
An Efficient Algorithm for Modelling Duration in Hidden
Markov Models, with a Dramatic Application ∗

Søren Hauberg and Jakob Sloth

DEPARTMENT OFCOMPUTERSCIENCE

UNIVERSITY OF COPENHAGEN

COPENHAGEN, DENMARK

{HAUBERG,SLOTH}@DIKU .DK

September 24, 2010

∗To appear in Journal of Mathematical Imaging and Vision, Special Issue: Tribute to Peter Johansen.
DOI:10.1007/s10851-007-0059-9

Abstract

For many years, the hidden Markov model (HMM) has been one of the most popular tools for
analysing sequential data. One frequently used special case is theleft-right model, in which the
order of the hidden states is known. If knowledge of the duration of a state is available it is not
possible to represent it explicitly with an HMM. Methods formodelling duration with HMM’s do
exist [7], but they come at the price of increased computational complexity. Here we present an
efficient and robust algorithm for modelling duration in HMM’s, and this algorithm is successfully
used to control autonomous computer actors in a theatrical play.

Keywords Hidden Markov Models; modelling duration; filtering; optimal particle filters; theatrical
play

1 Introduction

In this paper, we study how sequences of data can be modelled when knowledge about the order, and
the duration of discrete states are available. The objective of the paper is tocompute the probability
that the data generating system is in a specific state using all available observations. If we know
the order of the states (i.e. state 2 is directly preceded by state 1), the left-right hidden Markov
model may be well-suited [7]. However, there is a limitation in this model in that it cannot directly
represent knowledge about the duration of states. That is, if we know that the system will be in state
1 for approximately 3 minutes and thereafter in state 2 for about 1 minute, we cannot represent that
knowledge properly with a hidden Markov model (HMM). Several solutions have been proposed to
deal with this problem, see e.g. [5] for details. The most intuitive solution to this problem is essentially
to partition each state into several sub-states, where states with long durations are partitioned into
many sub-states, and states with shorter durations into few sub-states. It can be shown [7] that the
expected duration of a state is proportional to the number of sub-states, which makes the strategy
sensible. The problem is that it is hard to determine the best number of sub-states. Furthermore, the
computational demands of the resulting algorithm increase with the total number of sub-states.

All duration modelling solutions seem to be based on models with a discrete state space. In this
paper the approach taken is first of all to generalise the hidden Markov model, and second of all to
implement the resulting model by using a particle filter. The basic idea is that the best way to model
time, and hence duration, is by means of a continuous variable. For that reason, the discrete Markov
model in an HMM is replaced by a state-space model, where a continuous hidden variable determines
the discrete state of the system. The resulting model is then implemented using the optimal particle
filter [3].

The algorithm is tested by producing a theatrical play with autonomous computeractors. In this
setting, the manuscript of the play provides information about both state order and duration. The only
previous attempt of producing such a play seems to be the work of Pinhanezand Bobick [6], where
order and duration is modelled by means of temporal logic.

2 Deriving the Model

A basic model for describing order of events is the hidden Markov model [7]. In this model, we work
with a hidden discrete state variablesi ∈ {1, . . . ,H} that only depends on the previous statesi−1. In
turn, the actual observationxi ∈ Rd only depends on the current state of the system. Thus, to specify

2

(a) (b)

Figure 1: (a) A graphical model of a Hidden Markov Model. (b) A graphical model of the suggested
extension.

the system we need the state transition distributionp(si |si−1) and the observation distributionp(xi |si).
This model is illustrated graphically in figure 1a.

The HMM does not allow us to explicitly encode knowledge of the duration of states. We therefore
seek a model that allows us to specify the system’s expected amount of time in each state. In order to
do this, the state transition distribution is changed from a Markov model to a state-space model. More
specifically we let the current statesi depend on the value of a continuous variableti . This variable in
turn depends on its previous value. Now the state transition is represented by two distributionsp(si |ti)
andp(ti |ti−1). This model is represented graphically in figure 1b.

