
Eigenmaps Latent Variable Model (Carreira-Perpinan

and Lu, 2007) to learn a manifold. The methods used
for learning the manifolds, however, assumes that data
is densely sampled on the manifold. This either requires

vast amounts of data or a low-dimensional manifold. In
the mentioned papers, low dimensional manifolds are
studied. Specifically, one-dimensional manifolds corre-

sponding to walking. It remains to be seen if the ap-
proach scales to higher dimensional manifolds.

Instead of learning the manifold, Elgammal and Lee

(2009) suggested learning a mapping from angle space
to a known manifold. They choose to learn a mapping
onto a two dimensional torus, which allows for analy-

sis of both periodic and aperiodic motion. By enforcing
a known topology, the learning problem becomes more
tractable compared to unsupervised methods. The ap-
proach is, however, only applicable when a known topol-

ogy is available.

Instead of just learning a manifold and restricting
the tracking to this, it seems reasonable also to use the

density of the training data on this manifold. Urtasun
et al (2005) suggested to learn a prior distribution in
a low dimensional latent space using a Scaled Gaussian

Process Latent Variable Model (Grochow et al, 2004).
This not only restricts the tracking to a low dimensional
latent space, but also makes parts of this space more

likely than others. The approach, however, ignores all
temporal aspects of the training data. To remedy this,
both Urtasun et al (2006) and Wang et al (2008) sug-
gested learning a low dimensional latent space and a

temporal model at once using a Gaussian Process Dy-
namical Model. This approach seems to provide smooth
priors that are both suitable for animation and track-

ing.

This approach, however, gracefully ignores the topol-
ogy of the angle space. Specifically, the approach treats

the angle space as Euclidean, and thus ignores both
the periodic nature of angles and the constraints on
the joints. To deal with this issue, Urtasun et al (2008)

suggested changing the inner product of the before-
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Fig. 2 One hundred random poses generated by sampling joint

angles independently from a Von Mises distribution with con-
centration κ = 500, corresponding to a circular variance of ap-

proximately 0.001 (for details of this sampling, see sec. 7.1.1).

Notice how the variance of spatial limb positions increase as the
kinematic chains are traversed.

mentioned Gaussian process to incorporate joint con-
straints.

3.2 The Case Against Predictions in Angle Space

When representing a pose as a set of joint angles θ, it

is tempting to build motion models p(θt|θt−1) in terms
of joint angles. This approach is, however, not without
problems.

The first problem is simply that the space of angles
is quite high dimensional. This does not rule out manual
construction of models, but it can make model learning

impractical.

The second problem is the relationship between spa-

tial limb positions and limb orientations implied by for-
ward kinematics. The spatial position of a limb is de-
pendent on the position of its parent. Thus, if we change

the direction of one bone, we change the position of all
its children. Now, consider a predictive model in an-
gle space that simply adds a little uncertainty to each
angle. For this simple model, we see that the variance

of the spatial position of limbs increases as we traverse
the kinematic chains (see fig. 2). In other words: the
position of a hand is always more uncertain than the

position of the elbow. This property does not seem to
come from a well-founded modelling perspective.

The third problem is that the angle space is topolog-
ically different from RN . If the joint angles are uncon-
strained, such that each angle can take on values in the
circular domain [0, 2π), they live on the N -dimensional

torus. Thus, it is necessary to restrict the motion mod-
els to this manifold, which rules out models that are
designed for RN .

If the joint angles are instead constrained, the topol-
ogy of the angle space changes significantly. If e.g. box

constraints are enforced the set of legal angles becomes
a box in RN . Specifically, it becomes the product space

∏N
n=1[ln, un], where ln and un are the lower and upper

constraints for the nth angle. Again, we cannot apply
motion models designed for RN , without taking special
care to ensure that the pose adheres to the constraints.

In either case, we cannot use motion models de-

signed for RN . This means that as long as we model
in terms of joint angles, it is not mathematically well-
defined to learn motion models using e.g. PCA. This
problem can be alleviated by picking a suitable inner

product for the angle space as suggested by Urtasun
et al (2008). While a carefully designed inner product
can solve the mathematical problems, it does not solve

the rest of the above-mentioned problems.

From a modelling point of view, these problems all
lead to the same fundamental question: which space is
most suitable for predicting human motion?

3.3 Experimental Motivation

For many years, experimental neurologists have stud-
ied how people move. Morasso (1981) measured joint

angles and hand positions while people moved their
hand to a given target. Abend et al (1982) expanded
on this experiment, and introduced obstacles that the

hand had to move around. Both made the same obser-
vation: joint angles show great variation between both
persons and trials, while hand positions consistently
followed the same path with low variation. Recently,

Ganesh (2009) made similar observations for actions
like punching and grasping in a computer vision based
tele-immersion system. One interpretation of these re-

sults is that the end-effector trajectories describes the
generic, i.e. the person independent, part of the motion.

This result is a strong indication that humans plan
body motion in terms of spatial limb trajectories rather

than joint angles. It is our claim that we can achieve
better predictions of human motion if we do so in the
same space as where the motion was planned. Hence, it
makes sense to build predictive models in end-effector

space rather than the space of joint angles.

One can arrive at the same conclusion by taking a
purely statistical point of view. The above-mentioned
experiments showed less variation in end-effector po-

sitions compared to joint angles. Thus, it seems more
robust to build or learn models in terms of end-effectors
as this describes the generic part of the motion.

3.4 Our Approach

Inspired by the results from neurology, we turn to mod-
elling human motion in terms of a few selected end-

effectors. Which end-effectors we choose to model de-
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pends on the studied motion. Our first assumption is
that we know some stochastic process that describes the
motion of these end-effectors. Our goal is then to pro-
vide a framework for moving this process back into the

angle space. From a practical point of view, we aim at
describing the pose distribution in angle space given the
end-effector positions. This problem is closely related

to inverse kinematics, which seeks a joint configuration
that attains the given end-effector positions.

This approach has several advantages.

1. Since we are only modelling few selected end-effectors
their spatial coordinates are more low-dimensional
than all angles. While the degrees of freedom in

the human body remains unchanged, the modelling
space becomes more low-dimensional. This makes
manual model crafting more practical, but more im-

portantly it also makes model learning much more
robust as fewer parameters need to be estimated.

2. Many types of motion can be easily described in spa-
tial coordinates, e.g. move foot towards ball is a de-

scription of kicking a ball, whereas the same motion
is hard to describe in terms of joint angles. These
types of motions are typically goal oriented. In com-

puter animation, this line of thinking is so common,
that inverse kinematics systems are integrated with
practically all 3D graphics software packages.

3. The stochastic motion process is expressed in spatial
coordinates, which is a real vector space, instead of
angles, which is on the N -dimensional torus. This
makes it easier to use off-the-shelf stochastic pro-

cesses as the motion model, since most processes
are designed for real vector spaces.

3.5 Inverse Kinematics in Tracking

The most basic fact of computer vision is that the world
is inherently spatial and that we study projections of

this spatial world onto the image plane. Articulated mo-
tion can be estimated as a direct optimisation in the
image plane, which requires the derivative of the likeli-

hood with respect to the pose parameters. As the im-
age data is inherently spatial this gradient depends on
a mapping from the spatial domain into the joint angle
space, i.e. an inverse kinematics system. Bregler et al

(2004) formalises this in terms of twists and products
of exponential maps as is common in the robotics lit-
erature (Murray et al, 1994). This leads to an iterative

scheme for optimising a likelihood based on the grey
value constancy assumption. This assumption works
well on some sequences, but fails to cope with changes in
the lighting conditions. Knossow et al (2008) avoids this

issue by defining the likelihood in terms of the chamfer-

distance between modelled contours and observed im-

age contours. To perform direct optimisation Knossow
et al finds the derivative of the projection of the con-
tour generator into the image plane with respect to the

pose parameters – again, this requires solving an inverse
kinematics problem. These direct methods works well
in many scenarios, but does not allow for an immediate
inclusion of a prior motion model.

In this paper, we focus on statistical models of hu-
man motion expressed in the spatial domain. This idea

of modelling human motion spatially is not new. Re-
cently, Salzmann and Urtasun (2010) showed how joint
positions can be modelled, while still adhering to the
constraints given by the constant limb lengths. In a sim-

ilar spirit, Hauberg et al (2010) has proposed that the
constraint problem can be solved by projection onto the
nonlinear manifold implicitly defined by enforcing con-

stant limb lengths. These ideas has also been explored
successfully in the motion compression literature, where
Tournier et al (2009) showed how spatial limb positions
could be compressed using principal geodesic analysis

(Fletcher et al, 2004). These approaches are different
from ours as we model goal positions of a few selected
end-effectors rather than considering all joints in the

kinematic skeleton.

When motion is estimated from silhouettes seen from
a single view-point inherent visual ambiguities creates

many local minima (Sminchisescu and Triggs, 2003).
Using a simple closed-form inverse kinematics system
allows Sminchisescu and Triggs to enumerate possible

interpretations of the input. This results in a more ef-
ficient sampling scheme for their particle filter, as it
simultaneously explores many local minima, which re-

duces the chance of getting stuck in a single local min-
imum. However, their approach suffers from the prob-
lems discussed in sec. 3.2, which makes it difficult to
incorporate application specific motion priors.

When modelling interactions with the environment,
inverse kinematics is an essential tool as it provides a
mapping from the spatial world coordinate system to

the joint angle space. Rosenhahn et al (2008) uses this
to model interaction with sports equipment, such as bi-
cycles and snowboards. They use the previously men-

tioned formalism of twists and products of exponen-
tial maps to derive an approximate gradient descent
scheme for estimating poses. In a similar spirit, Kjell-

ström et al (2010) models interaction with a stick-like
object. They solve the inverse kinematics problem us-
ing rejection sampling in joint angle space, leading to
a computational expensive approach due to the high

dimensionality of the joint angle space.

Previously, we (Hauberg et al, 2009; Engell-Nørre-

g̊ard et al, 2009) successfully used end-effector positions
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as the pose representation, which provided a substantial
dimensionality reduction. When comparing a pose to
an image, we used inverse kinematics for computing
the entire pose configuration. This paper provides the

full Bayesian development, analysis and interpretation
of this approach.

Courty and Arnaud (2008) have previously suggested

a probabilistic interpretation of the inverse kinematics
problem. We share the idea of providing a probabilis-
tic model, but where they solve the inverse kinemat-

ics problem using importance sampling, we use inverse
kinematics to define the importance distribution in our
particle filter.

3.6 Organisation of the Paper

The rest of the paper is organised as follows. In the

next section, we derive a model, that allows us to de-
scribe the distribution of the joint angles in the kine-
matic skeleton given a set of end-effector goals. In sec. 5
we show the needed steps for performing inference in

this model as part of an articulated motion analysis
system. These two sections constitute the main tech-
nical contribution of the paper. To actually implement

a system for articulated motion analysis, we need to
deal with observational data. A simple system for this
is described in sec. 6 and in sec. 7 we show examples

of the attained results. The paper is concluded with a
discussion in sec. 8.

4 Deriving the Model

The main objective of this paper is to construct a frame-
work for making predictions of future motion. Since

we are using the kinematic skeleton as the pose rep-
resentation, we need to model some distribution of θ.
As previously described we wish to build this distri-

bution in terms of the spatial coordinates of selected
end-effectors. To formalise this idea, we let g denote
the spatial coordinates of the end-effector goals. Intu-
itively, this can be thought of as the position where

the human wishes to place e.g. his or her hands. Our
objective thus becomes to construct the distribution of
θ given the end-effector goal g. Formally, we need to

specify p(θ|g).

Given joint angles, we start out by defining the like-
lihood of an end-effector goal g as a “noisy” extension
of forward kinematics. Specifically, we define

p(g|θ) = N
(
g|F (θ),W−1) , (3)

where W is the precision (inverse covariance) matrix of

the distribution. Here, the stochasticity represents that
one does not always reach ones goals.

We do not have any good prior information about
the joint angles θ except some limits on their values.
So, we take a least-commitment approach and model
all legal angles as equally probable,

p(θ) = UΘ(θ) , (4)

where Θ is the set of legal angles, and UΘ is the uni-
form distribution on this set. In practice, we use box
constraints, i.e. confine each component of θ to an in-
terval. This gives us

p(θ) =

N∏

n=1

U[ln,un](θ[n]) , (5)

where ln and un denote the lower and upper bounds of
the nth component θ[n].

Using Bayes’ theorem, we combine eq. 3 and eq. 5
into

p(θ|g) =
p(g|θ)p(θ)

p(g)
∝ p(g|θ)p(θ) (6)

= N
(
g|F (θ),W−1)

N∏

n=1

U[ln,un](θ[n]) . (7)

As can be seen, we perform a nonlinear transformation

F of the θ variable and define its distribution in the
resulting space. In other words we effectively define the
distribution of θ in the end-effector goal space rather

than angle space. It should be stressed that while p(θ|g)
looks similar to a normal distribution, it is not, due to
the nonlinear transformation F .

In the end, the goal is to be able to extract θ from
observational data such as images. We do this using a
straight-forward generative model,

p(X,θ,g) = p(X|θ)p(θ|g)p(g) , (8)

where X is the observation. This model is shown graph-

ically in fig. 3. It should be noted that we have yet to
specify p(g); we will remedy this at a later stage in the
paper.

4.1 Relation to Inverse Kinematics

Taking the logarithm of eq. 7 gives us

log p(θ|g) = −1

2
(g − F (θ))TW(g − F (θ))

+

N∑

n=1

logU[ln,un](θ[n]) + constant .
(9)
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Fig. 3 Graphical representation of the Probabilistic Inverse
Kinematics model given in eq. 8.

Maximising this corresponds to minimising

d2 (F (θ),g) =
1

2
(g − F (θ))TW(g − F (θ)) , (10)

subject to l ≤ θ ≤ u, where l and u are the vectors
containing the joint limits. This is the inverse kinemat-

ics model presented by Zhao and Badler (1994). Thus,
we deem eq. 7 Probabilistic Inverse Kinematics (PIK).

It should be noted that due to the nonlinearity of F ,

this optimisation problem is nonlinear, rendering max-
imum a posteriori estimation difficult. Since the end-
effector space is often much more low-dimensional than
the angle space, the Hessian of eq. 10 does not have

full rank. As a consequence the optimisation problem
is not guaranteed to have a unique solution. In fact, the
minima of eq. 10 often form a continuous subspace of

Θ. This can be realised simply by fixing the position of
a hand, and moving the rest of the body freely. Such
a sequence of poses will be continuous while all poses

attain the same end-effector position.

4.2 Sequential PIK

As previously mentioned we aim at building predictive
distributions for sequential analysis based on the end-

effector goals. To keep the model as general as possi-
ble, we assume knowledge of some stochastic process
controlling the end-effector goals. That is, we assume

we know p(gt|g1:t−1), where the subscript denotes time
and g1:t−1 = {g1, . . . ,gt−1} is the past sequence. In
sec. 7 we will show examples of such processes, but it
should be noted that any continuous process designed

for real vector spaces is applicable.

While we accept any continuous model p(gt|g1:t−1)
in end-effector goal space, we do prefer smooth motion

in angular space. We model this as preferring small tem-

poral gradients
∣∣∣∣∂θ
∂t

∣∣∣∣2. To avoid extending the state
with the temporal gradient, we approximate it using

finite differences,

∣∣∣∣
∣∣∣∣
∂θ

∂t

∣∣∣∣
∣∣∣∣
2

≈ ||θt − θt−1||2 . (11)

Fig. 4 Graphical representation of the Sequential Probabilistic

Inverse Kinematics model given in eq. 13.

So, we introduce a first order Markov model in angle

space and define

log p(θt|gt,θt−1) = −1

2
(gt − F (θt))

TW(gt − F (θt))

− λ

2
||θt − θt−1||2 (12)

+
N∑

n=1

logU[ln,un](θt[n]) + constant ,

where λ controls the degree of temporal smoothness.

This is effectively the same as eq. 9 except poses close
to the previous one, θt−1, are preferred. This slight
change has the pleasant effect of isolating the modes of

p(θt|gt,θt−1), which makes maximum a posteriori es-
timation more tractable. Consider the previously given
example. A person can put his or her hands in a given

position in many ways, but no continuous subset of the
pose space can attain the given hand position and be
closest to the previous pose at the same time.

In summary, we have the following final generative

model

p(X1:T ,θ1:T ,g1:T ) = p(X1|θ1)p(θ1|g1)p(g1)

T∏

t=2

p(Xt|θt)p(θt|gt, θt−1)p(gt|g1:t−1) ,
(13)

where X1:T = {X1, . . . ,XT } denotes the sequence of
observations. This model is illustrated in fig. 4.

4.3 Designing Spatial Processes

One of the advantages of the Sequential PIK model
is that given a spatial model p(gt|g1:t−1) of the end-
effector goals, we can work with the corresponding model

in terms of joint angles. However, so far, we have avoided
the question of how to define such spatial models. We
will give specific examples in sec. 7, but until then, it
can be instructive to consider how one might design

such models.
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Consider a person grasping for an object. Neurol-
ogists (Morasso, 1981; Abend et al, 1982) have shown
that people most often move their hands on the straight
line from the current hand position towards the object.

This can easily be modelled by letting the goal posi-
tion of the hand move along this line. The speed of
the hand could be modelled as a constant or it could

be controlled by another process. It should be stressed
that the immediate goal gt follows the mentioned line
and hence is different from the end goal (the position

of the object).

As a second example, consider a person walking.

Many successful models of such motions have been de-
rived in terms of joint angles as discussed in sec. 3.1.
Most of them does, however, not consider interaction

with the ground plane, which is an intrinsic part of
the motion. This interaction actually makes the motion
non-smooth, something most models cannot handle. By

modelling the goals of the feet it is easy to ensure that
one foot always is in contact with the ground plane and
that the other never penetrates the ground. The actual
trajectory of the moving foot could then be learned us-

ing, e.g. a Gaussian process (Rasmussen and Williams,
2006). Again, the immediate goal gt would move along
the curve represented by the learned process.

5 Inference

In the previous section a model of human motion was
derived. This section focuses on the approximations
needed to perform inference in the model. Due to the

inherent multi-modality of the problem, we use a par-
ticle filter to perform the inference. In the next section
this algorithm is described from an importance sam-

pling point of view as our choice of importance distri-
bution is non-conventional. Results will, however, not
be proved; instead the reader is referred to the review

paper by Cappé et al (2007).

We will assume that a continuous motion model

p(gt|g1:t−1) is available and that we can sample from
this distribution. Specific choices of this model will be
made in sec. 7, but it should be stressed that the method

is independent of this choice, e.g. further constraints
such as smoothness may be added.

We will also assume that a system p(Xt|θt) for mak-
ing visual measurements is available. Such a system will

be described in sec. 6, but the method is also indepen-
dent of the specifics of this system.

5.1 Approximate Bayesian Filtering

The aim of approximate Bayesian filtering is to estimate
the filtering distribution p(θt|gt,X1:t) by means of sam-
ples. Instead of drawing samples from this distribution,

they are taken from p(θ1:t|g1:t,X1:t) and then all values
of the samples but θt are ignored. Since the filtering
distribution is unknown, we turn to importance sam-

pling (Bishop, 2006). This means drawing M samples

θ
(m)
1:t from an importance distribution q(θ1:t|g1:t,X1:t)

after which moments of the filtering distribution can be
estimated as

h̄ =

∫
h(θt)p(θt|gt,X1:t)dθt

≈
M∑

m=1

w
(m)
t h

(
θ
(m)
t

) (14)

for any function h. Here we have defined the importance
weights as

w
(m)
t ∝

p
(
θ
(m)
1:t

∣∣g(m)
1:t ,X1:t

)

q
(
θ
(m)
1:t

∣∣g(m)
1:t ,X1:t

) ,
M∑

m=1

w
(m)
t = 1 . (15)

Unsurprisingly, eq. 14 is exact when M →∞.
The key to making this strategy work is to choose

an importance distribution, which ensures that the re-
sulting algorithm is recursive. With this in mind, it is
chosen that the importance distribution should be fac-

torised as

q(θ1:t|g1:t,X1:t) = q(θ1:t−1|g1:t−1,X1:t−1)

q(θt|gt,θt−1,Xt) .
(16)

With this choice, one can sample from q(θ1:t|g1:t,X1:t)

recursively by extending the previous sample θ
(m)
1:t−1 with

a new sample θ
(m)
t from q(θt|gt,θt−1,Xt). The weights

w
(m)
t−1 can also be recursively updated by means of

w
(m)
t ∝ w

(m)
t−1 p

(
Xt

∣∣θ(m)
t

)
r(m) (17)

with

r(m) =
p
(
θ
(m)
t

∣∣g(m)
t ,θ

(m)
t−1

)

q
(
θ
(m)
t

∣∣g(m)
t ,θ

(m)
t−1,Xt

) . (18)

When extending the previous sample, we need to
draw a sample from q(θt|gt,θt−1,Xt). This, however,
assumes that the true value of θt−1 is known, which

is not the case. Several strategies can be used to ap-
proximate this value. Sequential Importance Sampling
assumes that the previous sample positions were the

true value, i.e. θt−1 = θ
(m)
t−1. This is usually not sta-

ble, since small differences between the sample and the
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true value accumulates over time. The particle filter ap-
proximates the distribution of θt−1 with the weighted
samples from the previous iteration, i.e.

p(θt−1|gt−1,X1:t−1) ≈
M∑

m=1

w
(m)
t−1δ

(
θt−1 − θ

(m)
t−1

)
. (19)

The value of θt−1 is then approximated by sampling
from this distribution. This simply corresponds to a re-
sampling of the previous samples, where samples with

large weights have a high probability of surviving. Since
these samples are assumed to come from the true dis-
tribution p(θt−1|gt−1,X1:t−1), the associated weights

have to be reset, i.e. w
(m)
t−1 = 1/M for all m.

We have still to choose the importance distribu-
tion q(θt|gt,θt−1,Xt). The most common choice is in-
spired by eq. 18. Here, we note that r(m) = 1 if we

set q(θt|gt,θt−1,Xt) = p(θt|gt,θt−1), which simplifies
the weight update. With this choice, the resulting fil-
ter is called the Bootstrap filter. This cannot, however,

be applied for the model described in this paper, as we
cannot sample directly from p(θt|gt,θt−1). A different
importance distribution will be presented next.

5.2 The Importance Distribution

Inspired by the Bootstrap filter, we drop the observa-
tion Xt from the importance distribution, such that

q(θt|gt,θt−1,Xt) = q(θt|gt,θt−1). It would seem tempt-
ing to use p(θt|gt,θt−1) as the importance distribution.
It is, however, not straightforward to draw samples from

this distribution, so this choice does not seem viable. In-
stead, we seek a distribution that locally behaves simi-
larly to p(θt|gt,θt−1).

In sec. 4.2 we noted that p(θt|gt,θt−1) has isolated

modes. Thus, it seems reasonable to locally approxi-
mate this distribution using a Laplace approximation
(Bishop, 2006), which is a second order Taylor approx-

imation of the true distribution. This boils down to fit-
ting a normal distribution around the local mode θ∗t , us-
ing the Hessian of − log p(θt|gt,θt−1) as an approxima-

tion of the precision matrix. Assuming that F (θ∗t ) = gt,
i.e. the located pose actually reaches the given end-
effector goal, this Hessian matrix attains the simple
form

H = −(gt − F (θ∗t ))
TW

∂J

∂θ
+ JTWJ + λI (20)

= JTWJ + λI , (21)

where J is the Jacobian of F at θ∗t . This Jacobian con-
sists of a row for each component of θt. Each such row

can be computed in a straightforward manner (Zhao
and Badler, 1994). If r is the unit-length rotational

Fig. 5 The derivative of a joint is found as the cross product of
the rotational axis r and the vector from the joint to the end-

effector g.

axis of the nth angle and ∆g is the vector from the
joint to the end-effector, then the row is computed as
∂F

∂θt[n]
= r×∆g. This is merely the tangent of the circle

formed by the end-effector when rotating the joint in

question as is illustrated in fig. 5.

We, thus, have an easy way of computing the Laplace
approximation of p(θt|gt,θt−1), which we use as the

importance distribution. That is, we pick

q(θt|gt,θt−1,Xt)

= N
(
θt

∣∣∣θ∗t ,
(
JTWJ + λI

)−1)
UΘ(θt) .

(22)

Hence, we are using a local second order approximation

of the Bootstrap filter, while adhering to the joint con-
straints. It should be noted that we can easily sample
from this distribution using rejection sampling (Bishop,

2006). When using box constraints, this rejection sam-
pling can be performed one joint angle at a time and as
such does not impact performance in any measureable
way.

