
(a) Local Metrics & Geodesics

(b) Tangent Space Representation

(c) First Principal Geodesic
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Theorem 3:

For squared exponential weights the derivative of the

metric tensor is given as

One Metric Tensor per Sample

One Metric Tensor per Class

What is the length of the red line? And should it even be a line?

All of this is confusing as we haven't defined the metric in the

entire feature space.
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Multi-metric learning uses a set of

metric tensors such that different

distance measures are applied in

different regions of the feature

space. These are used with kNN

classifiers where

Number of Metric Tensors

1 C NThis has proven to be effective, but

has only been applicable to class-

ification with kNN classifiers.

We extend the idea to work with PCA and regression!

What is the problem?

The above approach

A big problem with the above approach is that the

metric tensor is not directly defined at all points

in the image. We define it in the obvious way

where the weights are squared exponentials

Example of a smooth metric; here we

show the trace of the metric tensor

at every point. Blue indicates 'cheap'

distances while red is 'expensive'.
With this choice, the metric tensor changes

smoothly, which gives us the following result

RD
Lemma 1:

The space       endowed with the metric tensor

         is a chart of a Riemannian manifold.

Example geodesic paths according to the

metric tensor from the above example.

This simple observation provides both theoretical

insights and practical tools

Riemannian manifolds are metric spaces,

so our feature space is also metric.

Riemannian manifolds have well-defined

notions of statistics (see box 3).

Geodesics and relevant maps are compu-

table in practice (see next).

As the space is smooth we can use the Euler–Lagrange equation

to compute shortest paths (geodesics)

Theorem 2:

Geodesics according to the metric satisfy the following

system of 2nd order ODE's

The above result is general; for our squared exponential

weights we get

Geodesics as well as the exponential map can now be computed

by solving the differential equations. We do this using standard

numerical techniques.

In Riemannian spaces curve length is measured

by integrating the curve derivative measured

according to the local metric tensor

Geodesics are found as length-minimizing

curves.

Mapping exists back and forth between the local

tangent space of the manifold. These allow for

statistics on manifolds by performing Euclidean

statistics in a tangent space.

Running Time

Practical for feature spaces

of less than 100 dimensions.

The plot shows running time for

computing a geodesic.

The figures to the right show the

basic steps of PCA on a manifold:

Toy Example

Human Body Shapes

We seek representations of the human body that are related to

measurements of the body (e.g. height, weight, etc.).

First principal component

when the metric changes according to

'arm length'.

First principal component

when the metric changes according to

'shoulder breadth'.
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The plots show the tangent space representation and Euclidean

PCA. Colors indicate clusters (according to the measurement).

We also perform regression in the tangent space. The plots

show the regression error on a test set compared to the

ordinary Euclidean approach.
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Compute the mean;

Map data to tangent space

and learn Euclidean model;

Map Euclidean model back

to the feature space.

At random points in the feature space we compute a

local LDA metric tensor [2].

We combine tensors to form a manifold.

Feature space & selected

metric tensors.

Tangent space representation.

We compute the mean and map the data to the tangent

at the mean.

We visualize the tangent space representation; note

how classes are pushed apart.

Code is available online
http://ps.is.tue.mpg.de/project/Smooth_Metric_Learning

Cluster the shapes according to a measurement;

Learn a LMNN metric [3] for each cluster to push

the clusters apart;

Combine metrics to form a manifold and perform

PCA on the manifold.

Euclidean PCA Tangent Space PCA (PGA) Regression Error

Euclidean PCA Tangent Space PCA (PGA) Regression Error

Euclidean Model

Riemannian Model

Euclidean Model

Riemannian Model
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