The intuition behind this model is thatti represents time, and at every point in time we know
the probabilities of each state. We assume that the entire sequence is finite. Then it makes sense to
assume thatti is confined to an interval[a0,aJ[. To specifyp(si |ti), we partition this interval intoJ
non-intersecting intervals[a j−1,a j [, j = 1. . .J. In each of these intervals, we assume that the state
probabilitiesp(si |ti) are constant. More formally, we define

p(si = h|ti) =
J

∑
j=1

wh j1[a j−1,a j [(ti), (2.1)

where1[a j−1,a j [denotes the indicator function which is defined as

1[a j−1,a j [(ti) =

{

1 ti ∈ [a j−1,a j [

0 otherwise.
(2.2)

For (2.1) to be a valid distribution, we obviously have to assume that

H

∑
h=1

wh j = 1 and 0≤ wh j ≤ 1, (2.3)

whereH denotes the number of different states.
In an HMM, the state transition is a discrete distribution, which means it can be written as

p(si = h|si−1) =
J

∑
j=1

wh jδ (si −h), (2.4)

where the weightswh j depend on the value ofsi−1. This distribution can be compared to (2.1), where
we note that the delta functions have essentially been replaced with indicator functions.

3

(a)

(b)

Figure 2: (a) An illustration of state duration in the suggested model. Each interval corresponds to a
state, and the length of an interval corresponds to the expected duration of a state. (b) The traditional
way of modelling duration with HMM’s. Each interval is partitioned into severalintervals. This
corresponds to a quantisation ofti .

For the model to be fully specified, we must also definep(ti |ti−1). Sinceti is confined to the
interval [a0,aJ[, we note that this distribution should be zero outside this interval. In this paper,
we essentially assume thatp(ti |ti−1) is a normal distribution, but other choices should be possible.
Formally we define

p(ti |ti−1) = z−11[a0,aJ[(ti)N (ti |µ ,σ2), (2.5)

where bothµ = µ(ti−1) andσ = σ(ti−1) can be any function ofti−1 as long asσ > 0. The normali-
sation constantz can easily be evaluated as the integral of the normal distribution froma0 to aJ. This
specifically applies toz= G (a0,aJ), where

G (a,b) =
∫ b

a
N (ti |µ ,σ2)dti =

1
2

(

erf

[

b−µ√
2σ

]

−erf

[

a−µ√
2σ

])

. (2.6)

We now have a fully specified model. To get a better understanding of the model, we assume
that σ is constant, andµ = ti−1+∆, where∆ is constant. Sinceti is thought of as time, this choice
simply tells us that time goes by. The state distributionp(si |ti) is defined as constant in the intervals
[a j−1,a j [. We now assume that the system state is deterministically given by the interval, i.e.whĵ = 1

for some value of̂j. We then see that each interval[a j−1,a j [corresponds to a state, and its length to
the expected duration of the state. This is illustrated in figure 2a.

With HMM’s we can compute the filtering distributionp(si |x1:i). This distribution can be com-
puted directly fromp(ti |x1:i) as

p(si |x1:i) =
∫

p(si , ti |x1:i)dti =
∫

p(si |ti)p(ti |x1:i)dti . (2.7)

One algorithm for computing the filtering distributionp(si |x1:i) with this model would be to quan-
tise ti , and then use a standard HMM filter. This idea is illustrated in figure 2b. This isthe standard
way of modelling duration in HMM’s [7]. The problem with this approach is thatit is not clear how
fine-grainedti should be quantised. Ifti is quantised very fine-grainedly, the filtering algorithm be-
comes computationally expensive. More specifically, if we quantiseti into Q states, the HMM filter
runs inO(Q2). If we use a less fine-grained quantisation instead, the results become lessaccurate. In
this paper, we propose a filtering algorithm based on a particle filter rather than an HMM filter.

3 About Particle Filters

When the hidden state variable is continuous, the currently most popular approach to filtering is the
particle filter. In this section, we review the basics of this algorithm. For a more in-depth description
containing most of the proofs see [3].