5.2.1 Solving the Nonlinear Least-Squares Problem

One assumption made in the previous section was that

we can compute the mode θ∗t of p(θt|gt,θt−1). Since
the modes of this distribution are isolated, we can eas-
ily locate a mode, using a nonlinear constrained least-

squares solver. In this paper, we are using a simple, yet
effective, gradient projection method with line search
(Nocedal and Wright, 1999).

To perform the optimisation, we need to compute

the gradient of log p(θt|gt,θt−1). This is given by

∂ log p(θt|gt,θt−1)

∂θt
=(gt − F (θt))

TWJ

−λ(θt − θt−1) .

(23)

When solving the nonlinear least-squares problem, we

start the search in θt−1, which usually ensures conver-
gence in a few iterations.
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6 Visual Measurements

In this section we define p(Xt|θt), i.e. we describe how
we compare an observation with a pose hypothesis. This
allows us to compute weights for the particle filter,

which then optimises the posterior. Since this paper
is focused on the prediction aspect of a tracker, we de-
liberately keep this part as simple as possible.

6.1 General Idea

To keep the necessary image processing to a minimum,
we use a small baseline consumer stereo camera from
Point Grey1. At each time-step, this camera provides

a set of three dimensional points as seen from a single
view point (see fig. 6). The objective of p(Xt|θt) is then
essentially to measure how well θt fits with these points.

Due to the small baseline, visual ambiguities will occur,
which leads to local maxima in the likelihood. This is
one reason for using a particle filter for performing in-
ference.

Let Xt = {x1, . . . ,xK} denote the set of three di-
mensional points provided by the stereo camera. Our
first simplifying assumption is that these are indepen-
dent and identically distributed, i.e.

p(Xt|θt) =
K∏

k=1

p(xk|θt) . (24)

We then define the likelihood of an individual point as

p(xk|θt) ∝ exp

(
−D

2(θt,xk)

2σ2

)
, (25)

where D2(θt,xk) denotes the squared distance between

the point xk and the surface of the pose parametrised
by θt.

We, thus, need a definition of the surface of a pose,
and a suitable metric.

6.2 The Pose Surface

The pose θt corresponds to a connected set of L bones,
each of which have a start and an end point. We, re-
spectively, denote these al and bl for the lth bone; we

can compute these points using forward kinematics. We
then construct a capsule with radius rl that follows the
line segment from al to bl. The surface of the lth bone

is then defined as the part of this capsule that is visible
from the current view point. This surface model of a
bone is illustrated in fig. 7a. The entire pose surface is

1 http://www.ptgrey.com/products/bumblebee2/

(a) (b)

Fig. 7 (a) An illustration of the surface of a bone. Here al and bl

denotes the end points of the bone, while c denotes the camera

position. For illustration purposes, we only show the cylindric
part of the capsules. (b) An illustration of the computation of

the point on the bone surface from a data point. To keep the

figure simple, we show data points x1 and x2 that share the same
nearest point p = p1l = p2l on the line segment between al and

bl. The vectors w1l and w2l are the vectors from p pointing

towards h1l and h2l.

then defined as the union of these bone surfaces. This
is essentially the same surface model as was suggested

by Sidenbladh et al (2000), except they used cylinders
instead of capsules. In general, this type of surface mod-
els does not describe the human body particularly well.
The capsule skin can, however, be replaced with more

descriptive skin models, such as the articulated implicit
surfaces suggested by Horaud et al (2009).

In the end, our objective is to compute the distance

between a data point and the surface. We do this by
first finding the nearest point on the surface and then
compute the distance between this point and the data

point. Since we define the pose surface bone by bone,
we can compute this distance as the distance to the
nearest bone surface, i.e.

D2(θt,xk) = min
l

(
d2(xk,hkl)

)
, (26)

where hkl is the nearest point (in the Euclidean sense)

on the lth bone and d2(xk,hkl) is the squared distance
between xk and hkl. Note that the minimisation in
eq. 26 can be trivially performed by iterating over all L

bones.

6.2.1 Finding Nearest Point on the Bone Surface

We thus set out to find the point on a bone surface
that is nearest to the data point xk. We start by finding

the nearest point on the capsule with radius rl around
the line segment from al to bl. We let pkl denote the
point on the line segment that is nearest to xk, and
then the nearest point on the capsule can be found as

p + rl
xk−pkl

||xk−pkl|| .
We now turn our attention to the part of the capsule

that can be seen from the camera. Points on this part

of the capsule can be described as the points where the
angle between the vectors from pkl to the camera and
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Fig. 6 A rendering of the data from the stereo camera from different views.

to the point on the surface should be no greater than 90
degrees. This is formalised by requiring (xk−pkl)

T (c−
pkl) ≥ 0, where c denotes the position of the camera.

If the nearest point is not on the visible part, then it
is on the border of the surface. Hence, the vector from
pkl to the nearest point must be orthogonal to the line

segment formed by al and bl, and the vector from pkl
to c. In other words, the nearest point on the surface
can then be computed as

hkl = pkl + rl
wkl

||wkl||
, (27)

where

wkl =

{
xk − pkl, (xk − pkl)

T (c− pkl) ≥ 0

sgn
(
xTk v

)
v, otherwise ,

(28)

with v = (c − pkl) × (bl − al). The geometry behind

these computations is illustrated in fig. 7b.

6.3 Robust Metric

We are now able to find the point on the surface of a
bone that is nearest to a data point xk. Thus, we are
only missing a suitable way of computing the squared

distance between the data point and the nearest point
on the bone surface. The most straight-forward ap-
proach is to use the squared Euclidean distance. This is,
however, not robust with respect to outliers. Looking at

fig. 6, we see that the data from the stereo camera con-
tains many outliers; some due to mismatches and some
due to other objects in the scene (i.e. the background).

To cope with these outliers, we could use any robust
metric. Here, we choose to use a simple thresholded
squared Euclidean distance, i.e.

d2(xk,hkl) = min
(
||xk − hkl||2, τ

)
. (29)

7 Results

We now have a complete articulated tracker, and so
move on to the evaluation. First, we compare our pre-
dictive model to a linear model in angle space. Then,

we show how the model can be extended to model in-
teractions between the person and objects in the envi-
ronment. Finally, we provide an example of an activity
dependent model from the world of physiotherapy.

In each frame, the particle filter provides us with a

set of weighted hypotheses. To reduce this set to a sin-
gle hypothesis in each frame, we compute the weighted
average, i.e.

θ̂t =

M∑

m=1

w
(m)
t θ

(m)
t , (30)

which we use as an estimate of the current pose. This
simple choice seems to work well enough in practice.

7.1 Linear Extrapolation in Different Spaces

We start out by studying an image sequence in which
a test subject keeps his legs fixed while waving a stick

with both hands in a fairly arbitrary way. This sequence
allows us to work with both complex and highly artic-
ulated upper body motions, without having to model

translations of the entire body. A few frames from this
sequence is available in fig. 8. This sequence poses sev-
eral problems. Due to the style of the motion, limbs
are often occluded by each other, e.g. one arm is often

occluded by the torso. As the sequence is recorded at
approximately 15 frames per second we also see motion
blur. This reduces the quality of the stereo reconstruc-

tion, which produces ambiguities for the tracker.

7.1.1 Angular Motion Model

For comparative purposes we build an articulated tracker
in which the predictive model is phrased in terms of

18



Frame 91 Frame 159 Frame 268

Fig. 8 Frames 91, 159 and 268 from the first test sequence. On the top is one image from the camera; in the middle and in the bottom

is a rendering of the stereo data from two different view points. The final objective is to extract θt from such data.

independent joint angles. Specifically, we linear extrap-
olate the joint angles, i.e. we define the mean of the
predictive distribution as

θ̄t+1 = θt + (θt − θt−1) . (31)

The predictive distribution is then defined as a Von

Mises distribution (Bishop, 2006) with the above mean,
which is constrained to respect the joint limits. Pre-
cisely, the predictive distribution is defined as

p
(
θt+1

∣∣ θt,θt−1
)

∝ UΘ(θt+1)
N∏

n=1

exp
(
κn cos(θt+1[n]− θ̄t+1[n])

) (32)

This model is conceptually the one proposed by Poon
and Fleet (2002), except our noise model is a Von Mises
distribution whereas a Normal distribution was previ-

ously applied.

7.1.2 End-effector Motion Model

We compare the linear predictor in angle space to a lin-

ear predictor in the space of end-effector goals. Specifi-
cally, we focus on the spatial positions of the head and

the hands, such that gt denotes the goal of these. We
then define their motion as

p(gt+1|gt,gt−1) = N (gt+1|gt + (gt − gt−1), σ2I). (33)

The predictive distribution in angle space is then cre-
ated as described in sec. 4.

7.1.3 Experimental Setup

To evaluate the quality of the attained results we po-
sition motion capture markers on the arms of the test
subject. We then measure the average distance between

the motion capture markers and the capsule skin of the
estimated pose. This measure is then averaged across
frames, such that the error measure becomes

E(θ1:T ) =
1

TM

T∑

t=1

M∑

m=1

D(θt,vmt) , (34)

where D(θt,vmt) is the shortest Euclidean distance be-

tween the mth motion capture marker and the skin at
time t.
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Fig. 13 The error measure E(θ1:T ) plotted as a function of the

number of particles. The shown results are averaged over several

trials; the error bars correspond to one standard deviation.

If the observation density p(θt|Xt) is noisy, then
the motion model tends to act as a smoothing filter.
This can be of particular importance when observations

are missing, e.g. during self-occlusions. When evaluat-
ing the quality of a motion model it, thus, can be helpful
to look at the smoothness of the attained pose sequence.
To measure this, we simply compute the average size of

the temporal gradient. We approximate this gradient
using finite differences, and hence use

S(θ1:T ) =
1

TL

T∑

t=1

L∑

l=1

||alt − al,t−1|| (35)

as a measure of smoothness.

7.1.4 Evaluation

To see how the two motion models compare we apply
them several times to the same sequence with a vari-
able number of particles. The tracker is manually ini-

tialised in the first frame. Visualisations of the attained
results for a few frames are available in fig. 9–12. Movies
with the same results are also available on-line2. Due

to the fast motions and poor stereo reconstructions,
both models have difficulties tracking the subject in all
frames. However, visually, it is evident that the end-

effector motion model provides more accurate tracking
and more smooth motion trajectories compared to the
angular motion model.

In order to quantify these visual results, we com-
pute the error measure presented in eq. 34 for results at-
tained using different number of particles. Fig. 13 shows

this. Here the results for each number of particles has
been averaged over several trials. It is worth noticing
that our model consistently outperforms the model in
angle space.

2 http://humim.org/pik-tracker/
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Fig. 14 The smoothness measure S(θ1:T ) plotted as a function

of the number of particles. Low values indicate smooth trajecto-
ries. The shown results are averaged over several trials; the error

bars correspond to one standard deviation.
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Fig. 15 The running time per frame of the tracking system when

using different motion models. The end-effector based model ap-
proximately requires 1.4 times longer per frame.

We also measure the smoothness S of the attained

pose sequences as a function of the number of particles.
This is plotted in fig. 14. As can be seen, our model is
consistently more smooth compared to the linear model
in angle space. This result is an indication that our

model is less sensitive to noise in the observational data.

In summary, we see that our model allows for im-

proved motion estimation using fewer particles com-
pared to a linear model in angle space. This, however,
comes at the cost of a computationally more expensive

prediction. One might then ask, when this model im-
proves the efficiency of the entire program. The answer
to this question depends on the computation time re-
quired by the visual measurement system as this most

often is the computationally most demanding part of
tracking systems. For our system, the running time per
frame is plotted in fig. 15. Comparing this with fig. 13,

we see that our model produces superior results for fixed
computational resources.
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 9 Results in frame 91, 159 and 268 using the angular model with 500 particles.

Frame 91; 2500 Particles Frame 159; 2500 Particles Frame 268; 2500 Particles

Fig. 10 Results in frame 91, 159 and 268 using the angular model with 2500 particles.

7.2 Human–Object Interaction

In the previous section we saw that the activity inde-

pendent end-effector model improved the results of the
angular model. However, results were still not perfect
due to the poor data. Inspired by the work of Kjell-
ström et al (2010) we now specialise the end-effector

model to include knowledge of the stick position. As-
sume we know the person is holding on to the stick and
that we know the end points of the stick. As the stick

is linear, we can write the hand positions as a linear
combination of the stick end points.

We now model the goal positions of the hands as

such a linear combination, i.e. we let

gt = s
(1)
t γt + s

(2)
t (1− γt) , (36)

where s
(i)
t denotes the end points of the stick. Here we

let γt follow a normal distribution confined to the unit

interval, i.e.

p(γt|γt−1) ∝ N
(
γt|γt−1, σ2

)
U[0,1](γt) . (37)

We now have a motion model that describes how the
person is interacting with the stick. To apply this model
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 11 Results in frame 91, 159 and 268 using the end-effector model with 500 particles.

Frame 91; 2500 Particles Frame 159; 2500 Particles Frame 268; 2500 Particles

Fig. 12 Results in frame 91, 159 and 268 using the end-effector model with 2500 particles.

we need to know the end points of the stick at each

frame. Here, we simply attain these by placing markers
from the optical motion capture system on the stick.
In practical scenarios, one would often only have the
two dimensional image positions of the stick end points

available. The model can be extended to handle this
by restricting the hand goals to the plane spanned by
the lines starting at the optical centre going through

the stick end points in the image plane (Hauberg and
Pedersen, 2011).

We apply this object interaction model to the same
sequence as before. In fig. 16 we show the attained re-

sults using 500 particles on the same frames as before.

As can be seen, the results are better than any of the
previously attained results even if we are using fewer
particles. This is also evident in fig. 17, where the track-
ing error is shown. In general, it should be of no surprise

that results can be improved by incorporating more ac-
tivity dependent knowledge; the interesting part is the
ease with which the knowledge could be incorporated

into the model.
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Frame 91; 500 Particles Frame 159; 500 Particles Frame 268; 500 Particles

Fig. 16 Results in frame 91, 159 and 268 using the object interaction model.
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Fig. 17 The error measure E(θ1:T ) when using the object inter-
action model. The shown results are averaged over several trials;

the error bars correspond to one standard deviation.

7.3 The Pelvic Lift

We have seen that the suggested modelling framework
can be useful to create activity independent motion
models and to model interactions with objects. The

main motivation for creating the framework is, however,
to be able to easily model physiotherapeutic exercises.
As a demonstration we will create such a model for the

the pelvic lift exercise. The simple exercise is illustrated
in fig. 18. The patient lies on the floor with bend knees.
He or she must then repeatedly lift and lower the pelvic
region.

To model this motion we focus on the position of the

feet, the hands and the pelvic region. We fix the goals
of the feet and the hands, such that they always aim at

Fig. 18 An illustration of the pelvic lift exercise. The patient

lies on a flat surface with head, feet and hands fixed. The pelvic

region is lifted and lowered repeatedly.

the position in which the tracking was initialised, i.e.

gt+1 = g1 for hand and feet. (38)

The root of the kinematic skeleton is placed at the
pelvic region. We model the motion of the root as mov-
ing mostly up or downwards, by letting

roott+1 = roott + η , (39)

where η is from a zero-mean Normal distribution with
covariance diag(σ2, σ2, 16σ2). Here, the factor 16 en-
sures large variation in the up and downwards direc-

tions. We further add the constraint that roott+1 must
have a positive z-value, i.e. the root must be above
the ground plane. This model illustrates the ease with

which we can include knowledge of both the environ-
ment and the motion in the predictive process.

To illustrate the predictions given by this model, we

sample 10 particles from the model. These are drawn in
fig. 19. As can be seen, the position of the head, hands
and feet show small variation, whereas the position of

both the pelvic region and the knees shows more vari-
ation. It should be noted that the knees vary as we did
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Fig. 19 Ten samples from the tracking of the pelvic lift exercise.

Notice how the spine and pelvic region shows large variation in

the vertical direction, the knees shows large variation in all direc-
tions, while other limbs show low variation. The precision matrix

of the importance distribution used to generate one of these sam-

ples is shown in fig. 20.

Fig. 20 Precision matrix of the importance distribution used

for predicting one of the samples shown in fig. 19. Dark entries
correspond to positive values, light entries correspond to negative

values while the light grey covering most entries correspond to

zero.

not model their motion. To gain further insight into the
prediction, we plot the precision matrix of the impor-

tance distribution in fig. 20. It can be seen that this
matrix has a block-structure indicating that clusters of
joints are correlated.

We have applied this predictive model to a sequence
where a test subject performs the pelvic lift exercise.
The exercise is repeated 6 times and is successfully

tracked using 100 particles. A few selected frames are
available in fig. 21 and a movie is available on-line2.

8 Conclusion

In this paper we have presented a probabilistic exten-
sion of inverse kinematics. With this, we are able to
build predictive models for articulated human motion

estimation from processes in the spatial domain. The
advantages of this approach are many.

First, we have empirically demonstrated that our

spatial motion models improve the tracking using far
less particles, while they at the same time provide more
smooth motion trajectories compared to simple mod-

els in the space of joint angles. In our experience, the
traditional motion models in joint angle space actually

provide little to no predictive power. The basic issue is
that the spatial variance of limb coordinates tends to
accumulate with these models as the kinematic chains
are traversed. From a practical point of view this means

that limbs which are far down the kinematic chains are
rarely predicted correctly, meaning many particles are
required. Our model does not suffer from this issue as

we control the end positions of the chains. We believe
this is the main cause of the models efficiency.

Secondly, we saw that the model allows us easily to
take the environment into account. We saw this with
the stick example, where we could trivially incorporate

the stick position into the model. We also saw this with
the pelvic lift example, where we modelled the ground
plane.

Thirdly, our approach makes it easier to construct
high quality models of a large class of motions. Specifi-

cally, goal oriented motions are usually easy to describe
in spatial coordinates. This was demonstrated on the
pelvic lift exercise, which is trivial to describe spatially,

but complicated when expressed directly in terms of
joint angles.

Fourthly, our models mostly works in the low di-
mensional space of end-effector goals, which is simply
an ordinary Euclidean space. This makes it more prac-

tical to build motion models as we do not need to deal
with the topology of the space of joint angles.

We feel there is great need for predictive motion
models that are expressed spatially as this seems to
mimic human motion plans more closely. It is, how-

ever, not clear if our approach of modelling end-effector
goals is the best way to achieve spatial motion priors.
It could be argued that it would be better to model

the actual end-effector positions rather than their goals.
Our strategy do have the advantage that the resulting
optimisation problems are computationally feasible. It
also allows us to study stochastic processes in ordinary

Euclidean spaces. Had we instead chosen to model the
actual end-effector positions, we would be forced to re-
strict our motion models to the reachable parts of the

spatial domain, making the models more involved.

At the heart of our predictive models lies an inverse

kinematics solver that computes the mode of eq. 12. In
the future this solver should be extended with a collision
detection system, such that self-penetrations would be

disallowed. We are also actively working on determining
more restrictive joint limit models (Engell-Nørreg̊ard
et al, 2010). Both extensions would reduce the space
of possible poses, which would allow us to reduce the

number of particles even further.
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Fig. 21 Frames 71 and 159 from a sequence with a pelvic lift exercise. The exercise is repeated 6 times during approximately 200
frames. The video was recorded at approximately 10 frames per second.
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The“work horse”of the Probabilistic Inverse Kinematics model was the importance
distribution [21, eq. 22],

q(θt|θt−1,Xt) ∝ N
(
θt
∣∣θ∗t ,

(
JTWJ + λI

)−1
)
UΘ(θt) .

Figure 3.1 An illustration of the kinematic
manifold M for a planar two-bone skeleton.
Left: the two-bone skeleton, with arrows in-
dicating how joints rotate. Right: differ-
ent configurations of the skeleton; the or-
ange circular paths indicate parts of points
on the manifold. On this figure, the embed-
ding space is 4-dimensional corresponding
to (x1, y1, x2, y2) while M is 2-dimensional
due to two constraints (one for each bone).

While the issue was subtle, this equation
was troubling me. The inverse covari-
ance matrix of q consists of two terms:
JTWJ and λI. The first term is not full
rank as J is non-square. This explains
why the second term is needed: it is ef-
fectively a regularisation term added in
the joint angle domain. The need for this
joint angle regularisation was somewhat
disappointing, given our goal of devel-
oping a model in the joint position do-
main. One question kept reappearing:
could we avoid regularising in the joint
angle domain? The immediate answer
was to avoid regularisation in the first
place. As the rank of JTWJ is 3 times
the number of end-effectors, the regulari-
sation can be avoided simply be increas-
ing the number of end-effectors in the
model. The extreme case is to use all
joints as end-effectors, which leads to an
interesting geometric point of view.

Instead of thinking of the kinematic
skeleton as parametrised by a set of joint angles, we can think of it as being
parametrised by the joint positions. These joint positions are, however, constrained
by the configuration of the skeleton, i.e. the hand must be at a certain distance from
the elbow. Hence, the vector of all joint positions is confined to a subset M of the
Euclidean space containing the joints

M≡ {F (θ) | θ ∈ Θ} .

As the forward kinematics function is quite well-behaved, M turns out to be a Rie-
mannian manifold embedded in the Euclidean space. This gives rise to a geometric
interpretation of both inverse kinematics and the above expression for the inverse
covariance of q. Inverse kinematics becomes a projection operator while JTWJ is
strongly related to the tangent space of M. This observation allowed us to study
variance properties of Gaussian priors in the joint angle space as well as define priors
directly on the manifold.

A word on terminology: in Computer Vision the word manifold is being used some-
what loosely, at times to indicate a subset of the embedding space. In this thesis, the
word manifold is used in the Riemannian sense, i.e. a subset with a smoothly varying
metric.
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Abstract. We present an analysis of the spatial covariance structure of
an articulated motion prior in which joint angles have a known covari-
ance structure. From this, a well-known, but often ignored, deficiency of
the kinematic skeleton representation becomes clear: spatial variance not
only depends on limb lengths, but also increases as the kinematic chains
are traversed. We then present two similar Gaussian-like motion priors
that are explicitly expressed spatially and as such avoids any variance
coming from the representation. The resulting priors are both simple and
easy to implement, yet they provide superior predictions.

Key words: Articulated Tracking · Motion Analysis · Motion Priors ·
Spatial Priors · Statistics on Manifolds · Kinematic Skeletons

1 Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis. These systems usually perform some sort of optimisation for
finding the best configuration of body parts. This optimisation is often guided
by a system for predicting future motion. This paper concerns such a predictive
system for general purpose tracking. Unlike most previous work, we build the
actual predictive models in spatial coordinates, rather than working directly in
the space of configuration parameters.

In the computer vision based scenario, the objective is to estimate the hu-
man pose in each image in a sequence. When only using a single camera, or a
narrow baseline stereo camera, this is inherently difficult due to self-occlusions.
This manifests itself in that the distribution of the human pose is multi-modal
with an unknown number of modes. To reliably estimate this pose distribution
we need methods that cope well with multi-modal distributions. Currently, the
best method for such problems is the particle filter [2], which represents the
distribution as a set of weighted samples. These samples are propagated in time
using a predictive model and assigned a weight according to a data likelihood. As
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such, the particle filter requires two subsystems: one for computing likelihoods
by comparing the image data to a sample from the pose distribution, and one
for predicting future poses. In terms of optimisation, the latter guides the search
for the optimal pose. In practice, the predictive system is essential in making the
particle filter computationally feasible, as it can drastically reduce the number
of needed samples.

1.1 The Kinematic Skeleton

Before discussing the issues of human motion analysis, we pause to introduce
the actual representation of the human pose. In this paper, we use the kinematic
skeleton (see Fig. 1a), which is by far the most common choice [1]. This repre-
sentation is a collection of connected rigid bones organised in a tree structure.
Each bone can be rotated at the point of connection between the bone and its
parent. We will refer to such a connection point as a joint.

(a) (b)

Fig. 1. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The circles, are collectively referred
to as the end-effectors. (b) The derivative of an end point with respect to a joint angle.
This is computed as the cross product of the rotational axis rn and the vector from
the joint to the end-effector.

We model the bones as having known constant length (i.e. rigid), so the
direction of each bone constitute the only degrees of freedom in the kinematic
skeleton. The direction in each joint can be parametrised with a vector of angles,
noticing that different joints may have different number of degrees of freedom.
We may collect all joint angle vectors into one large vector θ representing all
joint angles in the model. This vector will then be confined to the N dimensional
torus TN .

Forward Kinematics From known bone lengths and a joint angle vector θ, it
is straight-forward to compute the spatial coordinates of the bones. Specifically,
the purpose is to compute the spatial coordinates of the end points of each bone.
This process is started at the root of the tree structure and moves recursively
along the branches, which are known as the kinematic chains.
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The root of the tree is placed at the origin of the coordinate system. The end
point of the next bone along a kinematic chain is then computed by rotating
the coordinate system and translating the root along a fixed axis relative to the
parent bone, i.e.

al = Rl (al−1 + tl) , (1)

where al is the lth end point, and Rl and tl denotes a rotation and a translation
respectively. The rotation is parametrised by the relevant components of the
pose vector θ and the length of the translation corresponds to the known length
of the bone. We can repeat this process recursively until the entire kinematic
tree has been traversed. This process is known as Forward Kinematics [3].

The rotation matrix Rl of the lth bone is parametrised by parts of θ. The
actual number of used parameters depends on the specific joint. For elbow joints,
we use one parameter, while we use three parameters to control all other joints.
These two different joint types are respectively known as hinge joints and ball
joints.

Using forward kinematics, we can compute the spatial coordinates of the end
points of the individual bones. These are collectively referred to as end-effectors.
In Fig. 1a these are drawn as circles. We will denote the coordinates of all end-
effectors by F (θ). We will assume the skeleton contains L end-effectors, such
that F (θ) ∈ R3L.

It should be clear that while F (θ) ∈ R3L, the end-effectors does not cover
all of this space. There is, for instance, an upper bound on how far the hands
can be apart. Specifically, we see that F (θ) ∈M ⊂ R3L, whereM is a compact
differentiable manifold embedded in R3L (since TN is compact and F is an
injective function with full-rank Jacobian).

Derivative of Forward Kinematics Later, we shall be in need of the Jacobian
of F . This consists of a column for each component of θ. Each such column can
be computed in a straightforward manner [4]. Let rn denote the unit-length
rotational axis of the nth angle and ∆nl the vector from the joint to the lth
end-effector. The entries of the column corresponding to the lth end-effector can
then be computed as ∂θ[n]Fl = rn×∆nl. This is merely the tangent of the circle
formed by the end-effector when rotating the joint in question as is illustrated
in Fig. 1b.

Joint Constraints In the human body, bones cannot move freely. A simple
example is the elbow joint, which can approximately only bend between 0 and
120 degrees. To represent this, θ is confined to a subset Θ of TN . With this
further restriction,M becomes a manifold with boundary.

For simplicity, Θ is often defined by confining each component of θ to an
interval, i.e. Θ =

∏N
n=1[ln, un], where ln and un denote the lower and upper

bounds of the nth component. This type of constraints on the angles is often
called box constraints [5].
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1.2 Related Work

Most work in the articulated tracking literature falls in two categories. Either
the focus is on improving the image likelihoods or on improving the predictions.
Due to space constraints, we forgo a review of various likelihood models as this
paper is focused on prediction. For an overview of likelihood models, see the
review paper by Poppe [1].

Most work on improving the predictions, is focused on learning motion spe-
cific priors, such as for walking [6–12]. Currently, the most popular approach is
to restrict the tracker to some subspace of the joint angle space. Examples in-
clude, the work of Sidenbladh et al [10] where the motion is confined to a linear
subspace which is learned using PCA. Similarly, Sminchisescu and Jepson [8] use
spectral embedding to learn a non-linear subspace; Lu et al [9] use the Laplacian
Eigenmaps Latent Variable Model [13] to perform the learning, and Urtasun et
al [14] use a Scaled Gaussian Process Latent Variable Model [15]. This strategy
has been improved even further by Urtasun et al [12] and Wang et al [7] such
that a stochastic process is learned in the non-linear subspace as well. These
approaches all seem to both stabilise the tracking and make it computationally
less demanding. The downside is, of course, that the priors are only applicable
when studying specific motions.

When it comes to general purpose priors, surprisingly little work has been
done. Such priors are not only useful for studying general motion but can also
be useful as hyperpriors for learning motion specific priors. The common under-
standing seems to be that the best general purpose prior is to assume that the
joint angles follow a Gaussian distribution. Specifically, many researchers assume

pangle(θt|θt−1) ∝ N (θt|θt−1, Σθ) UΘ(θt) , (2)

where UΘ denotes the uniform distribution on Θ enforcing the angular con-
straints and the subscript t denotes time. We shall call this model the Angular
Prior. In practice, Σθ is often assumed to be diagonal or isotropic. This model
has, amongst others, been applied by Sidenbladh et al [10], Balan et al [16] and
Bandouch et al [17]. At first sight, this model seems quite innocent, but, as we
shall see, it has a severe downside.

1.3 Our Contribution and Organisation of the Paper

In Sec. 2 we provide an analysis of the spatial covariance of the common motion
prior from Eq. 2. While the formal analysis is novel, its conclusions are not
surprising. In Sec. 3, we suggest two similar motion priors that are explicitly
designed to avoid the problems identified in Sec. 2. This work constitutes the
main technical contribution of the paper. In order to compare the priors we
implement an articulated tracker, which requires a likelihood model. We briefly
describe a simple model for this in Sec. 4. The resulting comparison between
priors is performed in Sec. 5 and the paper is concluded in Sec. 6.
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2 Spatial Covariance Structure of the Angular Prior

While the covariance structure of θt in Eq. 2 is straight-forward, the covariance
of F (θt) is less simple. This is due to two phenomena:

1. Variance depends on distance between joint and end-effector.When
a joint angle is changed, it alters the position of the end point of the limb
attached to the joint. This end point is moved on a circle with radius corre-
sponding to the distance between the joint and the end point. This means
the end point of a limb far away from the joint can change drastically with
small changes of the joint angle.

2. Variance accumulates. When a joint angle is changed, all limbs that are
further down the kinematic chain will move. This means that when, e.g.,
the shoulder joint changes both hand and elbow moves. Since the hand also
moves when the elbow joint changes, we see that the hand position varies
more than the elbow position.

Neither of these two phenomena seem to have come from well-founded modelling
perspectives.

To get a better understanding of the covariance of limb positions, we seek an
expression for cov[F (θt)]. Since F (θt) lies on a non-linear manifoldM in R3L,
such an analysis is not straight-forward. Instead of computing the covariance on
this manifold, we compute it in the tangent space at the mean value θ̄t = E(θt)
[18]. This requires the Logarithm map of M, which we simply approximate by
the Jacobian Jθ̄t

= ∂θt
F (θt)|θt=θ̄t

of the forward kinematics function, such that

cov[F (θt)] ≈ cov[Jθ̄t
θt] = Jθ̄t

cov[θt]JT
θ̄t

= Jθ̄t
Σθt

JT
θ̄t

. (3)

As can be seen, the covariance of the limb positions is highly dependent on the
Jacobian of F . A slightly different interpretation of the used approximation is
that we linearise F around the mean, and then compute the covariance.

We note that
∥∥∂θt[n]Fl

∥∥ = ‖∆nl‖, meaning that the variance of a limb is
linearly dependent on the distance between the joint and the limb end point. This
is the first of the above mentioned phenomena. The second phenomena comes
from the summation in the matrix product in Eq. 3. It should be stressed that
this behaviour is a consequence of the choice of representation and will appear in
any model that is expressed in terms of joint angles unless it explicitly performs
some means of compensation. We feel this is unfortunate, as the behaviour does
not seem to have its origins in an explicit model design decision. Specifically,
it hardly seems to have any relationship with natural human motion (see the
discussion of Fig. 2a below).

In practice, both of the above mentioned phenomena are highly visible in
the model predictions. In Fig. 2a we show 50 samples from Eq. 2. Here, the
joint angles are assumed to be independent, and the individual variances are
learned from ground truth data of a sequence studied in Sec. 5. As can be seen
the spatial variance increases as the kinematic chains are traversed. In practice,
this behaviour reduces the predictive power of the model drastically; in our
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experience the model practically has no predictive power at all. Bandouch et
al [17] suggested using Partitioned Sampling [19] to overcome this problem. This
boils down to fitting individual limbs one at a time as the kinematic chains are
traversed, such that e.g. the upper arm is fitted to the data before the lower
arm. While this approach works, we believe it is better to fix the model rather
than work around its limitations. As such, we suggest expressing the predictive
model directly in terms of spatial limb positions.

(a) pangle (b) pproj (c) pT

Fig. 2. Fifty samples from the different priors. The variance parameters for these dis-
tributions were assumed independent and was learned from ground truth data for a
sequence studied in Sec. 5. (a) The angular prior pangle. (b) The projected prior pproj.
(c) The tangent space prior pT .

3 Two Spatial Priors

Informally, we would like a prior where each limb position is following a Gaussian
distribution, i.e.

pidea(θt|θt−1) = N (F (θt)|F (θt−1), Σ) . (4)

This is, however, not possible as the Gaussian distribution covers the entire
R3L, whereas F (θt) is confined toM. In the following, we suggest two ways of
overcoming this problem.

3.1 Projected Prior

The most straight-forward approach is to define p(θt|θt−1) by projecting Eq. 4
ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σproj)] . (5)

When using a particle filter for tracking, we only need to be able to draw samples
from the prior model. We can easily do this by sampling from Eq. 4 and pro-
jecting the result ontoM. This, however, requires an algorithm for performing
the projection.
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Let xt denote a sample from Eq. 4; we now seek θ̂t such that F (θ̂t) =
projM[xt]. We perform the projection in a direct manor by seeking

θ̂t = min
θt

∣∣∣∣xt − F (θt)
∣∣∣∣2 s.t. l ≤ θt ≤ u , (6)

where the constraints corresponds to the joint limits. This is an overdetermined
constrained non-linear least-squares problem, that can be solved by any standard
algorithm. We employ a projected steepest descent with line-search [5], where
the search is started in θt−1. To perform this optimisation, we need the gradient
of Eq. 6, which is readily evaluated as ∂θt‖xt − F (θt)‖2 = 2(xt − F (θt))

TJθt .
In Fig. 2b we show 50 samples from this distribution, where Σproj is assumed

to be a diagonal matrix with entries that have been learned from ground truth
data of a sequence from Sec. 5. As can be seen, this prior is far less variant than
the Gaussian prior pangle on joint angles.

3.2 Tangent Space Prior

While the projected prior provides us with a suitable prior, it does come with
the price of having to solve a non-linear least-squares problem. If the prior is
to be used as e.g a regularisation term in a more complicated learning scheme,
this can complicate the models substantially. As an alternative, we suggest a
slight simplification that allows us to skip the non-linear optimisation. Instead
of letting F (θt) be Gaussian distributed in R3L, we define it as being Gaussian
distributed in the tangent space T ofM at F (θt−1). That is, we define our prior
such that

pT (θt|θt−1) = NT (F (θt)|F (θt−1), ΣT ) , (7)

where NT denotes a Gaussian distribution in T . A basis of the tangent space is
given by the columns of the Jacobian Jθt−1 . From Eq. 3 we know that the co-
variance structure near F (θt−1) in this model is ΣT = Jθt−1ΣθJT

θt−1
. In general,

Jθt−1 is not square, so we cannot isolate Σθ from this equation simply by invert-
ing Jθt−1

. Instead, we take the straight-forward route and use the pseudoinverse
of Jθt−1

, such that

ptang(θt|θt−1) ∝ N
(
θt
∣∣θt−1,J

†
θt−1

ΣT
(
J†θt−1

)T)UΘ(θt) , (8)

where J†θt−1
= (JT

θt−1
Jθt−1

)−1JT
θt−1

denotes the pseudoinverse of Jθt−1
. If we

consider Jθt−1 a function from TN to T then J†θt−1
is indeed the inverse of this

function. One interpretation of this prior is that it is the normal distribution
in angle space that provides the best linear approximation of a given normal
distribution in the spatial domain.

To sample from this distribution, we generate a sample x ∼ N (0, ΣT ). This is
then moved into the joint angle space by letting θt =

(
J†θt−1

)T
x+θt−1. In order

to respect joint limits, we truncate joint values that exceeds their limitations.
This simple scheme works well in practice.
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In Fig. 2c we show 50 samples from this distribution, where ΣT is the same
as the projected prior in Fig. 2b. As can be seen, this prior behaves somewhat
more variant than pproj, but far less than pangle.

4 Visual Measurements

To actually implement an articulated tracker, we need a system for making visual
measurements, i.e. a likelihood model. To keep the paper focused on prediction,
we use a simple likelihood model based on a consumer stereo camera1. This
camera provides a dense set of three dimensional points Z = {z1, . . . ,zK} in
each frame. The objective of the likelihood model then becomes to measure
how well a pose hypothesis matches the points. We assume that each point is
independent and that the distance between a point and the skin of the human
follows a zero-mean Gaussian distribution, i.e.

p(Z|θt) ∝
K∏

k=1

exp

(
−D

2(θt, zk)

2σ2

)
, (9)

where D2(θt, zk) denotes the square distance between the point zk and the skin
of the pose θt. To make the model robust with respect to outliers in the data we
threshold the distance function D such that it never exceeds a given threshold.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, we define the skin of a bone as a cylinder
with main axis corresponding to the bone itself. Since we only have a single view
point, we discard the half of the cylinder that is not visible. The skin of the entire
pose is then defined as the union of these half-cylinders. The distance between
a point and this skin can then be computed as the smallest distance from the
point to any of the half-cylinders.

5 Experimental Results

To build an articulated tracker we combine the likelihood model with the sug-
gested priors using a particle filter. This provides us with a set of weighted
samples from which we estimate the current pose as the weighted average.

We seek to compare the three suggested priors, pangle, pproj and ptang. As the
base of our comparison, we estimate the pose in each frame of a sequence using
a particle filter with 10.000 samples, which is plenty to provide a good estimate.
This will then serve as our ground truth data. As we are studying a general
purpose motion model, we assume that each prior has a diagonal covariance
structure. These variances are then learned from the ground truth data to give
each prior the best possible working conditions.

We apply the three prior models to a sequence where a person is standing
in place and mostly moving his arms. We vary the number of particles in the
1 http://www.ptgrey.com/products/bumblebee2/
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three tracking systems between 25 and 1500. The results are available as videos
on-line2 and some selected frames are available in Fig. 3. The general tendency
is that the projected prior provides the most accurate and smooth results for a
given number of particles. Next, we seek to quantify this observation.

(a) pangle (b) pproj (c) pT

Fig. 3. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.

To compare the attained results to the ground truth data, we apply a simple
spatial error measure [16, 20]. This measures the average distance between limb
end points in the attained results and the ground truth data. This measure is
then averaged across frames, such that the error measure becomes

E =
1

TL

T∑

t=1

L∑

l=1

||alt − a′lt|| , (10)

where alt is the spatial end point of the lth limb at time t in the attained results,
and a′lt is the same point in the ground truth data. This measure is reported for
the different priors in Fig. 4a. As can be seen, the projected prior is consistently
better than the tangent space prior, which in turn is consistently better than
the angular prior. One explanation of why the projected prior outperforms the
tangent space prior could be thatM has substantial curvature. This explanation
is also in tune with the findings of Sommer et.al [21].

If the observation density p(Zt|θt) is noisy, the motion model acts as a
smoothing filter. This can be of particular importance when observations are
2 http://humim.org/eccv2010/
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missing, e.g. during self-occlusions. Thus, when evaluating the quality of a mo-
tion model it can be helpful to look at the smoothness of the attained pose
sequence. To measure this, we simply compute the average size of the temporal
gradient. We approximate this gradient using finite differences, and hence use

S =
1

TL

T∑

t=1

L∑

l=1

||alt − al,t−1|| (11)

as a measure of smoothness. This is reported in Fig. 4b. It can be seen that the
projected prior and the tangent space prior give pose sequences that are almost
equally smooth; both being consistently much more smooth than the angular
prior. This is also quite visible in the on-line videos.

So far we have seen that both suggested priors outperform the angular prior
in terms of quality. The suggested priors are, however, computationally more
demanding. One should therefore ask if it is computationally less expensive to
simply increase the number of particles while using the angular prior. In Fig. 4c
we report the running time of the tracking systems using the different priors. As
can be seen, the projected prior is only slightly more expensive than the angular
prior, whereas the tangent space prior is somewhat more expensive than the two
other models. The latter result is somewhat surprising given the simplicity of
the tangent space prior; we believe that this is caused by choices of numerical
methods. In practice both of the suggested priors give better results than the
angular prior at a fixed amount of computational resources, where the projected
prior is consistently the best.
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Fig. 4. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.018 for the angular prior, 0.008
for the projected prior and 0.009 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.0028 for the angular prior, 0.0009 for the projected
prior and 0.0016 for the tangent space prior. (c) The computational time as a function
of the number of particles.

We now repeat the experiment for a second sequence, using the same param-
eters as before. In Fig. 5 we show the tracking results in selected frames for the
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three discussed priors. As before, videos are available on-line2. Essentially, we
make the same observations as before: the projected prior provides the best and
most smooth results, followed by the tangent space prior with the angular prior
consistently giving the worst results. This can also be seen in Fig. 6 where the
error and smoothness measures are plotted along with the running time of the
methods. Again, we see that for a given amount of computational resources, the
projected prior consistently provides the best results.

(a) pangle (b) pproj (c) pT

Fig. 5. Results attained using 150 and 250 samples superimposed on the image data.
Top row is using 150 particles, while bottom row is using 250 particles. (a) Using the
angular prior. (b) Using the projected prior. (c) Using the tangent space prior.

6 Discussion

We have presented an analysis of the commonly used prior which assumes Gaus-
sian distributed joint angles, and have shown that this behaves less than desirable
spatially. Specifically, we have analysed the covariance of this prior in the tangent
space of the pose manifold. This has clearly illustrated that small changes in a
joint angle can lead to large spatial changes. Since this instability is ill-suited
for predicting articulated motion, we have suggested to define the prior directly
in spatial coordinates.

Since human motion is restricted to a manifoldM⊂ R3L, we, however, need
to define the prior in this domain. We have suggested two means of accomplishing
this goal. One builds the prior by projecting onto the manifold and one builds
the prior in the tangent space of the manifold. Both solutions have shown to
outperform the ordinary angular prior in terms of both speed and accuracy. Of
the two suggested priors, the projected prior seems to outperform the tangent
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Fig. 6. Performance of the three priors. All reported numbers are averaged over several
trials. (a) The error measure E as a function of the number of particles. The average
standard deviation of E with respect to the trials are 0.021 for the angular prior, 0.007
for the projected prior and 0.015 for the tangent space prior. (b) The smoothness
measure S as a function of the number of particles. The average standard deviation of
S with respect to the trials are 0.002 for the angular prior, 0.0004 for the projected
prior and 0.001 for the tangent space prior. (c) The computational time as a function
of the number of particles.

space prior, both in terms of speed and quality. The tangent space prior does,
however, have the advantage of simply being a normal distribution in joint angle
space, which can make it more suitable as a prior when learning a motion specific
model.

One advantage with building motion models spatially is that we can express
motion specific knowledge quite simply. As an example, one can model a person
standing in place simply by reducing the variance of the persons feet. This type
of knowledge is non-trivial to include in models expressed in terms of joint angles.

The suggested priors can be interpreted as computationally efficient approx-
imations of a Brownian motion on M. We therefore find it interesting to in-
vestigate this connection further along with similar stochastic process models
restricted to manifolds. In the future, we will also use the suggested priors as
building blocks in more sophisticated motion specific models.
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Figure 4.1 An illustration of the
spatial interaction model; blue cir-
cles indicate covariances. When
a joint is known to be interacting
with the environment, its mean is
set to to the point of interaction.

Shortly after the previous paper was accepted,
I stumbled upon a preprint of a paper that was
accepted at the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2010.
The paper, Tracking people interacting with ob-
jects [30], was studying how tracking could be
improved by incorporating knowledge of the sur-
rounding environment. The authors suggested
using rejection sampling in joint angle space to
enforce constraints on hand positions, i.e. to solve
an inverse kinematics problem. This seemed like
a poor solution to the problem and we set out to
show that our spatial model was more suitable.

The resulting model is remarkably simple, yet
it outperforms state-of-the-art in both speed and
accuracy. As we are modelling joint positions,
our strategy is simply to move joints that are
interacting with the environment to the point of
interaction; remaining joints are treated as in the
previous paper.
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Abstract. Articulated tracking of humans is a well-studied field, but
most work has treated the humans as being independent of the environ-
ment. Recently, Kjellström et al. [1] showed how knowledge of interaction
with a known rigid object provides constraints that lower the degrees of
freedom in the model. While the phrased problem is interesting, the re-
sulting algorithm is computationally too demanding to be of practical
use. We present a simple and elegant model for describing this problem.
The resulting algorithm is computationally much more efficient, while it
at the same time produces superior results.

1 Introduction

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [2]. A large body
of work have gone into solving this problem by using computer vision techniques
without resorting to visual markers. The bulk of this work, however, completely
ignores that almost all human movement somehow involves interaction with a
rigid environment (people sit on chairs, walk on the ground, lift the bottle and
so forth). By incorporating this fact of life, one can take advantage of the con-
straints provided by the environment, which effectively makes the problem easier
to solve.

Recently, Kjellström et al. [1] showed that taking advantage of these con-
straints allows for improved tracking quality. To incorporate the constraints
Kjellström et al., however, had to resort to a highly inefficient rejection sam-
pling scheme. In this paper, we present a detailed analysis of this work and show
how the problem can be solved in an elegant and computationally efficient man-
ner. First we will, however, review the general articulated tracking framework
and related work.

1.1 Articulated Tracking

Estimating the pose of a person using a single view point or a small baseline
stereo camera is an inherently difficult problem due to self-occlusions. This man-
ifests itself in that the distribution of the human pose is multi-modal with an
unknown number of modes. Currently, the best method for coping with such
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distributions is the particle filter [3]. This aims at estimating the state of the
system, which is represented as a set of weighted samples. These samples are
propagated in time using a predictive model and assigned a weight according to
a data likelihood. As such, the particle filter requires two subsystems: one for
computing likelihoods by comparing the image data to a sample from the hidden
state distribution, and one for predicting future states. In practice, the predic-
tive system is essential in making the particle filter computationally feasible, as
it can drastically reduce the number of needed samples. As an example, we shall
later see how the predictive system can be phrased to incorporate constraints
from the environment.

For the particle filter to work, we need a representation of the system state,
which in our case is the human pose. As is common [2], we shall use the kine-
matic skeleton (see Fig. 1). This representation is a collection of connected rigid
bones organised in a tree structure. Each bone can be rotated at the point of
connection between the bone and its parent. We model the bones as having
known constant length (i.e. rigid), so the direction of each bone constitute the
only degrees of freedom in the kinematic skeleton. The direction in each joint can
be parametrised with a vector of angles, noticing that different joints may have
different number of degrees of freedom. We may collect all joint angle vectors
into one large vector θt representing all joint angles in the model at time t. The
objective of the particle filter, thus, becomes to estimate θt in each frame.

Fig. 1. An illustration of the kinematic skeleton. Circles correspond to the spatial bone
end points and the square corresponds to the root.

To represent the fact that bones cannot move freely (e.g. the elbow joint can
only bend between 0 and 120 degrees), we restrict θt to a subset Θ of RN . In
practice, Θ is chosen such that each joint angle is restricted to an interval. This
is often called box constraints [4].

From known bone lengths and a joint angle vector θt, it is straight-forward
to compute the spatial coordinates of the bones. The root of the kinematic tree
is placed at the origin of the coordinate system. The end point of the next bone
along a branch in the tree is then computed by rotating the coordinate system
and translating the root along a fixed axis relative to the parent bone. The
rotation is parametrised by the angles of the joint in question and the length
of the translation corresponds to the known length of the bone. We can repeat
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this process recursively until the entire kinematic tree has been traversed. This
process is known as Forward Kinematics [5].

1.2 Related Work

Most work in the articulated tracking literature falls in two categories. Either the
focus is on improving the vision system or on improving the predictive system.
Due to space constraints, we forgo a review of various vision systems as this
paper is focused on prediction. For an overview of vision systems, see the review
paper by Poppe [2].

Most work on improving the predictive system, is focused on learning motion
specific priors, such as for walking [6–12]. Currently, the most popular approach
is to restrict the tracker to some subspace of the joint angle space [7–10, 13].
Such priors are, however, action specific. When no action specific knowledge is
available it is common [1,10,14,15] to simply let θt follow a normal distribution
with a diagonal covariance, i.e.

pgp(θt|θt−1) ∝ N (θt|θt−1,diag) UΘ(θt) , (1)

where UΘ is a uniform distribution on the legal set of angles that encodes the
joint constraints. Recently, Hauberg et al. [16] showed that this model causes
the spatial variance of the bone end points to increase as the kinematic chains
are traversed. In practice this means that with this model the spatial variance
of e.g. the hands is always larger than of the shoulders. We will briefly review a
solution to this problem suggested by Hauberg et al. in Sec. 1.3, as it provides
us a convenient framework for modelling interaction with the environment.

In general, as above, the environment is usually not incorporated in the
tracking models. One notable environmental exception seems to be the ground
plane [6, 17]. Yamamoto and Yagishita [17] use a linear approximation of the
motion path by linearising the forward kinematics function. As this is a highly
non-linear function and motion paths in general are non-linear this modelling
decision seems to be made out of sheer practicality. Promising results are, how-
ever, shown on constrained situations, such as when the position and orientation
of a persons feet is known. Brubaker et al. [6] explicitly model the ground plane
in a biomechanical model of walking. Their approach is, however, limited to
interaction with the ground while walking.

Of particular importance to our work, is the paper by Kjellström et al. [1].
We will therefore review this in detail in Sec. 2.

1.3 Projected Spatial Priors

Recently, an issue with the standard general purpose prior from Eq. 1 was pointed
out by Hauberg et al. [16]. Due to the tree structure of the kinematic skeleton, the
spatial variance of bone end point increase as the kinematic chains are traversed.
To avoid this somewhat arbitrary behaviour it was suggested to build the prior
distribution directly in the spatial domain.
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To define a predictive distribution in the spatial domain, Hauberg et al. first
define a representation manifold M ∈ R3L, where L denotes the number of
bones. A point on this manifold corresponds to all spatial bone end points of a
pose parametrised by a set of joint angles. More stringent,M can be defined as

M = {F (θ)|θ ∈ Θ} , (2)

where F denotes the forward kinematics function for the entire skeleton.
Once this manifold is defined, a Gaussian-like distribution can be defined

simply by projecting a Gaussian distribution in R3L ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σ)] . (3)

When using a particle filter for tracking, one only needs to be able to draw
samples from the prior model. This can easily be done by sampling from the
normal distribution in R3L and projecting the result onto M. This, however,
requires an algorithm for performing the projection. This is done by seeking

θ̂t = min
θt

∣∣∣∣xt − F (θt)
∣∣∣∣2 s.t. θt ∈ Θ , (4)

where xt denotes a sample from the normal distribution in R3L. This is an overde-
termined constrained non-linear least-squares problem, that can be solved by any
off-the-shelf optimisation algorithm [4]. We shall later see that the spatial nature
of this prior is very helpful when designing priors that take the environment into
account.

2 The KKB Tracker

Kjellström et al. [1] consider the situation where a person is holding on to a
stick. It is assumed that the 3D position of the stick is known in each frame. In
practice they track the stick using 8 calibrated cameras. They define the stick
as

stick(γt) = γta+ (1− γt)b, γt ∈ [0, 1] , (5)

where a and b are the end points of the stick.
The state is extended with a γt for each hand, which encodes the position of

the respective hand on the stick. The state, thus, contains θt, γ
(left)
t and γ(right)

t .
The goal is then to find an algorithm where the hand positions implied by θt
corresponds to the hand positions expressed by the γt’s.

Kjellström et al. take a rejection sampling approach for solving this problem.
They sample θt from Eq. 1 and compute the attained hand positions using
forward kinematics. They then keep generating new samples until the attained
hand positions are within a given distance of the hand positions encoded by the
γt’s. Specifically, they keep generating new θt’s until

‖Fleft(θt)−stick(γ(left)t )‖ < TE and ‖Fright(θt)−stick(γ(right)t )‖ < TE , (6)
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where Fleft is the forward kinematics function that computes the position of the
left hand, Fright is the equivalent for the right hand and TE is a threshold. We
will denote this prior pkkb, after the last names of its creators.

The γt’s are also propagated in time to allow for sliding the hands along the
stick. Specifically, Kjellström et al. let

p
(
γ
(left)
t

∣∣γ(left)t−1

)
∝ N

(
γ
(left)
t

∣∣γ(left)t−1 , σ2
)
U[0,1]

(
γ
(left)
t

)
, (7)

where U[0,1] is the uniform distribution on [0, 1]. γ(right)
t is treated the same way.

The advantage of this approach is that it actually works; successful tracking
was reported in [1] and in our experience decent results can be attained with
relatively few particles. Due to the rejection sampling, the approach is, however,
computationally very demanding (see Sec. 5, in particular Fig. 4). The approach
also has a limit on how many constraints can be encoded in the prior, as more
constraints yield smaller acceptance regions. Thus, the stronger the constraints,
the longer the running time. Furthermore, the rejection sampling has the side
effect that the time it takes to predict one sample is not constant. In parallel
implementations of the particle filter, such behaviour causes thread divergence,
which drastically lessens the gain of using a parallel implementation.

3 Spatial Object Interaction Prior

We consider the same basic problem as Kjellström et al. [1], that is, assume we
know the position of a stick in 3D and assume we know the person is holding on
to the stick. As Kjellström et al., we extend the state with a γt for each hand
that encodes where on the stick the hands are positioned using the model stated
in Eq. 5. As before these are propagated in time using Eq. 7.

Following the idea of Hauberg et al. [16], we then define a motion prior in
the spatial domain. Intuitively, we let each bone end point, except the hands,
follow a normal distribution with the current bone end point as the mean value.
The hands are, however, set to follow a normal distribution with a mean value
corresponding to the hand position implied by γ(left)t and γ(right)

t . The resulting
distribution is then projected back on the manifold M of possible poses, such
that the final motion prior is given by

pstick3d(θt|θt−1) = projM [N (F (θt)|µ, Σ)] , (8)

where µ indicates the just mentioned mean value. Samples can then be drawn
from this distribution as described in Sec. 1.3.

3.1 Two Dimensional Object Information

When we defined pstick3d we assumed we knew the three dimensional position of
the stick. In the experiments presented in Sec. 5, we are using an active motion
capture system to attain this information. While this approach might be feasible
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in laboratory settings it will not work in the general single-viewpoint setup; in
practice it is simply too hard to accurately track even a rigid object in 3D. It
is, however, not that difficult to track a stick in 2D directly in the image. We,
thus, suggest a trivial extension of pstick3d to the case were we only know the 2D
image position of the stick.

From the 2D stick position in the image and the value of γ(left)t we can
compute the 2D image position of the left hand. We then know that the actual
hand position in 3D must lie on the line going through the optical centre and
the 2D image position. We then define the mean value of the predicted left hand
as the projection of the current left hand 3D position onto the line of possible
hand positions. The right hand is treated similarly. This is sketched in Fig. 2.
The mean value of the remaining end point is set to their current position, and
the resulting distribution is projected ontoM. We shall denote this motion prior
pstick2d.

Optical Centre

Space of possible
hand positions

Fig. 2. An illustration of the geometry behind the pstick2d model. The stick is detected
in the image and the hands are restricted to the part of R3 that projects onto the
detected stick.

4 Visual Measurements

To actually implement an articulated tracker, we need a system for making visual
measurements. To keep the paper focused on prediction, we use a simple vision
system [16] based on a consumer stereo camera1. This camera provides a dense
set of three dimensional points Z = {z1, . . . ,zK} in each frame. The objective of
the vision system then becomes to measure how well a pose hypothesis matches
the points. We assume that points are independent and that the distance between
a point and the skin of the human follows a zero-mean Gaussian distribution,
i.e.

p(Z|θt) ∝
K∏

k=1

exp

(
−min

[
D2(θt, zk), τ

]

2σ2

)
, (9)

1http://www.ptgrey.com/products/bumblebee2/
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where D2(θt, zk) denotes the squared distance between the point zk and the
skin of the pose θt and τ is a constant threshold. The minimum operation is
there to make the system robust with respect to outliers.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, we define the skin of a bone as a capsule
with main axis corresponding to the bone itself. Since we only have a single view
point, we discard the half of the capsule that is not visible. The skin of the entire
pose is then defined as the union of these half-capsules. The distance between
a point and this skin can then be computed as the smallest distance from the
point to any of the half-capsules.

5 Experimental Results

Using the just mentioned likelihood model we can create an articulated tracker
for each suggested prior. This gives us a set of weighted samples at each time step,
which we reduce to one pose estimate θ̂t by computing the weighted average.

We record images from the previously mentioned stereo camera at 15 FPS
along with synchronised data from an optical motion capture system2. We place
motion capture markers on a stick such that we can attain its three dimensional
position in each frame. In the case of pstick2d, we only use the marker positions
projected into the image plane.

To evaluate the quality of the attained results we also position motion capture
markers on the arms of the test subject. We then measure the average distance
between the motion capture markers and the capsule skin of the attained re-
sults. This measure is then averaged across frames, such that the error measure
becomes

E =
1

TM

T∑

t=1

M∑

m=1

D(θ̂t,vm) , (10)

where D(θ̂t,vm) is the Euclidean distance between the mth motion capture
marker and the skin at time t.

In the first sequence we study a person who moves the stick from side to
side and finally move the stick behind his head. This type of motion utilises
the shoulder joints a lot, which is typically something that can cause difficulties
for articulated trackers. We show selected frames from this sequence with the
estimated pose superimposed in Fig. 3. Results are shown for the three different
priors that utilise knowledge of the stick position. For reference, we also show the
result of the standard model pgp that assumes independent normally distributed
joint angles. In all cases, 500 particles was used. As can be seen, the three stick-
based priors all track the motion successfully, whereas the general purpose prior
fail. This is more evident in the videos, which are available online3.

2http://www.phasespace.com/
3http://humim.org/accv2010
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To quantify the quality of the results, we compute the error measure from
Eq. 10 for each of the attained results. This is reported along with the compu-
tation time in Table 1. As can be read, pstick3d gives the most accurate results,
closely followed by pkkb and pstick2d. However, when it comes to computation
speed, we note that the pkkb prior is 7.2 times slower than the general purpose
angular prior, whereas our priors are both only 1.1 times slower.

Upon further study of the results attained by the pkkb prior we note that in
a few frames the pose estimate does not actually grab onto the stick. To under-
stand this phenomena, we need to look at the details of the rejection sampling
scheme. If we keep rejecting samples until Eq. 6 is satisfied, we have no way of
guaranteeing that the algorithm will ever terminate. To avoid infinite loops, we
stop the rejection sampling after a maximum of 5000 rejections. We found this
to be a reasonable compromise between running times and accuracy. In Fig. 4a
we plot the percentage of particles meeting the maximum number of rejections
in each frame. As can be seen this number fluctuates and even reaches 100 per-
cent in a few frames. This behaviour causes shaky pose estimates and even a
few frames where the knowledge of the stick position is effectively not utilised.
This can also be seen in Fig. 5 where the generated particles are shown for the
different priors. Videos showing these are also available online3. Here we see that
the pkkb prior generates several particles with hand positions far away from the
stick. We do not see such a behaviour of neither the pstick3d nor pstick2d priors.

We move on to the next studied sequence. Here the person is waiving the
stick in a sword-fighting-manner. A few frames from the sequence with results
superimposed are available in Fig. 6. While pstick3d and pstick2d are both able to
successfully track the motion, pkkb fails in several frames. As before, the reason
for this behaviour can be found in the rejection sampling scheme. In Fig. 4b we
show the percentage of particles reaching the maximum number of rejections.
As before, we see that a large percentage of the particles often reach the limit
and as such fail to take advantage of the known stick position. This is the reason
for the erratic behaviour. In Table 2 we show accuracy and running time of the
different methods, and here it is also clear that the pkkb prior fails to track the
motion even if it spends almost 10 times more time per frame than pstick3d and
pstick2d.

Table 1. Results for the first sequence using 500 particles.

Prior Error (std.) Computation Time

pkkb 2.7 cm (1.3 cm) 687 sec./frame
pstick3d 2.4 cm (1.0 cm) 108 sec./frame
pstick2d 2.9 cm (1.5 cm) 108 sec./frame
pgp 4.2 cm (2.3 cm) 96 sec./frame
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pkkb pstick3d

pstick2d pgp

Fig. 3. Frame 182 from the first sequence. Image contrast has been enhanced for view-
ing purposes.
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Fig. 4. Percentage of particles which reached the limit of the rejection sampling.

Table 2. Results for the second sequence using 500 particles.

Prior Error (std.) Computation Time

pkkb 8.4 cm (1.9 cm) 782 sec./frame
pstick3d 2.2 cm (0.8 cm) 80 sec./frame
pstick2d 2.8 cm (1.7 cm) 80 sec./frame
pgp 8.4 cm (2.2 cm) 68 sec./frame
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pkkb pstick3d

pstick2d pgp

Fig. 5. The particles active in frame 182 in the first sequence.

6 Discussion

In this paper we have analysed an algorithm suggested by Kjellström et al. for ar-
ticulated tracking when environmental constraints are available. We argued, and
experimentally validated, that the algorithm is computationally too demanding
to be of use in real-life settings. We then presented a simple model for solving
the same problem, that only comes with a small computational overhead. The
simplicity of our method comes from the decision to model the motion spatially
rather than in terms of joint angles. This provides us with a general framework in
which spatial knowledge can trivially be utilised. As most environmental knowl-
edge is available in this domain, the idea can easily be extended to more complex
situations.

In practice, much environmental information is not available in three dimen-
sions, but can only be observed in the image plane. As such, we have suggested
a straight-forward motion prior that only constraint limb positions in the image
plane. This provides a framework that can actually be applied in real-life settings
as it does not depend on three dimensional environmental knowledge that most
often is only available in laboratory settings.

The two suggested priors are both quite simple and they encode the environ-
mental knowledge in a straight-forward manner. The priors, thus, demonstrate
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pkkb pstick3d

pstick2d pgp

Fig. 6. Frame 101 from the second sequence. Image contrast has been enhanced for
viewing purposes.

the ease of which complicated problems can be solved when the motion is mod-
elled spatially rather than in terms of joint angles. As spatial models have been
shown to have more well-behaved variance structure than models expressed in
terms of joint angles [16], we do believe spatial models can provide the basis of
the next leaps forward for articulated tracking.
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Figure 5.1 A sketch of the sim-
plest data-driven importance dis-
tribution: individual joint posi-
tions are sampled using rejection
sampling to ensure that they are
inside the observed silhouette.

The papers so far have focused on variance
properties of different priors, the geometry of the
models and interactions with the environment.
Oddly enough, the hidden agenda of the Rieman-
nian approach was something entirely different.
A fascinating aspect of particle filters is the idea
of drawing samples near the modes of the likeli-
hood via changes in the importance distribution.
This approach has not seen a lot of attention in
the articulated tracking literature because of the
non-linear relationship between the space of ob-
served images and the joint angle space. If we
instead consider the joint position space, then
this is more directly related to the space of ob-
served images. This simplifies many parts of the
optimisation and in particular allows for better
importance distributions.

In the next paper we provide two examples of
simple data-driven importance distributions that
improve tracking quality substantially. These distributions are based on silhouette
and depth data, respectively. These are, however, meant as examples of a general
strategy; the major point of the paper is to show how easy it is to design data-driven
importance distributions once the pose representation is spatial.

54



Data-Driven Importance Distributions for Articulated
Tracking

Søren Hauberg and Kim Steenstrup Pedersen

{hauberg, kimstp}@diku.dk,
The eScience Centre, Dept. of Computer Science, University of Copenhagen

Abstract. We present two data-driven importance distributions for particle filter-
based articulated tracking; one based on background subtraction, another on depth
information. In order to keep the algorithms efficient, we represent human poses
in terms of spatial joint positions. To ensure constant bone lengths, the joint po-
sitions are confined to a non-linear representation manifold embedded in a high-
dimensional Euclidean space. We define the importance distributions in the em-
bedding space and project them onto the representation manifold. The resulting
importance distributions are used in a particle filter, where they improve both ac-
curacy and efficiency of the tracker. In fact, they triple the effective number of
samples compared to the most commonly used importance distribution at little
extra computational cost.

Key words: Articulated tracking · Importance Distributions · Particle Filtering ·
Spatial Human Motion Models

1 Motivation

Articulated tracking is the process of estimating the pose of a person in each frame in an
image sequence [1]. Often this is expressed in a Bayesian framework and subsequently
the poses are inferred using a particle filter [1–11]. Such filters generate a set of sample
hypotheses and assign them weights according to the likelihood of the observed data
given the hypothesis is correct. Usually, the hypotheses are sampled directly from the
motion prior as this vastly simplifies development. However, as the motion prior is in-
herently independent of the observed data, samples are generated completely oblivious
to the current observation. This has the practical consequence that many sampled pose
hypotheses are far away from the modes of the likelihood. This means that many sam-
ples are needed for accurate results. As the likelihood has to be evaluated for each of
these samples, the resulting filter becomes computationally demanding.

One solution, is to sample hypotheses from a distribution that is not “blind” to the
current observation. The particle filter allows for such importance distributions. While
the design of good importance distributions can be the deciding point of a filter, not
much attention has been given to their development in articulated tracking. The root
of the problem is that the pose parameters are related to the observation in a highly
non-linear fashion, which makes good importance distributions hard to design. In this
paper, we change the pose parametrisation and then suggest a simple approximation
that allows us to design highly efficient importance distributions that account for the
current observation.

55



Søren Hauberg and Kim Steenstrup Pedersen

1.1 Articulated Tracking using Particle Filters

Estimating the pose of a person using a single view point or a small baseline stereo
camera is an inherently difficult problem due to self-occlusions and visual ambiguities.
This manifests itself in that the distribution of the human pose is multi-modal with an
unknown number of modes. Currently, the best method for coping with such distribu-
tions is the particle filter [12]. This relies on a prior motion model p(θt|θt−1) and a
data likelihood model p(Zt|θt). Here θt denotes the human pose at time t and Zt the
observation at the same time. The particle filter approximates the posterior p(θt|Z1:t)
as a set of weighted samples. These samples are drawn from an importance distribution
q(θt|Zt, θt−1) and the weights are computed recursively as

w
(n)
t ∝ w(n)

t−1p
(
Zt|θ(n)t

)
r
(n)
t s.t.

N∑

n=1

w
(n)
t = 1 , (1)

where the superscript (n) denotes sample index and the correction factor r(n)t is given
by

r
(n)
t =

p
(
θ
(n)
t |θ(n)t−1

)

q
(
θ
(n)
t |Zt, θ(n)t−1

) . (2)

In practice, it is common use the motion prior as the importance distribution, i.e. to
let q(θt|Zt, θt−1) = p(θt|θt−1) as then r(n)t = 1 which simplifies development. This
does, however, have the unwanted side-effect that the importance distribution is “blind”
to the current observation, such that the samples can easily be placed far away from
the modes of the likelihood (and hence the modes of the posterior). In practice, this
increases the number of samples needed for successful tracking. As the likelihood has
to be evaluated for each sample, this quickly becomes a costly affair; in general the
likelihood is expensive to evaluate as it has to traverse the data.

To use the particle filter for articulated tracking, we need a human pose representa-
tion. As is common [1], we shall use the kinematic skeleton (see fig. 1). This represen-
tation is a collection of connected rigid bones organised in a tree structure. Each bone
can be rotated at the point of connection between the bone and its parent. We model
the bones as having known constant length, so the angles between connected bones
constitutes the only degrees of freedom in the kinematic skeleton. We collect these into
one large vector θt representing all joint angles in the model at time t. To represent
constraints on the joint angles, they are confined to a subset Θ of RN .

From known bone lengths and a joint angle vector θt, the joint positions can be
computed recursively using forward kinematics [13]. We will let F (θt) denote the joint
positions corresponding to the joint angles θt. In this paper, we will make a distinction
between joint angles and joint positions as this has profound impact when designing
data-driven importance distributions.

1.2 Related Work

In articulated tracking, much work has gone into improving either the likelihood model
or the motion prior. Likelihood models usually depend on cues such as edges [2–4],
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Fig. 1. An illustration of the kinematic skeleton. Bones are connected in a tree structure where
branches have constant length. Angles between connected bones constitute the only degrees of
freedom in the model.

optical flow [4, 11] or background subtraction [3, 5, 14–18]. Motion priors are usually
crafted by learning activity specific priors, such as for walking [6, 7, 19, 20]. These
approaches work by restricting the tracker to some subspace of the joint angle space,
which makes the priors activity specific. When no knowledge of the activity is available
it is common [5, 6, 18, 21] to simply let θt follow a normal distribution with a diagonal
covariance, i.e.

pgp(θt|θt−1) ∝ N (θt|θt−1, diag) UΘ(θt) , (3)

where UΘ is a uniform distribution on the legal set of angles that encodes the joint con-
straints. Recently, Hauberg et al. [8] showed that this model causes the spatial variance
of the joint positions to increase as the kinematic chains are traversed. In practice this
means that with this model the spatial variance of e.g. the hands is always larger than
of the shoulders. To avoid this somewhat arbitrary behaviour it was suggested to build
the prior distribution directly in the spatial domain; a solution we will review in sec. 3.

In this paper we design data-driven importance distributions; a sub-field of articu-
lated tracking where little work has been done. One notable exception is the work of
Poon and Fleet [9], where a hybrid Monte Carlo filter was suggested. In this filter, the
importance distribution uses the gradient of the log-likelihood, which moves the sam-
ples closer to the modes of the likelihood function (and, hence, also closer to the modes
of the posterior). This approach is reported to improve the overall system performance.

In the more general filtering literature, the optimal particle filter [12] is known to
vastly improve the performance of particle filters. This filter incorporates the obser-
vation in the importance distribution, such that samples are drawn from p(θt|θt−1,Zt),
where Zt denotes the observation at time t. In practice, the optimal particle filter is quite
difficult to implement as non-trivial integrals need to be solved in closed-form. Thus,
solutions are only available for non-linear extensions to the Kalman filter [12] and for
non-linear extensions of left-to-right Hidden Markov models with known expected state
durations [22].

2 A Failed Experiment

Our approach is motivated by a simple experiment, which proved to be a failure. In
an effort to design data-driven importance distributions, we designed a straight-forward
importance distribution based on silhouette observations. We, thus, assume we have a
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binary image Bt available, which roughly separates the human from the scene. When
sampling new poses, we will ensure that joint positions are within the human segment.
We model the motion prior according to eq. 3, i.e. assume that joint angles follow a
normal distribution with diagonal covariance.

Let UBt
denote the uniform distribution on the binary image Bt, such that back-

ground pixels have zero probability and let projim[F (θt)] be the projection of joint
positions F (θt) onto the image plane. We then define the importance distribution as

q̃(θt|Bt, θt−1) ∝ N (θt|θt−1, diag) UΘ(θt) UBt
(projim[F (θt)]) . (4)

The two first terms correspond to the motion prior and the third term ensures that sam-
pled joint positions are within the human segment in the silhouette image. It is worth
noticing that the correction factor r(n)t (eq. 2) becomes constant for this importance
distribution and hence can be ignored.

It is straight-forward to sample from this importance distribution using rejection
sampling [23]: new samples can be drawn from the motion prior until one is found
where all joint positions are within the human segment. This simple scheme, which is
illustrated in fig. 2, should improve tracking quality. To measure this, we develop one
articulated tracker where the motion prior (eq. 3) is used as importance distribution
and one where eq. 4 is used. We use a likelihood model and measure of tracking error
described later in the paper; for now details are not relevant. Fig. 3a and 3b shows
the tracking error as well as the running time for the two systems as a function of the
number of samples in the filter. As can be seen, the data-driven importance distribution
increases the tracking error with approximately one centimetre, while roughly requiring
10 times as many computations. An utter failure!

Fig. 2. An illustration of the rejection sampling scheme for simulating the importance distribution
in eq. 4. The green skeleton drawn in full lines is accepted, while the two red dashed skeletons
are rejected as at least one joint is outside the silhouette.

To get to the root of this failure, we need to look at the motion prior. As previously
mentioned, Hauberg et al. [8] have pointed out that the spatial variance of the joint posi-
tions increases as the kinematic chains are traversed. This means that e.g. hand positions
are always more variant than shoulder positions. In practice, this leads to rather large
spatial variances of joint positions. This makes the term UBt

(projim[F (θt)]) dominant
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Fig. 3. Various performance measures for the tracking systems; errorbars denote one standard
deviation of the attained results over several trials. (a) The tracking error measured in centimetre.
(b) The running time per frame. (c) The average number of rejections in each frame.

in eq. 4, thereby diminishing the effect of the motion prior. This explains the increased
tracking error. The large running time can also be explained by the large spatial vari-
ance of the motion prior. For a sampled pose to be accepted in the rejection sampling
scheme, all joint positions need to be inside the human silhouette. Due to the large
spatial variance of the motion prior, many samples will be rejected, leading to large
computational demands. To keep the running time under control, we maximally allow
for 10000 rejections. Fig. 3c shows the average number of rejections in each frame in a
sequence; on average 6162 rejections are required to generate a sample where all joint
positions are within the human silhouette. Thus, the poor performance, both in terms
accuracy and speed, of the importance distribution in eq. 4 is due to the large spatial
variance of the motion prior. This indicates that we should be looking for motion priors
with more well-behaved spatial variance. We will turn to the framework suggested by
Hauberg et al. [8] as it was specifically designed for controlling the spatial variance of
joint positions. We shall briefly review this work next.

3 Spatial Predictions

To design motion priors with easily controlled spatial variance, Hauberg et al. [8] first
define a spatial pose representation manifoldM ⊂ R3L, where L denotes the number
of joints. A point on this manifold corresponds to all spatial joint positions of a pose
parametrised by a set of joint angles. More stringently,M can be defined as

M = {F (θ) | θ ∈ Θ} , (5)

where F denotes the forward kinematics function for the entire skeleton. As this func-
tion is injective with a full-rank Jacobian,M is a compact differentiable manifold em-
bedded in R3L. Alternatively, one can think of M as a quadratic constraint manifold
arising due to the constant distance between connected joints. It should be noted that
while a point on M corresponds to a point in Θ, the metrics on the two spaces are
different, giving rise to different behaviours of seemingly similar distributions.
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A Gaussian-like predictive distribution onM can be defined simply by projecting
a Gaussian distribution in R3L ontoM, i.e.

pproj(θt|θt−1) = projM [N (F (θt)|F (θt−1), Σ)] . (6)

When using a particle filter for tracking, one only needs to be able to draw samples
from the prior model. This can easily be done by sampling from the normal distribution
in R3L and projecting the result ontoM. This projection can be performed in a direct
manner by seeking

θ̂t = argmin
θt

∥∥x̂t − F (θt)
∥∥2 s.t. θt ∈ Θ , (7)

where x̂t ∼ N (F (θt)|F (θt−1), Σ). This is an inverse kinematics problem [13], where
all joints are assigned a goal. Eq. 7 can efficiently be solved using gradient descent by
starting the search in θt−1.

4 Data-Driven Importance Distributions

We now have the necessary ingredients for designing data-driven importance distribu-
tions. In this paper, we will be designing two such distributions: one based on silhouette
data and another on depth data from a stereo camera. Both will follow the same basic
strategy.

4.1 An Importance Distribution based on Silhouettes

Many articulated tracking systems base their likelihood models on simple background
subtractions [3, 5, 14–18]. As such, importance distributions based on silhouette data
are good candidates for improving many systems. We, thus, assume that we have a
binary image Bt available, which roughly separates the human from the scene. When
predicting new joint positions, we will ensure that they are within the human segment.

The projected prior (eq. 6) provides us with a motion model where the variance of
joint positions can easily be controlled. We can then create an importance distribution
similar to eq. 4,

qbg(θt|Bt, θt−1) ∝ pproj(θt|θt−1) UBt
(projim[F (θt)]) . (8)

While the more well-behaved spatial variance of this approach would improve upon the
previous experiment, it would still leave us with a high dimensional rejection sampling
problem. As this has great impact on performance, we suggest an approximation of the
above importance distribution,

qbg(θt|Bt, θt−1) ∝ pproj(θt|θt−1) UBt
(projim[F (θt)]) (9)

= projM
[
N (F (θt)|F (θt−1), Σ)

]
UBt

(projim[F (θt)]) (10)

≈ projM
[
N (F (θt)|F (θt−1), Σ) UBt

(projim[F (θt)])
]
. (11)
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In other words, we suggest imposing the data-driven restriction in the embedding space
before projecting back on manifold. When the covariance Σ is block-diagonal, such
that the position of different joints in embedding space are independent, this importance
distribution can be written as

qbg(θt|Bt, θt−1) ≈ projM

[
L∏

l=1

N (µl,t|µl,t−1, Σl) UBt
(projim[µl,t])

]
, (12)

where µl,t denotes the position of the lth joint at time t and Σl denotes the block of
Σ corresponding to the lth joint. We can sample efficiently from this distribution us-
ing rejection sampling by sampling each joint position independently and ensuring that
they are within the human silhouette. This is L three dimensional rejection sampling
problems, which can be solved much more efficiently than one 3L dimensional prob-
lem. After the joint positions are sampled, they can be projected onto the representation
manifoldM, such that the sampled pose respects the skeleton structure.

A few samples from this distribution can be seen in fig. 4c, where samples from the
angular prior from eq. 3 is available as well for comparative purposes. As can be seen,
the samples from the silhouette-driven importance distribution are much more aligned
with the true pose, which is the general trend.

(a) (b)

(c) (d)

Fig. 4. Samples from various importance distributions. Notice how the data-driven distributions
generate more “focused” samples. (a) The input data with the segmentation superimposed. (b)
Samples from the angular prior (eq. 3). (c) Samples from the importance distribution guided by
silhouette data. (d) Samples from the importance distribution guided by depth information.
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4.2 An Importance Distribution based on Depth

Several authors have also used depth information as the basis of their likelihood model.
Some have used stereo [8, 10, 24] and others have used time-of-flight cameras [25].
When depth information is available it is often fairly easy to segment the data into
background and foreground simply by thresholding the depth. As such, we will extend
the previous model with the depth information. From depth information we can generate
a set of points Z = {z1, . . . , zK} corresponding to the surface of the observed objects.
When sampling a joint position, we will simply ensure that it is not too far away from
any of the points in Z.

To formalise this idea, we first note that the observed surface corresponds to the skin
of the human, whereas we are modelling the skeleton. Hence, the joint positions should
not be directly on the surface, but a bit away depending on the joint. For instance, hand
joints should be closer to the surface than a joint on the spine. To encode this knowledge,
we let Z⊕rl denote the set of three dimensional points where the shortest distance to
any point in Z is less than rl, i.e.

Z⊕rl = {z | min
k

(‖z− zk‖) < rl} . (13)

Here the rl threshold is set to be small for hands, large for joints on the spine and so
forth. When we sample individual joint positions, we ensure they are within this set, i.e.

qdepth(θt|Z, θt−1) ∝ pproj(θt|θt−1) UBt(projim[F (θt)]) UZ⊕
(
F (θt

)
(14)

≈ projM

[
L∏

l=1

N (µl,t|µl,t−1, Σl) UBt(projim[µl,t]) UZ⊕rl (µl,t)

]

where UZ⊕rl is the uniform distribution on Z⊕rl . Again, we can sample from this dis-
tribution using rejection sampling. This requires us to compute the distance from the
predicted position to the nearest point in depth data. We can find this very efficiently
using techniques from kNN classifiers, such as k-d trees [26].

Once all joint positions have been sampled, they are collectively projected onto the
manifoldM of possible poses. A few samples from this distribution is shown in fig. 4d.
As can be seen, the results are visually comparable to the model based on background
subtraction; we shall later, unsurprisingly, see that for out-of-plane motions the depth
model does outperform the one based on background subtraction.

5 A Simple Likelihood Model

In order to complete the tracking system, we need a system for computing the likelihood
of the observed data. To keep the paper focused on prediction, we use a simple vision
system [8] based on a consumer stereo camera1. This camera provides a dense set of
three dimensional points Z = {z1, . . . , zK} in each frame. The objective of the vision
system then becomes to measure how well a pose hypothesis matches the points. We

1 http://www.ptgrey.com/products/bumblebee2/
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assume that points are independent and that the distance between a point and the skin
of the human follows a zero-mean Gaussian distribution, i.e.

p(Z|θt) ∝
K∏

k=1

exp

(
−min

[
D2(θt, zk), τ

]

2σ2

)
, (15)

where D2(θt, zk) denotes the squared distance between the point zk and the skin of
the pose θt and τ is a constant threshold. The minimum operation is there to make the
system robust with respect to outliers.

We also need to define the skin of a pose, such that we can compute distances
between this and a data point. Here, the skin of a bone is defined as a capsule with main
axis corresponding to the bone itself. Since we only have a single view point, we discard
the half of the capsule that is not visible. The skin of the entire pose is then defined as
the union of these half-capsules. The distance between a point and this skin can then be
computed as the smallest distance from the point to any of the half-capsules.

6 Experimental Results

We now have two efficient data-driven importance distributions and a likelihood model.
This gives us two systems for articulated tracking that we now validate by comparison
with one using the standard activity independent prior that assumes normally distributed
joint angles (eq. 3) as importance distribution. We use this motion prior as reference as
it is the most commonly used model. As ground truth we will be using data acquired
with an optical marker-based motion capture system.

We first illustrate the different priors on a sequence where a person is standing in
place while waving a stick. This motion utilises the shoulders a lot; something that
often causes problems for articulated trackers. As the person is standing in place, we
only track the upper body motions.

In fig. 5 we show attained results for the different importance distributions; a film
with the results are available as part of the supplementary material. Visually, we see that
the data-driven distributions improve the attained results substantially. Next, we set out
to measure this gain.

To evaluate the quality of the attained results we position motion capture markers
on the arms of the test subject. We then measure the average distance between the
motion capture markers and the capsule skin of the attained results. This measure is
then averaged across frames, such that the error measure becomes

E =
1

TM

T∑

t=1

M∑

m=1

D(θ̂t,vm) , (16)

where D(θ̂t,vm) is the orthogonal Euclidean distance between the mth motion capture
marker and the skin at time t. The error measure is shown in fig. 6a using between
25 and 500 particles. As can be seen, both data-driven importance distributions perform
substantially better than the model not utilising the data. For a small number of samples,
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(a) (b) (c)

Fig. 5. Results from trackers using 150 particles with the different importance distributions. The
general trend is that the data-driven distributions improve the results. (a) The angular prior from
eq. 3. (b) The importance distribution guided by background subtraction. (c) The importance
distribution guided by depth information.
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Fig. 6. Various performance measures for the tracking systems using different importance dis-
tributions on the first sequence. Errorbars denote one standard deviation of the attained results
over several trials. (a) The tracking error E . (b) The effective number of samples Neff . (c) The
running time per frame.
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the model based on depth outperforms the one based on background subtraction, but for
150 particles and more, the two models perform similarly.

In the particle filtering literature the quality of the Monte Carlo approximation is
sometimes measured by computing the effective number of samples [12]. This measure
can be approximated by

Neff =

(
N∑

n=1

w
(n)
t

)−1
, (17)

where w(n)
t denotes the weight of the nth sample in the particle filter. Most often this

measure is used to determine when resampling should be performed; here we will use
it to compare the different importance distributions. We compute the effective number
of samples in each frame and compute the temporal average. This provides us with a
measure of how many of the samples are actually contributing to the filter. In fig. 6b
we show this for the different importance distributions as a function of the number of
particles. As can be seen, the data-driven importance distributions gives rise to more
effective samples than the one not using the data. The importance distribution based on
background subtraction gives between 1.6 and 2.2 times more effective samples than
the model not using data, while the model using depth gives between 2.3 and 3.3 times
more effective samples.

We have seen that the data-driven importance distributions improve the tracking
substantially as they increase the effective number of samples. This benefit, however,
comes at the cost of an increased running time. An obvious question is then whether
this extra cost outweigh the gains. To answer this, we plot the running times per frame
for the tracker using the different distributions in fig. 6c. As can be seen, the two data-
driven models require the same amount of computational resources; both requiring ap-
proximately 10% more resources than the importance distribution not using the data. In
other words, we can triple the effective number of samples at 10% extra cost.

We repeat the above experiments for a different sequence, where a person is moving
his arms in a quite arbitrary fashion; a type of motion that is hard to predict and as
such also hard to track. Example results are shown in fig. 7, with a film again being
available as part of the supplementary material. Once more, we see that the data-driven
importance distributions improve results. The tracking error is shown in fig. 8a; we see
that the importance distribution based on depth consistently outperforms the one based
on background subtraction, which, in turn, outperforms the one not using the data. The
effective number of samples is shown in fig. 8b. The importance distribution based on
background subtraction gives between 1.8 and 2.2 times more effective samples than
the model not using data, while the model using depth gives between 2.8 and 3.6 times
more effective samples. Again a substantial improvement at little extra cost.

7 Conclusion

We have suggested two efficient importance distributions for use in articulated tracking
systems based on particle filters. They gain their efficiency by an approximation that
allows us to sample joint positions independently. A valid pose is then constructed by a
projection onto the manifoldM of possible joint positions. While this projection might
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(a) (b) (c)

Fig. 7. Results from trackers using 150 particles with the different importance distributions. The
general trend is that the data-driven distributions improve the results. (a) The angular prior from
eq. 3. (b) The importance distribution guided by silhouette data. (c) The importance distribution
guided by depth information.
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Fig. 8. Various performance measures for the tracking systems using different importance distri-
butions on the second sequence. Errorbars denote one standard deviation of the attained results
over several trials. (a) The tracking error E . (b) The effective number of samples Neff . (c) The
running time per frame.
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seem complicated it merely correspond to a least-squares fit of a kinematic skeleton to
the sampled joint positions. As such, the suggested importance distributions are quite
simple, which consequently means that the algorithms are efficient and that they actu-
ally work. In fact, our importance distributions triple the effective number of samples
in the particle filter, at little extra computational cost. The simplicity of the suggested
distributions also makes them quite general and easy to implement. Hence, they can be
used to improve many existing tracking systems with little effort.
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Figure 6.1 An illustration of Rie-
mannian Brownian motion. In-
finitesimal Gaussian random steps
are taken in the tangent space.

The previous papers in the thesis have sug-
gested and extended a projected prior on the
kinematic manifold. The idea of projecting a
Gaussian distribution to a Riemannian manifold
has seen some use in directional statistics [34] as
an approximation to Riemannian Brownian mo-
tion. It is, however, a less known model, and its
behaviour has not seen much study. To remedy
this, we show how to work with Brownian mo-
tion on embedded manifolds, such as the kine-
matic manifold. This stochastic model was cho-
sen because it is one of the most well-known mod-
els available, and also it forms the basis of most
stochastic calculus.

Technically, we work with Brownian motion ex-
pressed as a Stratonovich stochastic differential equation and show how to simulate
this on embedded manifolds. To the best of our knowledge, this is the first numerical
solution to stochastic differential equations on manifolds.
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Abstract

In articulated tracking, one is concerned with estimating the pose of a person in every frame of a film. This pose is most
often represented as a kinematic skeleton where the joint angles are the degrees of freedom. Least-committed predictive
models are then phrased as a Brownian motion in joint angle space. However, the metric of the joint angle space is rather
unintuitive as it ignores both bone lengths and how bones are connected. As Brownian motion is strongly linked with
the underlying metric, this has severe impact on the predictive models. We introduce the spatial kinematic manifold of
joint positions, which is embedded in a high dimensional Euclidean space. This Riemannian manifold inherits the metric
from the embedding space, such that distances are measured as the combined physical length that joints travel during
movements. We then develop a least-committed Brownian motion model on the manifold that respects the natural
metric. This model is expressed in terms of a stochastic differential equation, which we solve using a novel numerical
scheme. Empirically, we validate the new model in a particle filter based articulated tracking system. Here, we not only
outperform the standard Brownian motion in joint angle space, we are also able to specialise the model in ways that
otherwise are both difficult and expensive in joint angle space.

Keywords: Articulated Tracking, Brownian Motion on Riemannian Manifolds, Manifold-valued Stochastic Differential
Equations, Numerical Solutions to SDEs

1. Introduction

This paper is concerned with least-committed priors for
probabilistic articulated tracking, i.e. estimation of human
poses in sequences of images (Poppe, 2007). When treating
such problems, a maximum a posteriori estimate is typi-
cally found by solving an optimisation problem, and the
optimisation is then guided by a prior model for predict-
ing future motion. For such statistical models of human
motion, it is common to express the model as a kinematic
skeleton (see fig. 1). This “stick figure” model is com-
plex enough to be descriptive and simple enough to give
tractable algorithms. Most of the resulting models are,
however, expressed in a space with rather unnatural metric
properties, which is also apparent in the models. Specifi-
cally, the applied metrics most often only study changes in
joint angles; the “size” of a movement is simply measured
by summing how much each joint was bent. This ends up
with the flick of a finger being just as large a motion as
waving an arm, even though one would expect the latter
to be much larger (see fig. 2). This rather unintuitive be-
haviour occurs as the metric ignores both the length of the
individual bones and the hierarchical nature of the human
body (the arm bone is connected to the shoulder bone, the
shoulder bone is connected to the back bone, etc.). Often

Email addresses: hauberg@diku.dk (Søren Hauberg),
sommer@diku.dk (Stefan Sommer), kimstp@diku.dk (Kim
Steenstrup Pedersen)

this problem is mitigated by weighting the joints, but, as
we will show, this cannot lead to a spatially consistent
metric.

In this paper, we define a representation of the kine-
matic skeleton with natural metric properties. Instead of
studying joint angles, we explicitly model joint positions,
such that our representation consists of the three dimen-
sional spatial coordinates of all joints. As bone lengths
are constant, the distance between connected joints is also
constant. This constraint confines our representation to
a manifold embedded in the Euclidean space consisting
of all joint positions. By inheriting the metric from the
embedding space, we get a metric corresponding to the
length of the spatial curves that joint positions follow dur-
ing the movement. Interestingly, this natural metric is well
in tune with how humans plan, think about and discuss
motion (Morasso, 1981; Abend et al., 1982).

Using our spatial representation, we define a Brownian
motion model on the Riemannian representation manifold
that reflects the metric. The Brownian motion model is
expressed as a manifold-valued stochastic differential equa-
tion (SDE), for which we need numerical solvers. We
present a novel scheme for solving the SDE, which we ap-
ply as a least-committed prior in a particle filter based
articulated tracking system. Furthermore, we show how
the spatial nature of the model allows us to model in-
teractions with the environment; something that is often
ignored when the model is expressed with joint angles.
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Figure 1: Left: a rendering of the kinematic skeleton. Each bone
position is computed by a rotation and a translation relative to its
parent. Right: an image showing a human in the pose represented
by the skeleton to the left.

1.1. Organisation of the Paper

We start the paper by discussing relevant background
material and related work with emphasis on the non-spatial
joint angle metric most often used when modelling human
motion. We continue by defining a spatial manifold-valued
pose representation with a natural and intuitive metric.
The next step is to define a least-committed stochastic
process on this manifold for predicting human motion; in
sec. 3.2 we define a Brownian motion model that serves this
purpose. In order to apply the model in real-world scenar-
ios we need a suitable numerical scheme for working with
this stochastic process; in sec. 4 we show how the under-
lying manifold-valued stochastic differential equation can
be simulated. We then incorporate the predictive model
in an articulated tracking system and compare with the
standard Brownian motion in joint angle space. Further-
more, we show how interaction with the environment can
trivially be included in the motion model due to the spatial
nature of our framework. Finally, the paper is concluded
with a discussion in sec. 6.

2. Background and Related Work

Probabilistic articulated tracking concerns the maxi-
mum a posteriori estimate of the pose of a person in every
frame of a film. This requires a representation of human
poses and a framework for computing the statistics of the
observed poses. As we are seeking a posterior estimate,
we need a prior model of the motion. This prior is the
focus of this paper. In this section, we describe the pose
representation, the probabilistic framework, the standard
priors and other related work.

2.1. The Kinematic Skeleton

To represent the human body, we use the kinematic
skeleton (see fig. 1), which is by far the most common
choice (Poppe, 2007). This representation is a collection of
connected rigid bones organised in a tree structure. Each
bone can be rotated at the point of connection between
the bone and its parent. We will refer to such a connection
point as a joint. Elbow joints will be represented using one
parameter while all other joints will be represented using
three parameters.

Figure 2: Examples of three motions that are equally large in the
commonly used angular metric. All examples have a 45 degree an-
gular distance to the initial pose.

We model the bones as having known constant length
and, therefore, the angles between joints constitute the
only degrees of freedom in the kinematic skeleton. We may
collect all these joint angle vectors into one large vector θ,
which will be confined to the N dimensional torus TN .

From joint angles it is straightforward to compute joint
positions using Forward Kinematics (Erleben et al., 2005).
This process starts at the skeleton root and recursively
computes a joint position by translating its parent in the
direction encoded by the joint angles, i.e.

al = Rl (al−1 + tl) , (1)

where al is the end-point of the lth bone, and Rl and
tl denotes a rotation and a translation respectively. The
rotation is parametrised by the relevant components of
the pose vector θ and the length of the translation corre-
sponds to the known length of the bone. We shall denote
the vector containing all spatial joint coordinates as F (θ).
The forward kinematics function F , thus, encodes bone
lengths, bone connectivity as well as joint types.

In the human body, bones cannot move freely. A simple
example is the elbow joint, which can approximately only
bend between 0 and 160 degrees. To represent this, θ is
confined to a subset Θ of TN . For simplicity, Θ is often
defined by confining each component of θ to an interval,
i.e. Θ =

∏N
n=1[ln, un], where ln and un denote the lower

and upper bounds of the nth component. More realistic
joint constraints are also possible, e.g. the implicit surface
models of Herda et al. (2004). For our purposes any hard
constraint model is applicable, though the choice will have
an impact on the computational requirements.

2.2. Probabilistic Motion Inference

The objective in articulated human motion estimation
is to infer θ in each observation in a sequence (Poppe,
2007). To make things practical, it is common to assume
that the joint angles follow a first order Markov chain and
that observations are conditionally independent given the
true joint configuration. From all observations seen so far,
the current joint angles can then be estimated from (Cappé
et al., 2007)

p(θt|Z1:t) ∝ p(Zt|θt)
∫
p(θt|θt−1)p(θt−1|Z1:t−1)dθt−1 ,

(2)

71



where θ1:T = {θ1, . . . , θT } and Zt denotes the observation
at time t.

When only using a single camera or a narrow base-
line stereo camera, p(Zt|θt) becomes multi-modal due to
self-occlusions and visual ambiguities. For this reason,
we apply the particle filter (Cappé et al., 2007) for in-
ferring pose parameters. Briefly put, this algorithm recur-

sively draws samples θ
(j)
t+1 from the motion prior p(θt+1|θt)

and assigns weights to these according to the likelihood
p(Zt+1|θt+1). These weighted samples form an approxima-
tion of p(θt+1|Z1:t+1); the mean of which can be estimated
from

E[θt+1|Z1:t+1] ≈
J∑

j=1

wjθ
(j)
t+1 , (3)

where wj ∝ p(Zt+1|θt+1) are normalised likelihoods that
sum to one.

2.3. Brownian Motion of Joint Angles

The focus of this paper is motion priors, i.e. p(θt+1|θt).
When no specific motion is being modelled, it is common
to assume that θt follows an Euclidean Brownian motion,
i.e.

p(θt+1|θt) ∝ exp

(
−1

2
d2θ(θt+1, θt)

)
, (4)

where dθ(θt+1, θt) = ‖θt+1 − θt‖ is the Euclidean distance
in joint angle space. In practice it is common to scale the
individual joint angles to encode that some joints move
more than others. This corresponds to introducing a co-
variance matrix in eq. 4. Formally, this makes the model
an Itô diffusion (Øksendal, 2000), but we will simply treat
it as a Brownian motion in the scaled coordinate system.
However, as we shall see, the Brownian motion model in
angle space has some rather unintuitive properties, which
cannot be avoided by scaling the coordinates.

Formally, Euclidean Brownian motion, also known as
the Wiener process, is defined (Sato, 1999) as a stochastic
process Wt on Rd having independent increments, such
that for any partitioning, n ≥ 1 and 0 ≤ t0 < t1 <
. . . < tn, Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1

are indepen-
dent random variables. Furthermore, the increments are
zero mean Gaussian distributed Ws+t−Ws ∼ N (0, tI) for
all s, t > 0. Hence, we may intuitively think of Euclidean
Brownian motion as the result of time integration of zero
mean Gaussian white noise, that is an infinite sum of i.i.d.
infinitesimal Gaussian steps. As such the Euclidean Brow-
nian motion is both a d-dimensional Gaussian and a Levy
process (Sato, 1999).

Brownian motion is generally considered the least-com-
mitted motion model as it 1) assumes no knowledge of the
past motion given our current position and 2) takes steps
with maximum entropy under the constraint of a fixed
finite variance. The last point arises from the fact that
the steps are Gaussian distributed, which is the maximum
entropy distribution constrained by a finite variance and
known mean value.

Furthermore, Brownian motion lies at the heart of sto-
chastic calculus and the theory of stochastic differential
equations (Øksendal, 2000). It allows for the formula-
tion of general stochastic process models, including the
Kalman-Bucy filter, the continuous time formulation of
the Kalman filter. Brownian motion also forms the basis
of most other models of interest for articulated tracking.

2.4. The Joint Angle Metric

The Euclidean Brownian motion model in eq. 4 is strongly
linked to the metric. Specifically, eq. 4 assumes that dθ(θt, θt−1) =
‖θt−θt−1‖ is a suitable metric for comparing poses. While
this model might seem reasonable at first glance, we shall
soon see that it exhibits several unnatural properties.

As a motivating example of the behaviour of dθ, we
show three movements of “equal size” in fig. 2. In all
movements one joint has been moved 45 degrees, while
the remaining have been kept constant. While the actual
numerical changes from the initial positions are the same,
the movements appear to be substantially different, with
the movement on the left of the figure appearing to be
much larger than the one on the right. The example in
fig. 2 just scratches the surface of the unnatural behaviour
of dθ. The main causes of difficulty with dθ are due to two
phenomena.

First, the metric ignores the length of the bones in the
body. As such, even a small change in the angle of a joint
connected to a long bone can lead to large spatial changes.
This problem can be avoided by assigning a weight to each
joint angle according to the length of the bone controlled
by the joint.

The second phenomena, is that the metric ignores the
order of the joint in the kinematic chain. By bending one
joint, the position of all joints further down the kinematic
chain is altered, while the position of joints closer to the
root of the kinematic tree remain unaltered. From a prob-
abilistic point of view, this means that the variance of
joint positions increases as the kinematic chains are tra-
versed. Hence the joint angle model artificially increases
the spatial variance, which means that the model is bound
to perform poorly as a temporal low-pass filter.

These phenomena effectively means that some joint an-
gles have much more influence than others. In practice this
often leads to unstable predictive models. To mitigate this
instability, it is common to introduce a covariance Σθ in
joint angle space that influences the relative importance of
each joint. To illustrate this, we learn the covariance of a
Brownian motion in joint angle space corresponding to a
person waving his arms. In fig. 3a, we then show samples
from this distribution. As can be seen, the variance of each
joint position increases with the distance to the skeleton
root. This increase in variance is an inherent part of the
model and does not come from the motion data.

To gain further insight into the spatial behaviour of the
joint angle model, we approximate the covariance of joint
positions defined by the forward kinematics function F (θ)
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(a) (b)

Figure 3: Samples from two Brownian motion models, where the
covariance is learned from the same motion data. (a) Samples from
a model in joint angle space. (b) Samples from a spatial manifold-
valued Brownian motion. Note that the joint angle model is inher-
ently more variant.

(Hauberg et al., 2010). Linearising F (·) around θ gives an
approximation of this covariance,

cov[F (θ)] ≈ JθΣθJ
T
θ , (5)

where Jθ denotes the Jacobian of F (·) in θ. From this
expression, we see that if we want a consistent model of
joint positions, expressed in terms of joint angles, we need
different covariance matrices for every value of θ because
Jθ varies. A model where the covariance smoothly varies
is essentially a model on a Riemannian manifold. This is
the approach we will study in this paper.

To conclude, using dθ as the underlying metric when
defining Brownian motion priors leads to the rather un-
natural above-mentioned phenomena. These cannot be
avoided by introducing a single covariance matrix in joint
angle space, instead a Riemannian approach is needed.

2.5. Modelling Interaction with the Environment

In practice, articulated tracking systems are often based
on particle filters due to the multi-modality of the likeli-
hood. Unfortunately, the particle filter scales exponen-
tially with the dimensionality of the state space. One so-
lution is to specialise the motion prior p(θt+1|θt) to the
studied motion. This can “guide” the filter through the
multiple modes of the likelihood.

Humans are constantly interacting with the environ-
ment: picking up objects, leaning against walls, touching
the ground plane, and so on. Hence, an immediate way
to improve motion models is to include this knowledge.
When motion models are expressed in terms of joint an-
gles, it is, however, difficult to incorporate knowledge of
the environment into the models. As the environment is
inherently spatial, the relationship between joint angles
and the environment is given by the non-linear forward
kinematics function F . Due to this non-linearity, only lim-
ited work has been done to build models that incorporate
environmental knowledge. One notable exception include
the work of Yamamoto and Yagishita (2000), where the
forward kinematics function is linearised. This approach
shows promise in constrained situations, even though the

linearised function is highly non-linear. Brubaker et al.
(2010) also model interaction with the ground plane as
part of a biomechanical model of walking; their model is,
however, only capable of describing walking.

Kjellström et al. (2010) has suggested a more general
object interaction model. They model a person interac-
tion with a stick with known position, which gives them
information about the position of the hands. They then
suggest a motion model consisting of angular Brownian
motion subject to the constraint that the hands attain
the known positions. Kjellström et al. samples approxi-
mately from this model using rejection sampling. While
this approach works, the rejection sampling is, computa-
tionally very demanding due to the high dimensionality of
the angle space. We will consider this model further in the
experimental section of the paper.

2.6. Manifold Learning in Motion Analysis

Another way to craft motion models is to learn a mani-
fold in angle space and confine the motion to this mani-
fold. A predictive motion model can then be learned on
this manifold. Sidenbladh et al. (2000) learned a low-
dimensional linear subspace using Principal Component
Analysis and used a linear motion model in this subspace.
Sminchisescu and Jepson (2004) use Laplacian Eigenmaps
(Belkin and Niyogi, 2003) to learn a nonlinear motion
manifold. Similarly, Lu et al. (2008) use a Laplacian Eigen-
maps Latent Variable Model (Carreira-Perpinan and Lu,
2007) to learn a manifold. All three learning schemes can
be phrased in terms of pair-wise distances between training
data, where the metric is the joint angle distance discussed
in sec. 2.4.

The above approaches learn a manifold and then ignore
the training data. A reasonable alternative is to also use
the data for learning a predictive model on the manifold.
Urtasun et al. (2005) suggested to learn a prior distribu-
tion in a low dimensional latent space using a Scaled Gaus-
sian Process Latent Variable Model (Grochow et al., 2004).
This not only restricts the tracking to a low dimensional
latent space, but also makes parts of this space more likely
than others. The approach, however, ignores all temporal
aspects of the training data. To remedy this, both Urta-
sun et al. (2006) and Wang et al. (2008) suggested learn-
ing a low dimensional latent space and a temporal model
at once using a Gaussian Process Dynamical Model. The
learning algorithms in both approaches, however, require
regularisation to give stable results. This regularisation is
in practice based on the joint angle metric.

All manifold learning approaches discussed in this sec-
tion rely on the joint angle metric. As we have discussed
in sec. 2.4, this metric has several undesirable properties,
which will influence the learning. In this paper, we take a
step back and design a sensible metric along with a com-
patible least-committed motion model. This will allow us
to fix the problems with the joint angle metric and the re-
lated angular Brownian motion. It should be stressed that
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we will not be learning any manifolds; we will analytically
be designing one.

3. A Spatial Metric

For years, experimental neurologists have studied how
people move (Morasso, 1981; Abend et al., 1982) and have
found strong evidence that humans plan motion in terms
of the spatial location of limbs. This unsurprising conclu-
sion complements the fact that both the surrounding envi-
ronment and images thereof are inherently spatial as well.
We, thus, set out to model how joint positions change over
time. This will allow us to improve upon the joint angle
metric and will also ease modelling that includes knowl-
edge of the environment. As we will see, the constraints
imposed by constant bone lengths confines the collection
of all joint positions to a smooth manifold. As most statis-
tical tools have been developed for Euclidean spaces, defin-
ing a probabilistic model on the manifold is not straightfor-
ward. There is, e.g., no direct generalisation of the normal
distribution to the Riemannian domain. For this reason,
we turn to the underlying stochastic differential equation
(SDE) of Brownian motion. This SDE has the nice prop-
erty that it can be generalised to the Riemannian domain
(see e.g. (Hsu, 2002)). One problem with SDE’s on man-
ifolds, is that, to the best of our knowledge, no general
literature exists on their numerical treatment. Later in
the paper, we will introduce a novel method for simulat-
ing the manifold valued SDE’s numerically and use this
for predicting human motion in an articulated tracking
system.

In (Hauberg et al., 2010; Hauberg and Pedersen, 2011b),
we introduced the kinematic manifold and showed that
it is suitable for modelling interactions with the environ-
ment. In these papers, a somewhat ad hoc predictive
model was defined where motion was modelled in the em-
bedding space followed by a projection onto the manifold.
In contrast to this, the model developed here has a solid
foundation in the well-known Brownian motion model.

3.1. The Metric and the Kinematic Manifold

The joint angle representation has at least two good
properties. First, it is fairly simple to create statistical
models in joint angle space. Secondly, as long as the joint
limits are respected, the resulting pose is valid. As pre-
viously mentioned, the metric in angle space is, however,
not as well-behaved as one would like, which gives rise to
unstable statistical models.

As we are studying images of motion, we want a met-
ric where the size of a movement is determined by “how
large” it appears. To achieve this, we consider the physi-
cal length of the spatial curves that joint positions follow
when going from one pose to another. To properly define
these curves, we first consider the set of spatial joint co-
ordinates of all possible poses as the image of the forward

kinematics function F . The resulting set

M≡ {F (θ) | θ ∈ Θ} . (6)

is a subset of the space R3L with L denoting the number of
bone end-points counting only one for each joint. Hence,
a point in M is a vector of spatial joint positions. Since
the angle space is compact and F is an injective function
with a full-rank Jacobian, M is a compact differentiable
manifold with boundary embedded in R3L. We denote
M the kinematic manifold. It should be stressed that M
is topologically equivalent to the angle space Θ, but has a
different geometry. In other words, the two representations
capture the same set of poses, but have different metrics.

The distance between two poses on the kinematic mani-
fold is given by the manifold metric and is therefore defined
as the length of the shortest curve on M connecting the
poses. Formally, for poses x, x′ ∈M, we have

distM(x, x′) = min
c(τ)∈M,

c(0)=x,c(1)=x′

∫ 1

0

‖ċ(τ)‖dτ , (7)

with ‖ċ(τ)‖ denoting the size in R3L of the curve deriva-
tive ċ(τ). Hence, the integral corresponds to the ordinary
curve length. The distance between two poses, thus, is
the shortest of all curves on M that connect the poses.
As a curve on M is a sequence of poses, this metric cor-
responds to the minimal combined physical distance that
the joints need to move. This gives the metric a strong
physical interpretation as it measures distances directly in
the world coordinate system. This is in stark contrast to
the joint angle metric, which measures distances in terms
of an intrinsic set of parameters.

From the definition of M (eq. 6) it is clear that poses
on M encodes all knowledge of the forward kinematics
function F . This includes both bone lengths and connec-
tivity. The manifold metric, thus, incorporates knowledge
of the skeleton layout when measuring the size of a move-
ment. This is a quite natural requirement for a “movement
metric”, yet the joint angle metric is inherently unable to
include such knowledge.

3.2. Manifold-Valued Brownian Motion

Having a natural metric for measuring movements, the
next step is to define a least-committed temporal model
that respects this metric. We will define a manifold-valued
Brownian motion model for this. While the normal distri-
bution provides a Brownian motion model in the Euclidean
case, no such simple model is available in the general Rie-
mannian domain. We, thus, turn to stochastic differential
equations for such models.

The Brownian motion model is completely characterised
by its mean and covariance function. The temporal evolu-
tion of these moments are given by the Kolmogorov back-
ward equation (Øksendal, 2000), i.e. by a diffusion gov-
erned by the infinitesimal generator of the process. For the
Euclidean Brownian motion process, this generator is half
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(a) (b) (c)

Figure 4: Steps in the Brownian motion model. (a) The manifold M along with the tangent space TxtM at xt. (b) A normal distribution
dWt in the embedding space with mean value xt is projected to the tangent space. The value xt+1 is sampled from the projection of dWt.
Note that for infinitesimal variances, xt+1 stays on the manifold. (c) A normal distribution dWt+1 with mean value xt+1 is again projected
to the tangent space at xt+1. A new position xt+2 is sampled and the procedure is repeated.

the Laplace operator 1/2∆. Similarly, Brownian motion on
a manifold is generated by half the Laplace-Beltrami oper-
ator 1/2∆M (Hsu, 2002), which, in coordinates, is defined
by

∆Mf =
dimM∑

i,j=1

1√
det g

∂i

(√
det g gij∂jf

)
(8)

for smooth scalar valued functions f : M → R. Here gij

denotes the components of the metric tensor g which deter-
mines the geometry of M. For embedded manifolds such
as the kinematic manifold, the Laplace-Beltrami operator
has a particularly simple form. Let Pα(xt) denote the pro-
jection of the αth coordinate unit vector in the embedding
space R3L to the tangent space of M at xt. Then

∆Mf =
3L∑

α=1

∂2Pαf , (9)

i.e., the operator differentiates twice in each direction Pα

before summing the results. Using this form, Brownian
motion is a solution to the stochastic differential equation

dxt =

3L∑

α=1

Pα(xt) ◦ dWα
t , (10)

in the embedding space R3L. HereWt is a Euclidean Brow-
nian motion in the embedding space with Wα

t denoting
the αth coordinate, and the equation is written using the
Stratonovich integral (Hsu, 2002; Øksendal, 2000) as in-
dicated by the notation ◦d. It is interesting to note that
while the geodesic distance played an important part when
the model was defined it does not appear in eq. 10; for this
reason it need not be computed in the numerical imple-
mentation.

Because the projection of a Gaussian distribution into
a linear subspace is still a Gaussian, the above SDE can
be interpreted as taking infinitesimal Gaussian steps in
the tangent space. It is important to note that solutions
to eq. 10 will stay on the manifold even though the in-
finitesimal steps are taken in the tangent space, i.e.

P
(
xt ∈M

∣∣ x0 ∈M
)

= 1 . (11)

An illustration of this model can be seen in fig. 4. New
steps along the Brownian path are generated by following
an infinitesimal Euclidean Brownian motion in the tangent
space at the current position of the path. These steps are
then integrated over time to generate the final path.

As with the joint angle model, it is often convenient to
be able to express that some bones move more than others.
This can be achieved by scaling the coordinates in the
embedding space resulting in a model which, technically,
is not a Brownian motion on the manifold, but instead an
instance of Itô diffusion.

3.3. Spatially Constrained Brownian Motion

When building motion models, it can be practical to
constraint certain bone positions. This can be used to
ensure that the feet are touching the ground plane, that
the hands are holding on to an object of known position
and so forth. As a point on the kinematic manifold consists
of the spatial position of individual bone end points, it is
trivial to incorporate such knowledge into the model. If,
for instance, we wish to keep the hand positions fixed,
we can force the relevant entries of dWt to zero. More
complicated constraints can be encoded in the same way
as long as they are physically possible.

3.4. Relations to Directional Statistics

A large part of the work on manifold-valued statis-
tics has been done on spheres; this is known as direc-
tional statistics (Mardia and Jupp, 1999). Here easy-to-
use Brownian motion models are available in the Von Mises
distribution. In sequential analysis, this has found uses
in such different areas as multi-target air plane tracking
(Miller et al., 1995) and white matter tracking in Diffu-
sion Tensor MRI (Zhang et al., 2007). Except for the spe-
cial case of the kinematic skeleton consisting of only one
bone, the kinematic manifold is not spherical and hence
the Von Mises distribution is not applicable. The more
general Brownian motion model defined using the Laplace-
Beltrami operator is nevertheless compatible with direc-
tional statistics in the sense that the definition coincides
with the Von Mises model for spherical manifolds.
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4. Numerical Scheme

So far we have defined a Brownian motion model that
respects the manifold metric. We now set out to simulate
this model using the SDE in eq. 10. While there exists
literature on both simulating SDE’s in Euclidean spaces
(Kloeden and Platen, 1992) and solving ODE’s on mani-
folds (Hairer et al., 2004), to the best of our knowledge,
no general solvers for manifold-valued SDE’s have been
described in the literature.

The most basic scheme for simulating Stratonovich SDE’s
in Euclidean domains is the Euler-Heun scheme, which is
an ordinary first-order scheme for the Stratonovich inte-
gral (Kloeden and Platen, 1992). Given the current end-
position xt of the Brownian path, the next position xt+1

can be simulated in N steps with N controlling the preci-
sion of the scheme. For the SDE in eq. 10, a step in the
Euler-Heun scheme takes the form

xt+1/N = xt +
1

2
[Pxt + Px̃t ]

∆Wt√
N

x̃t = xt + Pxt
∆Wt√
N

,

(12)

where ∆Wt is normally distributed in R3L and Px is the
orthogonal projection operator to the tangent space TxM.
Letting Ux be a matrix with columns constituting an or-
thonormal basis of TxM, we can get the projection as

Px = UxU
T
x . (13)

Unfortunately, the scheme in eq. 12 fails to ensure that
the Brownian path stays on the manifold. We handle this
issue by projecting each step to the manifold, resulting in
the scheme

xt+1/N = projM

(
xt +

1

2
[Pxt + Px̃t ]

∆Wt√
N

)

x̃t = projM

(
xt + Pxt

∆Wt√
N

)
.

(14)

Similar methods are used for ODE’s on manifolds where
a simple argument shows that the solution to the mod-
ified equation converges to the solution of the original
ODE (Hairer et al., 2004, Chap. IV). The situation is
more complex for the less well-behaved SDE’s. Though
the Euler-Heun scheme without the projection converges
to a solution to the SDE (Kloeden and Platen, 1992), we
have at this point no theoretical proof of convergence of
the scheme in eq. 14.

In fig. 3b we show samples generated using this nu-
merical scheme. The spatial covariance has been learned
from the same data as the angular Brownian motion shown
in fig. 3a. Comparing the two set of samples shows that
the spatial Brownian motion model has smaller variance
than the angular model. As the two models are learned
from the same data, this clearly shows that the angular
model artificially increases the variance. This makes the
manifold-valued Brownian motion model a superior tem-
poral low-pass filter.

4.1. Simulating Spatially Constrained Brownian Motion

As discussed in sec. 3.3 it can be practical to spatially
constrain the Brownian motion, such that e.g. the hands
attain known positions. The numerical scheme in eq. 14
easily allows for such extensions. Before projecting back to
the manifold, the relevant entries of the joint position vec-
tor can be fixed to attain the desired positions. This will
result in a simulated human pose where the constraints are
approximately fulfilled: the projection can lead to minor
violations of the constraints.

4.2. Manifold Projection

In order to implement the numerical scheme, we need
a method for projecting points onto the manifold. We do
this by defining projection as a search for the nearest point
on the manifold. Specifically, let x̂t denote a sample from
the distribution in embedding space; we now seek θ̂t such
that F (θ̂t) = projM[x̂t]. We perform the projection in a
direct manner by seeking

θ̂t = arg min
θt

∥∥x̂t − F (θt)
∥∥2 s.t. θt ∈ Θ , (15)

where the constraints correspond to the joint limits. Solv-
ing this problem corresponds to finding a pose in a kine-
matic skeleton such that the joint positions are as close
as possible to a given set of positions. This is known as
inverse kinematics (Erleben et al., 2005) in the anima-
tion and robotics literature. As this is an important tool
in much applied research, much work has gone into find-
ing good solvers; we apply a projected steepest descent
with line-search (Nocedal and Wright, 1999), as empirical
results have shown it to be both fast and stable (Engell-
Nørreg̊ard and Erleben, 2011). The search is started in
θt−1, which practically ensures that a good optimum is
found as the numerical simulation of Brownian motion
only makes small incremental changes to the previous pose.

The optimisation problem in eq. 15 is defined as find-
ing a set of joint angles corresponding to the projected
point on the manifold. This shows that while our model
is phrased spatially, it can be implemented in terms of
joint angles in kinematic skeletons, which simplifies devel-
opment.

5. Experiments

Having designed a numerical scheme, we now experi-
mentally validate the least-committed spatial motion model
by 1) comparing it to a least-committed model in joint an-
gle space and 2) showing how the model can be extended
to include knowledge of the environment. First, we briefly
describe the tracking system where the motion model is
used.
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Figure 5: Left: an input data example. Noisy three dimensional
points are scattered around the surface of the human body. Right:
the skin model. Each bone is assigned a capsule and the collection
of capsules describes the skin.

5.1. The Articulated Tracking System

As previously mentioned we build an articulated track-
ing system using a particle filter (Cappé et al., 2007). For
the predictive model, p(θt+1|θt), we will compare different
models in the following sections. We describe the likeli-
hood system next; this likelihood was previously described
in (Hauberg and Pedersen, 2011a).

We use a small baseline consumer stereo camera1 for
acquiring data. At each time instance we, thus, get a

set of three dimensional points Zt = {z(1)t , . . . , z
(K)
t } that

are mostly scattered around the surface of the human as
well as around the surrounding environment (see fig. 5).
In order to compare a given pose hypothesis θt to this
data, we need a description of the surface of the pose. We
assign a capsule to each bone in the skeleton with a radius
corresponding to the width of the bone. This collection
of capsules will serve as our surface (or skin) model (see
fig. 5). We then define our likelihood measure as

p(Zt|θt) ∝ exp

(
−
∑
i ‖z

(i)
t − projskin(θt)(z

(i)
t )‖2

2σ2

)
, (16)

where σ is a parameter and projskin(θt)(·) denotes projec-
tion of a point onto the surface of the pose parametrised by
θt. This projection can easily be performed in closed-form
as the skin consists of a set of capsules.

5.2. Experiment 1: Comparing Priors

In our first experiment, we compare the Brownian mo-
tion model in angle space with the Brownian motion model
on the kinematic manifold. In both models, we scale the
individual coordinates to encode that some joints move
more than others. For both models, the scaling parame-
ters are learned from separate training data. We perform
tracking on an image sequence where a person is stand-
ing in place while waving a stick around. The sequence
consists of 300 frames and the tracking is manually ini-
tialised. In general, both motion models allows for suc-
cessful tracking of the motion, except for the part where
the person moves both arms behind the head; here the data

1http://www.ptgrey.com/products/bumblebee2/
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Figure 7: A comparison of Brownian motion in joint angle space
versus Brownian motion on the kinematic manifold. The latter con-
sistently outperforms the angular model. The vertical lines corre-
spond to the standard deviation of the error measure over several
runs of the particle filter, while the curve itself corresponds to the
mean value.

do not provide strong enough clues for successful tracking.
This is shown in fig. 6, where several frames are available;
frame 192 shows the just mentioned situation. The angu-
lar Brownian motion is able to capture the trends of the
motion, but it is rarely very accurate. The spatial Brow-
nian motion, on the other hand, captures the motion very
well. This is evident in both fig. 6 and in the supplemen-
tary film.

In order to quantify the above observations, we place
markers on the arms of the person and estimate their three
dimensional position using a commercial motion capture
system2. As an error measure, we measure the average dis-
tance between the motion capture markers and the capsule
skin of the estimated pose. This measure is then averaged
across frames, such that the error measure becomes

E(θ1:T ) =
1

TM

T∑

t=1

M∑

m=1

‖(skin(θt)− vmt‖ , (17)

where ‖skin(θt)− vmt‖ is the shortest Euclidean distance
between the mth motion capture marker and the skin at
time t. We vary the number of particles from 25 to 500
and report this error measure for both prior models in
fig. 7a. As can be seen, the Brownian motion model on the
kinematic manifold consistently outperforms the angular
Brownian motion model. This is also visually evident in
the supplementary film.

We repeat the above experiment on a different sequence
where the person is standing in place while moving his up-
per body. The resulting errors are shown in fig. 7b and
selected frames are available in fig. 8. Again, the results
clearly shows that the Brownian motion on the kinematic
manifold improves results noticeably compared to the an-
gular Brownian motion. This is also evident in the sup-
plementary film.

5.3. Experiment 2: Object Interaction

To illustrate models that incorporate environmental
knowledge, we replicate an experiment suggested by Kjell-

2http://phasespace.com/
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Frame 122 / 300 Frame 192 / 300 Frame 250 / 300 Frame 294 / 300

Figure 6: Selected frames from the tracking results using two different priors. The tracking is performed using 75 particles. The top row
contains frames from the angular Brownian motion model, and the bottom row contains frames from the Brownian motion model on the
kinematic manifold.

Frame 31 / 300 Frame 123 / 300 Frame 192 / 300 Frame 292 / 300

Figure 8: Selected frames from the tracking results using two different priors. The tracking is performed using 75 particles. The top row
contains frames from the angular Brownian motion model, and the bottom row contains frames from the Brownian motion model on the
kinematic manifold.
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Spatially Constrained Brownian Motion

Kjellstrom, Kragic and Black (2010)

Figure 10: Tracking error for the spatially constrained Brownian
motion used for modelling object interaction.

ström et al. (2010): the tracked person keeps both hands
on a stick-like object and a separate tracking system is
used to determine the position of the object. This knowl-
edge can then be used to constrain the tracker by enforcing
the hands to be on the object. Kjellström et al. achieve
this by sampling for the angular Brownian motion and re-
jecting those samples where the attained hand positions
are too far away from the object. While this strategy
works, the need for brute-force techniques such as rejec-
tion sampling clearly shows that the joint angle space is
not well-suited for this type of models. In contrast it is
straightforward to model this problem in the spatial do-
main as described in sec. 3.3.

In the experiment, we track a person waving a stick
in a sword-fighting manner. We attain the position of the
stick by placing motion capture markers at the end-points.
We then compare the rejection sampling strategy of Kjell-
ström et al. with our spatial model. In fig. 9 we show
selected frames from the sequence with results from the
two trackers. As can be seen, both methods provides fairly
good results, though the rejection sampling looses track of
the arms in some frames (frame 103 in the figure). This
error occurs when too many rejections are needed in or-
der to fulfil the spatial constraints; in our implementation,
we give up on fulfilling the constraints after 5000 rejec-
tions. As in the previous experiment, we plot the tracking
error of the two methods against the number of particles
(fig. 10). As can be seen the spatial model consistently
achieves an error around 2 centimetre, while the rejection
sampling approach is in the range of 3.5 to 3 centime-
tre. Computationally, the rejection sampling approach is
fairly expensive: on average it needs 32.2 times as many
resources as the spatial Brownian motion. Our spatial
model is, thus, more accurate and computationally more
efficient than current state-of-the-art.

6. Conclusion

We have discussed one of the most fundamental as-
pects of statistical models of human motion: the underly-
ing metric. We have questioned the commonly used joint

angle metric, which we feel has several unnatural proper-
ties. These occur as the metric specifically ignores both
bone lengths and connectivity. As the metric greatly influ-
ences the statistical models, we have designed a metric that
has a nice physical interpretation: it is the combined spa-
tial distance travelled by the joints. This metric is tightly
linked to both bone lengths and connectivity.

In order to design the metric, we introduced the kine-
matic manifold consisting of the position of all joints in the
kinematic skeleton. This manifold allows us to apply tech-
niques from Riemannian geometry when designing motion
models. Our specific focus has been on predictive stochas-
tic processes for describing human motion. We have de-
fined a Brownian motion model on the kinematic manifold
and demonstrated its usefulness. Moreover, since Brown-
ian motion is the most basic building block of stochastic
calculus, the work paves the way for even better models
using more complex stochastic processes on manifolds.

We have applied the spatial Brownian motion model
in an articulated tracking system, where we have theoret-
ically and empirically shown that this model has a tighter
covariance than the ordinary angular Brownian motion. In
our experiments this leads to better tracking results as the
new model performs better as a temporal low-pass filter.
Furthermore, we have shown how interaction with the en-
vironment can trivially be modelled in the spatial domain,
something that has previously required rather expensive
techniques. These observations makes us believe the spa-
tial domain is a more natural space for designing models
of human motion.

To apply the Brownian motion model in an articulated
tracking system, we used a particle filter, which requires us
to simulate the stochastic differential equation of Brownian
motion. To the best of our knowledge, no general-purpose
numerical schemes exists for SDE’s on manifolds. We
have, thus, suggested an Euler-Heun scheme with projec-
tion steps for this simulation. This is a general scheme that
allows the stochastic process to be simulated on other em-
bedded Riemannian manifolds. Our approach can, thus,
be carried on to other domains than human motion anal-
ysis. It is interesting to note that while Brownian motion
is strongly linked to the underlying metric, the numeri-
cal scheme never requires distances to be calculated. This
simplifies development substantially.

With our focus on Brownian motion, we have derived a
motion agnostic model. As previously mentioned, motion
specific models are often crafted by learning manifolds to
which the motion is confined. An obvious next step is,
thus, to learn a submanifold of the kinematic manifoldM
using e.g. Principal geodesic analysis (Fletcher et al., 2004)
or Geodesic PCA (Huckemann et al., 2010). This can then
be used to restrict the tracking system.

In this paper, we have focused exclusively on models of
human motion. The Brownian motion model is, however,
applicable to many other domains. Since the suggested
numerical scheme works for any embedded Riemannian
manifold, our work is directly transferable.
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Frame 29 / 300 Frame 103 / 300 Frame 208 / 300 Frame 291 / 300

Figure 9: Selected frames from the tracking results using the spatially constrained motion models for object interaction. The top row
corresponds to the rejection sampling approach by Kjellström et al. (2010) and the bottom row corresponds to our spatial model.
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Figure 7.1 An illustration of the
Riemannian unscented transform.
The unscented transform is per-
formed in the tangent space and
the individual sigma points are
send to the manifold.

The previous papers have all been concerned
with performing tracking on a Riemannian man-
ifold using the particle filter. The need for such a
“brute-force” Monte Carlo approach is somewhat
dissatisfying, as closed-form solutions often ap-
pear as parts of more complicated models. For
this reason, we investigated whether the classic
Kalman Filter [29] could be generalised to Rie-
mannian manifolds. As it turns out, the Un-
scented Kalman Filter [28] was perfectly suited
for this as is shown in the next paper. Besides
providing a general tool on Riemannian man-
ifolds, the paper also provides a hint that we
should not be afraid of using Riemannian man-
ifolds for modelling, as the algorithms need not
be complicated.

The basic insight of the paper is that the un-
scented transform is also applicable in Riemannian domains. This gives us the benefit
that we need not be concerned with more complicated aspects of the manifold than
geodesics, parallel transports and exponential and logarithm maps. This makes our
approach very general as these can be computed numerically on many manifolds.

From a modelling point of view, this paper bears great resemblance to the previously
described Brownian motion model. The algorithmic approach is, however, different,
as the Kalman filter is a deterministic algorithm, whereas the Brownian motion model
was derived to be used with a particle fitler.
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Abstract In recent years there has been a growing in-
terest in problems, where either the observed data or
hidden state variables are confined to a known Rieman-

nian manifold. In sequential data analysis this inter-
est has also been growing, but rather crude algorithms
have been applied: either Monte Carlo filters or brute-
force discretisations. These approaches scale poorly and

clearly show a missing gap: no generic analogues to
Kalman filters are currently available in non-Euclidean
domains. In this paper, we remedy this issue by first

generalising the unscented transform and then the un-
scented Kalman filter to Riemannian manifolds. As the
Kalman filter can be viewed as an optimisation algo-

rithm akin to the Gauss-Newton method, our algorithm
also provides a general-purpose optimisation framework
on manifolds. We illustrate the suggested method on
an articulated tracking problem as well as a pose opti-

misation problem, where constraints on joint positions
impose a manifold structure.

1 Modelling with Manifolds

In many statistical problems it is becoming increasingly
common to model non-linearities by confining parts of
the model to a Riemannian manifold. This often pro-
vides better and more natural metrics, which has direct

S. Hauberg
Dept. of Computer Science, University of Copenhagen
E-mail: hauberg@diku.dk

F. Lauze
Dept. of Computer Science, University of Copenhagen
E-mail: francois@diku.dk

K.S. Pedersen
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impact on the statistical models. The benefits of having
good metrics have led manifolds to be used in a wide
variety of models. Sometimes the observed data itself

lives on a manifold, e.g. in Diffusion Tensor Imaging
[7, 24] and shape analysis [8, 15]. Other times the hid-
den state variables of a generative model are confined
to a non-Euclidean domain, e.g. in image segmentation

[6] and human motion modelling [10, 12].

One notable downside to working with manifolds is

the lack of many basic tools known from the Euclidean
domain. While generalisations of mean values and co-
variances [23], as well as principal component analy-
sis [8, 29] are available, most remaining tools are still

missing. In this paper we tackle one of the most funda-
mental models for sequential data analysis: the Kalman
filter. Our approach is based on the unscented Kalman

filter (UKF) [13], which is a widely applied generalisa-
tion of the linear Kalman filter. This turns out to be a
perfect fit for Riemannian manifolds as the unscented

transform is readily generalisable. Furthermore, our ap-
proach has the advantage that only limited knowledge
of the manifold is needed to apply the filter.

This paper is structured as follows. In the next sec-
tion we discuss related work on filtering on manifolds
and thereafter we provide a brief introduction to Rie-

mannian manifolds including basic statistics (sec. 2).
We present the theoretical contribution of the paper by
presenting a generalisation of the unscented transform
and the unscented Kalman filter for Riemannian mani-

folds (sec. 3). To illustrate the applicability of the new
filter, we develop an articulated tracker for estimating
the pose of a moving person over time (sec. 4). The pa-

per is concluded in sec. 5 with a discussion of further
developments.
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1.1 Filtering on Manifolds

Filtering is the task of estimating the moments of the
hidden state variable of a non-linear dynamical system

[4],

xt = f(xt−1) ≡ f̂(xt−1,vt−1) , (1)

yt = h(xt) ≡ ĥ(xt,nt) , (2)

where xt is the hidden state and yt is the observation.
The process noise vt and observation noise nt deter-
mine the stochastic nature of the system. To ease nota-

tion, we shall omit the noise terms in the rest of the
paper. The (often non-linear) functions f and h re-
spectively determine the system dynamics and relate

the state to the observation. In the Euclidean case,
this problem can be solved in closed-form when xt is
discrete using hidden Markov models [26], and by the
Kalman filter [14] when the noise is additive and Gaus-

sian with f and h linear. For other models, approxima-
tion schemes, such as particle filters [4] or extended [20]
and unscented Kalman filters [13], are required.

When xt is confined to a Riemannian manifold M
the scenario is more difficult due to the inherent non-
linearities of the state space. One option, advocated by

Tidefelt and Schön [30], is to discretise M and use an
ordinary hidden Markov model on the discrete domain.
Others [12, 21, 33] have solved the problem using par-
ticle filters, which are easily generalised to manifolds.

Both approaches are affected with the curse of dimen-
sionality and the complexity scales exponentially with
the dimension of the state space; the former approach

requires more discretisation bins and the latter more
particles as the dimension increases. For many problems
the computational burden of these approaches becomes
too much and alternatives are needed.

In Euclidean domains, the Kalman filter provides
an efficient and robust solution that scales well. In gen-
eral, this filter is, however, not applicable to Rieman-

nian manifolds, though some work has been done on
selected Lie groups [17, 18, 31]. Tyagi and Davis [31]
have shown how this filter can be applied for a specific

dynamical model on the Lie group of positive definite
symmetric matrices. Similarly, Kraft [17] and Kwon et
al. [18] show how to apply the unscented Kalman fil-
ter on the Lie groups of Quaternions and SO(3) and

SE(3), respectively. While these approaches has some
similarity to our work, they are based on specific knowl-
edge of the Lie groups and cannot easily be generalised

to other domains.
In this paper we provide a filter more general than

the ones suggested for Lie groups, as it works for at least
any geodesically complete Riemannian manifolds. First,

we pause to review some basic tools from Riemannian

geometry as these are needed to fully grasp the details

of the filter. It should, however, be noted that these
details are fully encapsulated in the filter and are not
needed to apply the filter in practice.

2 Basic Tools on Riemannian Manifolds

In this section we recall some of the elementary as-

pects of Riemannian geometry and more details can be
found in appendix A. Riemannian geometry [5] studies
smooth manifolds endowed with a Riemannian metric.
A metric on a manifold M is a smoothly varying inner

product given in the tangent space TxM at each point
x on the manifold. The tangent space at a point x of
M is a Euclidean space, which locally approximates the

manifold. For this reason, the inner product provides an
infinitesimal metric, which can be integrated along the
manifold. Thus, the length L of a curve α : [0, 1]→M
connecting two points on M is defined by integrating

the size of the curve derivative with respect to the local
metric,

L(α) =

∫ 1

0

‖α′(τ)‖dτ , (3)

where α′ ∈ TαM denotes the curve derivative. The

shortest curve connecting two points is known as a
geodesic; the distance between two points is defined as
the length of a geodesic joining them.

Many operations are defined in the Euclidean tan-

gent space TxM and one have mappings back and forth
between the manifold and the tangent space. The Rie-
mannian exponential map at a point x of M maps a

tangent vector v ∈ TxM to the point y = Expx(v)
such that the curve t 7→ Expx(tv) is a geodesic go-
ing from x to y with length ‖v‖. It is in general only

defined in a neighbourhood of the origin of TxM. The
inverse mapping, which maps y to v, is the Riemannian
logarithm map, denoted Logx(y). It is in general only
defined in a neighbourhood of x. Expx is the straight-

est local parametrisation of M in a neighbourhood of
x in the sense that it is the one that locally least de-
forms distances around x. Given a curve α : [0, 1]→M
there exists isometries (thus preserving inner products)
Pt : Tα(0)M → Tα(t)M called the parallel transport
along α. Parallel transport extends naturally to more

general objects than vectors, called tensors. The paral-
lel transport is the straightest, or least deforming way
to move geometric objects along curves, and coupled
with the exponential map, it provides the straightest

way to move a geometric object from one point of the
manifold to a neighbouring one via the geodesic curve
that joins them. This is usually defined via the Levi-

Civita connection and associated covariant derivatives
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(a) (b)

Fig. 1 Graphical illustration of basic manifold operations.
(a) The exponential and logarithm maps. (b) The parallel
transport for moving vectors along a curve.

uniquely associated to the metric. They are defined in
appendix A and illustrated in fig. 1a and 1b.

When Expx is defined on all of TxM, for each x ∈
M, the manifold is said to be geodesically complete and
the Hopf-Rinow theorem asserts that for any pair of
points x and y ofM, there exist a geodesic joining them

with length d(x,y); for that reason we will assume M
is geodesically complete in the rest of this paper.

Generalising basic statistics to Riemannian mani-

folds is straightforward [23]. The empirical mean of a set
of data points x = {x1 . . . , xK} is defined as the point
on the manifold that minimises the sum of squared dis-
tances:

E[x] = arg min
µ

K∑

k=1

d2(xk, µ) . (4)

Unlike the Euclidean case, such a mean is not necessar-
ily unique; local optima of eq. 4 are known as Karcher
means, while a global optimum is called the Fréchet

mean. When µ = E[x] exists, the empirical covariance
is generalised as

Pµ =
1

K

K∑

k=1

Logµ(xk) Logµ(xk)T . (5)

In order to represent it as a matrix, a basis in the tan-
gent space is needed. Alternatively, it can also be seen as
a bilinear map on TµM in which case a basis is unneces-
sary. This viewpoint of a covariant 2-tensor is useful as

tensors can be parallel transported from one point to a
neighbouring one. In the case of a symmetric tensor, like
the covariance, the following construction provides this

parallel transport. When Pµ is seen as a symmetric ma-
trix, it has an orthonormal basis (v1, . . . , vM ) made of
eigenvectors, with corresponding eigenvalues λm. Given

a curve α starting at µ, we can parallel transport the
eigenvectors along it to obtain a new family vm(t) in
Tα(t)M for each t and we have the following result.

Proposition 1 The matrix

Pα(t) =

M∑

m=1

λmvm(t)vm(t)T (6)

is the parallel transport of Pµ along α to α(t).

Proof. The proof relies only on concepts presented
above and in the appendix; we refer the reader to the
appendix for properties of covariant derivatives and par-

allel transport.

In the sequel D/dt denotes the covariant derivative
along the curve α. By the definition of parallel transport
we have Dvm(t)/dt = 0, m = 0 . . .M . Furthermore,

the compatibility of D/dt with the metric implies that
the vm(t)s form a moving orthonormal frame along α.
Setting

ω(t)(a(t), b(t)) =
M∑

m=1

λma(t)T vm(t)vm(t)T b(t) , (7)

where a and b are two vector fields, i.e., ω(t) is the
bilinear form associated to Pα(t)

1. Hence, it is sufficient
to show that
(
Dω

dt

)
(vm(t), vn(t)) = 0, 1 ≤ m,n ≤M . (8)

But
(
Dω

dt

)
(vm(t), vn(t)) =

d

dt
(ω(t)(vm(t), vn(t)) (9)

−ω(t)

(
Dvm
dt

, vn(t)

)
− ω(t)

(
vm(t),

Dvn
dt

)
. (10)

The terms in (10) vanish because the fields vm(t) are
parallel and ω(t)(vm(t), vn(t)) = λmλnδmn is indepen-
dent of t (δmn is the Kronecker symbol). �

3 The Manifold UKF

We now have the preliminaries settled and are ready
to design the unscented Kalman filter on Riemannian
manifolds. We shall first generalise the unscented trans-

form and then we provide the new filter.

3.1 The Unscented Transform

The unscented transform [13] is a method for estimating
the mean and covariance of a distribution undergoing a

non-linear transformation. Given a stochastic variable
x, the idea is to pick a set of sigma points that fully
describe the mean and covariance of x and then let each

sigma point undergo a non-linear transformation f . The
mean and covariance of f(x) can then be estimated

1 The association between a matrix and a covariant 2-tensor
requires in general the use of musical isomorphisms [19], as it
is metric dependent. The use of an orthonormal frame sim-
plifies the situation here.
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(a) (b)

Fig. 2 An illustration of the sigma points. The ellipse rep-
resents a covariance. (a) Sigma points in the Euclidean case.
(b) Sigma points in the tangent space and on the manifold.

by computing the sample mean and covariance of the
transformed sigma points.

In more detail, let x̄ and P denote the mean and
covariance of the M dimensional variable x. The sigma
points are then calculated as

σ(0) = x̄ (11)

σ(m) = x̄±
(√

(M + λ)P
)
m
, m = 1, . . . , 2M, (12)

where
(√·
)
m

denotes the mth column of the Cholesky
decomposition and λ is a parameter for controlling the

distance between the sigma points and the mean value.
The sigma points are illustrated in fig. 2a. The mean
and covariance of f(x) can then be estimated as

E[f(x)] ≈ µ =
2M∑

m=0

wmf(σ(m)) , (13)

cov[f(x)] ≈
2M∑

m=0

wm(f(σ(m))− µ)(f(σ(m))− µ)T , (14)

where the weights are defined as

w0 =
λ

λ+M
, (15)

wm =
1

2(λ+M)
, m > 0 . (16)

These equations are enough to approximate the correct
mean to third order and covariance to the second order

[13].

3.1.1 Generalisations

We now consider two different approaches to generalis-

ing the unscented transform for Riemannian manifolds;
both approaches are based on the same basic observa-
tion. Consider a stochastic variable x ∈ M with mean
value x̄ and covariance P expressed in the basis of the

tangent space at x̄. Let σ(0:2M) = {σ(0), . . . , σ(2M)} de-
note the sigma points of the covariance P calculated

in the (Euclidean) tangent space. Inspection of eq. 5
reveals that

σ
(m)
M = Expx̄(σ(m)) , m = 0, . . . , 2M (17)

captures both the mean and covariance. We, thus, have
two sets of sigma points that capture the statistics; one

set on the manifold and one in the tangent space. These
are illustrated in fig. 2b. This gives rise to two different,
but equally useful, unscented transforms that we shall

both discuss.

First, we consider the case where the non-linear
mapping, f :M1 →M2, moves the sigma points from
the manifold to a possibly different (possibly Euclidean)
manifold. The mean value can then be estimated by

computing the average of the transformed sigma points
as discussed in sec. 2, i.e.

E[f(x)] ≈ µM2

= arg min
q∈M2

2M∑

m=0

wmd
2(f(σ

(m)
M1

),q) ,
(18)

where d(·, ·) denotes geodesic distance on M2. The co-
variance can be estimated in the tangent space of µM2

using eq. 5,

cov[f(x)] (19)

≈
2M∑

m=0

wm LogµM2
(f(σ

(m)
M1

)) LogµM2
(f(σ

(m)
M1

))T .

A second generalisation considers the case where
the non-linear mapping, f : Tx̄M → Tx̄M, moves the
sigma points in the tangent space. After this trans-

formation a new mean and covariance can be calcu-
lated using ordinary Euclidean techniques in the tan-
gent space, i.e.

E[f(x)] ≈ µTx̄M =
2M∑

m=0

wmf(σ(m)) , (20)

cov[f(x)] ≈
2M∑

m=0

wm(f(σ(m))− µTx̄M)(f(σ(m))− µTx̄M)T .

(21)

The mean value µTx̄M can readily be transferred back
to the manifold as µ = Expx̄(µTx̄M); the covariance is
transported using parallel transport defined in eq. 6,

along the geodesic path t 7→ Expx̄(tµTx̄M), c.f. propo-
sition 1.
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3.2 The Unscented Kalman Filter

Before stating the Riemannian generalisations of the
Kalman filter, we review the Euclidean techniques for

optimal minimum mean-squared error (MMSE) filter-
ing as it provides the basis for the generalisations.

Consider the dynamical system in eq. 1 and 2 with
known initial mean and covariance

x̄0 = E[x0] , (22)

P0 = cov[x0] . (23)

The Euclidean optimal minimum mean-squared error
estimate of xt can then be written as a linear interpo-
lation between the prediction x̂t of xt and the predicted
observation ŷt [20],

x̄t = x̂t + K(yt − ŷt) , (24)

where K is the so-called Kalman gain. Here the terms

are calculated as

x̂t = E[f(xt−1)] , (25)

K = PxyP−1
yy , (26)

ŷt = E[h(x̂t)] , (27)

where Pyy denotes the covariance of ŷt and Pxy the
cross-covariance of x̂t and ŷt. The covariance of the
state estimate can also be propagated as

Pt = P̂t −KPyyKT , (28)

where P̂t = cov[f(xt−1)]. The above equations can,
however, only be solved in closed-form when f and h
are linear functions. One common approximation for

the non-linear scenario is the unscented Kalman filter
(UKF) [13].

3.2.1 UKF: The Euclidean Case

Let x̄t−1 and Pt−1 denote the mean and covariance
of the state estimate at time t − 1. A set of sigma
points, σ(0:2M), can be calculated from these using the
unscented transform, which allows us to estimate x̂t

x̂t ≈
2M∑

m=0

wmf(σ(m)) , (29)

P̂t ≈
2M∑

m=0

wm(f(σ(m))− x̂t)(f(σ(m))− x̂t)
T . (30)

Likewise, the unscented transform can be applied to
estimate the effects of h:

ŷt ≈
2M∑

m=0

wmh(σ(m)) . (31)

The covariance and cross-covariance needed to compute

the Kalman gain can also be readily approximated

Pyy ≈
2M∑

m=0

wm(h(σ(m))− ŷt)(h(σ(m))− ŷt)
T , (32)

Pxy ≈
2M∑

m=0

wm(f(σ(m))− x̂t)(h(σ(m))− ŷt)
T . (33)

These estimates are second-order accurate [13].

3.2.2 UKF: The Riemannian Case

We now use the same approach to generalise the Kalman
filter to Riemannian state spaces. Here we shall assume
that h : M →Mobs. The filter can then be expressed

as the following steps, which will be elaborated later:

1. Use the Riemannian generalisation of the unscented

transform to estimate the predicted state mean, x̂t =
E[f(xt−1)], and covariance P̂t = cov[f(xt−1)].

2. Compute the Riemannian generalisation of the un-

scented transform of P̂t to estimate ŷt, Pyy and
Pxy. Here, ŷt ∈ Mobs, Pyy describes covariance
in Tŷt

Mobs and Pxy describes the cross-covariance

between the sigma points in Tx̂t
M and Tŷt

Mobs.
3. Compute state updates x̄t and Pt according to eq. 24

and 28. These will be expressed in Tx̂t
M.

4. Move x̄t to the manifold as Expx̂t
(x̄t) and parallel

transport Pt to the tangent space at this point.

The above steps are essentially straight-forward gener-

alisations of the Euclidean case. However, as two dif-
ferent generalisations of the unscented transform are
available (one in the tangent space and one on the man-

ifold), some details need further attention. In the next
two sections, we discuss the first two steps in the above
filter in greater detail.

3.2.3 Step 1: Dynamical Models

When the system is predicted according to the dynam-
ical model, two general types of models are worth con-

sidering.
The first is when the dynamical model f moves the

sigma points directly on the manifold, i.e. f : M →
M. In this case, each sigma point σ

(n)
M is propagated

through f and a mean and covariance can be estimated
according to eq. 18 and 19. This requires knowledge
of the logarithm map on M, but not of the parallel

transport.
The second class of dynamical models worth con-

sidering, is when the sigma points are moved in the
tangent space, i.e. f : Tx̄t

M → Tx̄t
M. In general, the

dynamical model happens directly on the manifold and
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should not be expressed in the tangent space. However,
if dynamics are simple (i.e. the identity function) or
time-steps are small a first-order approximation in the
tangent space can be convenient. When the dynamics

are expressed in tangent space, the predicted mean and
covariance can be estimated using ordinary Euclidean
techniques. The mean value can be moved back to the

manifold using the exponential map and then the co-
variance can be parallel transported to this mean value.
This does not require knowledge of the logarithm map,

but does require the parallel transport.

3.2.4 Step 2: Observation Models

The unscented Kalman filter is a generative model: the
h function must generate an observation for each input
sigma point. It is, thus, reasonable to require that this

function is given a valid state as input, i.e. the input
should be confined to the state manifold M. Hence,
we will not consider the case where the input is in the
tangent space of M, giving h :M→Mobs.

Let σ
(0:2M)
M denote the sigma points corresponding

to P̂t. The mean ŷt of h(σ
(0:2M)
M ) is computed using

eq. 18. The transformed sigma points are then lifted to
the tangent space at ŷt, and Pyy and Pxy are estimated

as

Pyy ≈
2M∑

m=0

wm Logŷt
(h(σ

(m)
M )) Logŷt

(h(σ
(m)
M ))T , (34)

Pxy ≈
2M∑

m=0

wm Logx̂t
(σ

(m)
M ) Logŷt

(h(σ
(m)
M ))T

=

2M∑

m=0

wmσ
(m) Logŷt

(h(σ
(m)
M ))T .

(35)

When the observation manifold is RN , the logarithm
map is no longer necessary and the above equations
reduce to

Pyy ≈
2M∑

m=0

wm(h(σ
(m)
M )− ŷt)(h(σ

(m)
M )− ŷt)

T , (36)

Pxy ≈
2M∑

m=0

wmσ
(m)(h(σ

(m)
M )− ŷt)

T . (37)

When, moreover, the dynamics can be modelled in the

tangent space of the current estimate Tx̄tM, no loga-
rithm map is involved. This has great practical impor-
tance, as apart from relatively simple manifolds, com-

puting the logarithm map generally requires solving an
optimal control problem [5].

4 An Example in Articulated Tracking

As an example, we now build an articulated tracking
system using the suggested filter. The objective of such

a system is to estimate the pose of a moving person
in each frame of an image sequence [25]. As is com-
mon [25], we represent human poses using the kinematic

skeleton (see fig. 3a), which is a collection of rigid bones
connected in a tree structure. As the bones have a con-
stant length the joint angles between connected bones

are the only degrees of freedom. Therefore it is common
[1, 2, 16, 27] to let the system dynamics be given by
a normal distribution in joint angle space. The metric
in this space measures the distance between two poses

by looking at the difference between individual joint
angles. As a consequence the movement of an entire
arm by a change in the shoulder joint appears as large

as the movement of a finger by a change in a finger
joint. This rather unnatural metric makes the dynami-
cal model unstable as some limb positions becomes in-

herently more variant than others [11, 12].

To avoid such issues, we model the position of all
joints, which we concatenate into one vector x The con-

straint that each bone has constant length confines x to
a non-linear Riemannian sub-manifold M of RN [12].
The distance measure on this manifold corresponds to

the physical distance that joint positions move, which
gives the measure a clear physical interpretation. This
natural metric gives stable dynamical models [12]. Fur-

thermore, the Riemannian approach has been shown
to be very suitable for modelling interaction with the
environment due to its spatial nature [10].

4.1 Observation Model

To define the filter, we need to be able to generate ob-
servations h(σ

(n)
M ) corresponding to each sigma point.

We use data from a consumer stereo camera2, which

provides us with a set Zt of three dimensional points
in each frame. Hence, h(σ

(n)
M ) should generate a set of

comparable three dimensional points. As the camera

observes the surface (or skin) of the person we shall let

h(σ
(n)
M ) generate a set of three dimensional points on the

skin of the pose parametrised by σ
(n)
M . We will generate

these points by projecting the actual observed points
onto the skin of the pose. This requires a skin model.
To simplify the projection, we define the skin of a pose

by associating a capsule with each bone (see fig. 3b).
The projection of a point onto the skin can then be de-
fined as finding the closest point on the nearest capsule,
which can easily be solved in closed-form.

2 http://www.ptgrey.com/products/bumblebee2/
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(a) (b)

Fig. 3 (a) The kinematic skeleton used for representing
poses. (b) The skin model.

In summary, we define the generative observation
model as

h(σ
(n)
M ) = proj

skin(σ
(n)
M )

(Zt) . (38)

This is essentially the likelihood system presented in
[11].

4.2 Dynamical Model

For the dynamical model, we shall use the simplest of
all to predict the motion, i.e.

f(xt−1) = xt−1 , (39)

as experience indicates that such models work better
than e.g. second order models [1]. This model can eas-
ily be expressed in the tangent space such that no loga-

rithm maps are required, which simplifies development
substantially.

With these model choices, we only need the expo-

nential map and parallel transport on the manifold. As
M is a rather complicated manifold, these operations
are not available in closed-form and numerical tech-

niques are required. We use a standard forward Euler
scheme based on the standard projection method [9] for
exponential maps and Schild’s Ladder [22] for parallel
transports.

4.3 Results

We apply the filter on two sequences consisting of 300

frames each; both are available as part of the supple-
mentary material and a few frames are shown in fig. 4
and 5. In both sequences the person is standing in place

and only moving his upper body. We, thus, only model
the upper body parts.

In both sequences, the person moves his arms both

parallel and orthogonal to the image plane, causing self-
occlusions, which is a challenge. The filter is able to

successfully track this motion, though some jitter is ob-

served due to the numerical exponential maps and par-
allel transports. In a few frames the filter looses track,
but it quickly recovers. In the second sequence the per-

son is wearing motion capture markers, which allows us
to estimate the tracking error. On average these mark-
ers are 2.7cm from the surface of the estimated pose. A
particle filter with the same observational and dynami-

cal model more than doubles this error at 5.7cm at the
same computational load (75 particles). To achieve the
same accuracy as the unscented Kalman filter, the par-

ticle filter needs 10 times the computational resources
(750 particles).

4.4 Optimisation on Manifolds

It is well-known that the extended Kalman filter can

be viewed as a single step in a Gauss Newton opti-
misation scheme [3]. Both the extended and the un-
scented Kalman filter have been used to solve optimi-
sation problems, such as weight learning in neural net-

works [28, 32]. An immediate question is then if the Rie-
mannian generalisation of the unscented Kalman filter
can be used as a general-purpose optimisation scheme

on manifolds. We illustrate this potential on a pose fit-
ting problem related to articulated tracking. We posi-
tion a skeleton far away from the true pose (see fig. 6a)
and optimise the likelihood used in the tracking ex-

ample by repeated iterations of the unscented Kalman
filter. After approximately 60 iterations this converges
to the correct pose (see fig. 6b). A video showing the

iterations are available in the supplementary material
and the optimised error measure is shown in fig. 6c.

5 Conclusion

In this paper, we have introduced an extension of the

unscented transform and the unscented Kalman filter
to Riemannian manifolds. The idea of working with
sigma points seems to be a perfect fit for the Rieman-
nian extension as the approach is both practical and

gives descriptive results. The suggested filter has the
advantage that only limited knowledge of the manifold
is needed for an implementation: in the most general

case, only the exponential map, the logarithm map and
the parallel transport are required. These are available
in closed-form for simple manifolds and numerical tech-
niques exists for more complex scenarios. This makes

the filter readily applicable for a wide range of prob-
lems. We have successfully illustrated the filter on an
articulated tracking problem, where constraints on joint

positions impose a non-trivial manifold structure.

89



Søren Hauberg et al.

Frame 1 / 300 Frame 40 / 300 Frame 121 / 300

Frame 145 / 300 Frame 180 / 300 Frame 265 / 300

Fig. 4 Six frames from the first sequence; the entire film is available in the supplementary material.

Frame 1 / 300 Frame 42 / 300 Frame 95 / 300

Frame 176 / 300 Frame 235 / 300 Frame 281 / 300

Fig. 5 Six frames from the second sequence; again, the entire film is available in the supplementary material.

We have also shown how the filter can be used as a
general-purpose optimisation scheme on manifolds. As
the filter does not require much analytical knowledge of

the manifold, it is easy to apply on many optimisation
problems posed on manifolds, which leads to many in-
teresting applications. This is, however, left for future

work.
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16. Kjellström H, Kragić D, Black MJ (2010) Tracking

people interacting with objects. In: IEEE CVPR
17. Kraft E (2003) A Quaternion-based Unscented

Kalman Filter for Orientation Tracking. In: Proc.

of the Sixth International Conference on Informa-
tion Fusion, pp 47–54

18. Kwon J, Lee KM (2010) Monocular SLAM with
locally planar landmarks via geometric Rao-

Blackwellized particle filtering on Lie groups. In:
Proceedings of CVPR’10

19. Lee JM (1997) Riemannian Manifolds: An Intro-

duction to Curvature, Graduate Texts in Mathe-
matics, vol 176. Springer

20. Lewis FL (1986) Optimal Estimation: With an In-

troduction to Stochastic Control Theory. Wiley
21. Li R, Chellappa R (2010) Aligning spatio-temporal

signals on a special manifold. In: ECCV, Springer,
LNCS, vol 6315, pp 547–560

22. Misner C, Thorne K, Wheeler J (1973) Gravitation.
W. H. Freeman and Company

23. Pennec X (1999) Probabilities and statistics on rie-

mannian manifolds: Basic tools for geometric mea-
surements. In: NSIP, pp 194–198

24. Pennec X, Fillard P, Ayache N (2004) A riemannian
framework for tensor computing. IJCV 66:41–66

25. Poppe R (2007) Vision-based human motion analy-
sis: An overview. Computer Vision and Image Un-
derstanding 108(1-2):4–18

26. Rabiner LR (1989) A tutorial on hidden markov
models and selected applications in speech recogni-
tion. In: Proceedings of the IEEE, pp 257–286

91



Søren Hauberg et al.

27. Sidenbladh H, Black MJ, Fleet DJ (2000) Stochas-
tic tracking of 3d human figures using 2d image
motion. In: ECCV, Springer, LNCS 1843, vol II,
pp 702–718

28. Singhal S, Wu L (1989) Training multilayer per-
ceptrons with the extended kalman algorithm. In:
Advances in neural information processing systems

1, pp 133–140
29. Sommer S, Lauze F, Nielsen M (2010) The differen-

tial of the exponential map, jacobi fields and exact

principal geodesic analysis. CoRR abs/1008.1902
30. Tidefelt H, Schön TB (2009) Robust point-mass

filters on manifolds. In: Proc. of the 15th IFAC
SYSID

31. Tyagi A, Davis JW (2008) A recursive filter for lin-
ear systems on riemannian manifolds. In: CVPR’08,
pp 1–8

32. Wan EA, van der Merwe R (2002) The unscented
kalman filter for nonlinear estimation. In: Adap-
tive Systems for Signal Processing, Communica-
tions, and Control Symposium, IEEE, pp 153–158

33. Wu Y, Wu B, Liu J, Lu H (2008) Probabilistic
tracking on riemannian manifolds. In: ICPR, pp 1–
4

A Definitions from Differential geometry

We give definitions of some concepts from differential geom-
etry that we use in the paper (mainly from [5]) for the con-
venience of the reader.

1. Differentiable Manifolds:
A differentiable manifold of dimension M is a set M and
a family of injective mappings T = {xi : Ui ⊂ RM →M}
of open sets Ui of RM into M such that
–
⋃

i xi(Ui) =M, i.e. the open sets cover M.
– For any pair i, j with xi(Ui)

⋂
xj(Uj) = W 6= φ, the

mapping x−1
j ◦ xi is differentiable.

– The family T is maximal, which means that if (y, V ),
y : V ⊂ RM →M is such that: for each element of T ,
(xi, Ui) with xi(Ui)∩ y(V ) 6= 0 implies that y−1 ◦xi is
a diffeomorphism, then in fact (y, V ) ∈ T .

2. Directional derivative of a function along a vector

field:

A vector field X on M is a map that associates to each
p ∈M an element X(p) ∈ TpM, where TpM is the tangent
space of M at p. The space of smooth vector fields on
M is denoted X(M). Let f : M → R be a differentiable
function ofM and X a vector field onM. The directional
derivative X.f is the function M→ R,

(X.f)(p) = dfp(X(p)) (40)

the differential of f at p evaluated at vector X(p).
3. Covariant tensors:

A p-covariant tensor h is a C∞ p-linear map

TM× · · · × TM︸ ︷︷ ︸
p times

→ C∞(M) (41)

i.e., for all x ∈M, x 7→ hx :

v1, . . . , vp ∈ TxM 7→ hx(v1, . . . , vp) ∈ R (42)

is p-linear and for vector fields X1, . . . , Xp ∈ X, the map
x 7→ hx(X1(x), . . . , Xp(x)) is smooth.

4. Riemannian Metric:

A Riemannian metric on a manifold M is a covariant 2-
tensor g which associates to each point p ∈ M an inner
product gp = 〈−,−〉p on the tangent space TpM, i.e., not
only it is bilinear, but symmetric and positive definite and
thus define a Euclidean distance on each tangent space.
In terms of local coordinates, the metric at each point
x is given by a matrix, gij = 〈Xi, Xj〉x, where Xi, Xj

are tangent vectors to M at x, and it varies smoothly
with x. A Geodesic curve is a local minimizer of arc-length
computed with a Riemannian metric.

5. Affine connection:
An affine connection ∇ on a differentiable manifold M is
a mapping

∇ : X(M)× X(M)→ X(M) (43)

which is denoted by ∇(X,Y )→ ∇XY and which satisfies
the following properties:
– ∇fX+gY Z = f∇XZ + g∇Y Z.
– ∇X(Y + Z) = ∇XY +∇XZ.
– ∇X(fY ) = f∇XY +X(f)Y .

in which X,Y, Z ∈ X(M) and f, g are C∞(M). This gives
a notion of directional derivative of a vector field defined
on the manifold. An affine connection extends naturally
to more than vector fields, and especially of interest here,
covariant tensors: if h is a covariant p-tensor and X ∈
X(M), ∇Xh is defined as follows. Given p vector fields
Y1, . . . , Yp ∈ X(M),

(∇Xh) (Y1, . . . , Yp) = X. (h(Y1, . . . , Yp))

−
p∑

i=1

h(Y1, . . . ,∇XYi, . . . , Xp) (44)

6. Covariant derivatives:

LetM be a differentiable manifold with affine connection
∇. There exists a unique correspondence which associates
to a vector field V along the differentiable curve c : I →
M another vector field DV

dt
along c, called the covariant

derivative of V along c, such that
– D

dt
(V + W ) = DV

dt
+ DW

dt
, where W is a vector field

along c.
– D

dt
(fV ) = df

dt
V +f DV

dt
, where f is a differentiable func-

tion on I.
– If V is induced by a vector field Y , a member of the

tangent bundle of M, i.e. V (t) = Y (c(t)), then DV
dt

=
∇ dc

dt
Y .

The covariant derivative extend to covariant tensors via
the extension of the connection to them: Given a covari-
ant p-tensor h defined along c and vector fields U1, . . . , Up

along c,

Dh

dt
(U1(t), . . . , Up(t)) =

D

dt
(ht(U(t), V (t)) (45)

−
p∑

i=1

ht

(
U1(t), . . .

DUp

dt
, . . . , Up(t)

)

7. Parallel transport:
Given a vector P ∈ Tc(0)M, the differential equation
{

DP (t)
dt

= 0

P (0) = P
(46)

92



Unscented Kalman Filtering on Riemannian Manifolds

admits a unique solution, called the parallel transport of
P along c. The induced map P 7→ P (t) from Tc(0)M to
Tc(t)M is a linear isomorphism.

8. Levi-Civita connection:

Given a Riemannian metric g on the manifold M, there
exists a unique affine connection ∇ such that
– compatibility with the metric:

X.g(Y, Z) = g(∇XY, Z) + g(X,∇XZ) (47)

– symmetry:

∇XY −∇YX = [X,Y ] (48)

([X,Y ] is the Lie bracket of X and Y ).
∇ is the Levi-Civita connection associated to g. Note that
from the previous items, one has ∇Xg = 0 for any X ∈
X(M) and that the parallel transport in that case is a
linear isometry.
The compatibility of ∇ and the metric g can be expressed
in term of covariant derivatives: if X(t) = X(c(t) and
Y (t) = Y (c(t)) are two vector fields along the curve c,
and D/dt is the covariant derivative along c,

d

dt
g(X(t), Y (t)) = g

(
DX(t)

dt
, Y (t)

)
+ g

(
X(t),

DY (t)

dt

)
.

(49)

9. Christoffel symbols:

In a parametrized manifold, where the curve c(t) is rep-
resented as (x1(t), . . . , xM (t)), the covariant derivative of
a vector field v becomes

Dv

dt
=
∑

m




dvm

dt
+
∑

i,j

Γm
ij v

j dx
i

dt





∂

∂xm
(50)

where the Γm
ij are the coefficients of the connection also

known as the Christoffel symbols Γ . In particular, the par-
allel transport equation above becomes the first-order lin-
ear system

dvm

dt
+
∑

i,j

Γm
ij v

j dx
i

dt
= 0, m = 1 . . .M. (51)

For the Levi-Civita connection associated with the metric
g, the corresponding Christoffel symbols are given by

Γm
ij =

1

2

∑

l

{
∂

∂xi
gjm +

∂

∂xj
gmi −

∂

∂xm
gij

}
gml (52)

gij is the ijth element of the metric, and gij is the ijth

element of its inverse. A curve is geodesic if the covariant
derivative of its tangent vector field is zero everywhere on
it, which means that a geodesic curve has zero tangen-
tial acceleration. Such a curve c satisfies the second order
system of ODEs, which, with the above parametrization
becomes

d2xm

dt2
+
∑

ij

Γm
ij

dxi

dt

dxj

dt
= 0, m = 1 . . .M. (53)

10. Exponential map:
The exponential map is a map Exp : TM → M, that
maps v ∈ TqM for q ∈ M, to a point Expq v in M ob-
tained by going out the length equal to |v|, starting from
q, along a geodesic which passes through q with veloc-
ity equal to v

|v| . Given q ∈ M and v ∈ TqM, and a

parametrization (x1, . . . , xn) around q, Expq(v) can be
defined as the solution at time 1 of the above system
of ODEs (53) with initial conditions (xm(0)) = q and

( dxm

dt
(0)) = v, m = 1, . . . ,M . The geodesic starting at q

with initial velocity t can thus be parametrized as

t 7→ Expq(tv). (54)

11. Logarithm map:

For q̃ in a sufficiently small neighborhood of q, the length
minimizing curve joining q and q̃ is unique as well. Given
q and q̃, the direction in which to travel geodesically from
q in order to reach q̃ is given by the result of the loga-
rithm map Logq(q̃). We get the corresponding geodesics
as the curve t 7→ Expq(tLogq q̃). In other words, Log is
the inverse of Exp in the neighborhood.
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Chapter 8

Conclusion

This thesis has presented a series of papers along
with a discussion of the basic thoughts behind the pre-
sented models. From a modelling point of view, the
major point of the thesis is that many things are more
easily expressed in terms of joint positions rather than
joint angles. The reason behind this point is that we
are studying images, which are inherently spatial ob-
jects. Hence, we should strive to build models in the
spatial domain. Interestingly, neurologists believe that
humans plan their motion in the spatial domain, which
we believe is another good reason for building models
in the spatial domain. Furthermore, as the surrounding
environment is inherently spatial, we get yet another
reason: spatial models make it trivial to take the envi-
ronment into account.

Motivated by these thoughts, we have presented two
different basic models of human motion in the spatial
domain. The first was a probabilistic interpretation
of inverse kinematics, which allowed us to avoid sev-
eral practical problems that appears in the standard
joint angle model. Furthermore, the model allows us
to trivially incorporate knowledge of the environment,
such as ground plane contact and object interaction
into the model. From a theoretical point of view, it
was, however, dissatisfying that the model required a
regularisation in the joint angle domain.

To scratch this itch, we suggested a second model,
without the need for such regularisation. This led to
the introduction of the kinematic manifold, which is
the space of all possible joint positions. This new geo-
metric view of the kinematic skeleton provided us with
a physically natural distance measure between poses.
In order to respect this distance measure, we developed
a Brownian motion model on the kinematic manifold
along with a numerical scheme for simulating the un-
derlying stochastic differential equation. In addition to
being theoretically nice, this approach also works quite
well in practice. It does, however, require some im-
plementation effort and the numerical scheme could be
faster. For our practical applications, we, thus, use a
similar model, which we call the projected prior. This
model consists of Gaussian projected onto the kine-
matic manifold. For all practical purposes, this works
just as well as the Brownian motion model, but it is
quite a bit easier to implement and several times faster.

One limiting aspect of the suggested models is that
their applications require Monte Carlo methods, which
can be computationally demanding. To show that al-
ternatives are indeed possible, we have developed an
extension of the unscented Kalman filter to general Rie-
mannian manifolds. This turns out to be remarkably
simple, which gives us confidence in our strategy.

Throughout this thesis, we have argued that spatial
models are more natural than models in joint angle
space and we have provided practical algorithms for
working with the spatial models. While we believe in
the spatial models, they have their down-sides. The
most obvious issue is the computational requirements:
it takes more resources to simulate the spatial mod-
els than to simulate a joint angle model. In our im-
plementation, the likelihood evaluation dominates the
computational resources required and the overhead of
the spatial models have little impact, but such obser-
vations depend on the choice of likelihood model.

Another potential pitfall when working in the Rie-
mannian space of joint positions is that this space is not
Euclidean. This has the downside that the vast array
of statistical techniques available in Euclidean domains
are not always available in Riemannian domains. This
should, however, not be a problem for the probabilistic
inverse kinematics model.

8.1 Contributions

The thesis makes several contributions to state-of-the-
art, which can be summarised with the following (also
repeated in the summary).

• A probabilistic interpretation of inverse kinemat-
ics suitable for tracking [21].

• A geometric interpretation of the kinematic skele-
ton in the kinematic manifold. In this line of
thinking, inverse kinematics becomes a projection
operator [24]. The metric on this manifold be-
comes a physically natural measure of the size of
motions [26].

• Different models of human motion during interac-
tion with the environment [19, 21].
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• An approximation strategy for designing data-
driven importance distributions for articulated
tracking [20].

• A Brownian motion model on embedded manifolds
along with a novel numerical scheme for simulat-
ing the underlying manifold valued stochastic dif-
ferential equation [26].

• A Riemannian generalisation of the unscented
Kalman filter, which provides a general-purpose
tool for both filtering and optimisation on Rie-
mannian manifolds [25].

These contributions show that it is possible to work
in the spatial domain and that it is beneficial both
in terms of filtering properties and for extending the
models.

8.2 Scientific Outlook

While we have presented a series of spatial models, the
work does not end here. The models opens the door
to new applications and extensions that could be inter-
esting directions for future research.

The first extension of the spatial models we would
like to consider is to take the surrounding environment
more fully into account. Imagine constructing a three
dimensional model of the surrounding scene using a
stereo camera or some other depth sensor. Can we
then use this model to guide the tracker? Already in
the first paper in this thesis, we showed how simple
it is to ensure that body parts do not penetrate the
ground plane, but can we go further? One idea would
be to model the inherent “laziness” of most humans:
we tend to lean against walls, sit on flat surfaces and
similar actions that give rise to contacts between the
human and its surrounding environment. Using the
spatial models it would be quite straight forward to
model this by predicting the individual joint positions
closer to the surface of the surroundings whenever said
joint is close enough to this surface.

Besides taking the environment into account, the
spatial models make is easy to take advantage of image
cues to guide the tracker. The data-driven importance
distributions was an example of this type of guidance.
A similar extension would be to develop body part de-
tectors and use these to guide the tracker. If we e.g.
detect the right hand at a given three dimensional po-
sition, we can predict the hand near this position with
little extra work. If we are only given a two dimensional
body part position in image coordinates, then we can
follow the approach presented in the third paper and
predict the part to be on the three dimensional line
going through the optical centre and the image point
of the body part. Such an extension should be fairly
easy assuming that good body part detectors can be
developed.

The spatial models all depend on an inverse kinemat-
ics solver, either for locating the mode of the second
order bootstrap approximation or for computing pro-
jections onto the kinematic manifold. We use a simple
gradient descent algorithm, which includes a projection
step to cope with joint limits. It would be interesting to
extend this solver in several ways. The first extension
is to handle more sophisticated joint limits that do not
treat different angles independently. Successful exten-
sions to the solver exists [13], but they have not been
tried for tracking purposes. Another extension is to
ensure that the solver does not generate solutions with
self-penetrating limbs. This requires taking the body
shape into account when solving the inverse kinematics
problem. This problem has not seen much attention in
the literature, but it should be solvable for simple shape
models such as the capsule-based skin model applied in
the papers in this thesis.

We have seen that Brownian motion can be simu-
lated on the kinematic manifold. As this model pro-
vides the basis of most stochastic calculus, it would
be interesting to generalise more involved stochastic
processes to the kinematic manifold. One such ex-
ample could be the Gegenbauer process [31]. This is
a pseudo-periodic process, which would be potentially
well-suited to describe that many human motion pat-
terns, e.g. walking, are highly periodic. It is quite in-
teresting to note that while many models of walking
have been developed [11, 33, 45, 47–50, 52], only few
are actually periodic by design.

8.3 And All Stories have an End

Large parts of this thesis have been accepted for publi-
cations at respected conferences and journals. While
reviewers have generally been pleased, we have ob-
served a trend: our work is often criticised for being
“simple”. We consider this to be one of the major
advantages of the suggested spatial models: they are
fairly simple to both understand and implement. To
quote one of the old masters

“Simplicity is the ultimate sophistication”
Leonardo da Vinci

And with these words the thesis ends.
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