4

The aim of the algorithm is to estimate moments of the filtering distributionp(ti |x1:i) by means of
samples. Here,x1:i denotes all observations up to iterationi, i.e. x1,x2, . . . ,xi . The idea is that samples
are taken fromp(t1:i |x1:i) and then all values of the samples butti is ignored. Since the filtering

distribution is unknown, we turn to importance sampling [1]. This means drawingsamplest(n)1:i from
an importance distribution q(t1:i |x1:i) and then estimating moments of the filtering distribution as

h̄=
∫

h(ti)p(ti |x1:i)dti ≈
N

∑
n=1

w(n)
i

∑N
m=1w(m)

i

h(t(n)i), (3.1)

where we have defined theimportance weightsasw(n)
i = p(t(n)1:i |x1:i)/q(t(n)1:i |x1:i). If N → ∞ (3.1) is

exact. The key to making this strategy work is to choose an importance distribution, which ensures
that the resulting algorithm is recursive. With this in mind, it is chosen that the importance distribution
should be factorised as

q(t1:i |x1:i) = q(t1:i−1|x1:i−1)q(ti |ti−1,xi). (3.2)

With this choice, one can sample fromq(t1:i |x1:i) recursively by extending the previous samplet(n)1:i−1

with a samplet(n)i from q(ti |ti−1,xi). The weightsw(n)
i−1 can also be recursively updated by means of

wi ∝ wi−1×
p(xi |t(n)i)p(t(n)i |t(n)i−1)

q(t(n)i |t(n)i−1,xi)
. (3.3)

When extending the previous sample, we need to draw a sample fromq(ti |ti−1,xi). This, however,
assumes that the true value ofti−1 is known, which is not the case. Several strategies can be used
to approximate this value.Sequential Importance Sampling (SIS)assumes that the previous sample
position was the true value, i.e.ti−1 = t(n)i−1. This is usually not stable, since errors accumulate in this
estimate. Theparticle filter approximates the distribution ofti−1 with the weighted samples from the
previous iteration, i.e.

p(ti−1|x1:i−1)≈
w(n)

i−1

∑N
m=1w(m)

i−1

δ (ti−1− t(n)i−1). (3.4)

The value ofti−1 is then approximated by drawing a sample from this distribution. This simply corre-
sponds to a resampling of the previous samples, where samples with large weights have a high proba-
bility of surviving. Since these samples are assumed to come from the true distribution p(ti−1|x1:i−1),

the associated weights have to be reset, i.e.w(n)
i−1 = 1/N for all n.

We have still to choose the importance distributionq(ti |ti−1,xi). The most simple choice is inspired
by (3.3). Here, we note that the weight update is significantly simplified if we set q(ti |ti−1,xi) =
p(ti |ti−1). With this choice, the resulting filter is called theBootstrap filter[3]. This filter works quite
well if the observations follow the predictionsp(ti |ti−1) fairly well. Yet when this is not the case,
the results are usually not very good. The reason for this is that new samples are not necessarily
drawn from places in the state space where the likelihoodp(xi |ti) is high. To avoid such problems, an
alternative importance distribution is needed. The obvious choice isq(ti |ti−1,xi) = p(ti |ti−1,xi). With
this choice, and by means of the Markov property, it is easy to prove that

q(ti |ti−1,xi) =
p(xi |ti)p(ti |ti−1)

∫

p(xi |t)p(t|ti−1)dt
. (3.5)

5

With this importance distribution, the resulting method is called theoptimal particle filter. We see
that for this method, the weight update is

w(n)
i ∝ w(n)

i−1

∫

p(xi |t)p(t|t(n)i−1)dt. (3.6)

The problem with the optimal filter is that it usually cannot be implemented, since theintegral in
the weight update is often hard to evaluate. The only case in which this filter has actually been
implemented seems to be the non-linear extensions of the Kalman filter [4]. We will, however, see
that the optimal filter can be implemented in the model described in the previous section.

4 Implementing the Model

In this section, we show how the model can be implemented by means of an optimal particle filter.
This algorithm requires a method for evaluating the new weight (3.6) of a particle and a method for
simulating the importance distribution (3.5). These two methods will be described inthe next sections.

First, we do note that since the entire state space is the interval[a0,aJ[, the importance distribution
can be expressed as

q(ti |ti−1,xi) = 1[a0,aJ[(ti)
p(ti |ti−1)p(xi |ti)

∫ aJ
a0

p(t|ti−1)p(xi |t)dt
. (4.1)

4.1 Assigning Weights

To compute the weight of a particle, we need to evaluate (3.6). To simplify the notation, we omit the
superscript(n) and subsequently compute the new weight as

wi =
∫

p(xi |t)p(t|ti−1)dt (4.2)

= z−1
∫ aJ

a0

N (t|µ ,σ2)
H

∑
h=1

p(xi |si = h)p(si = h|t)dt (4.3)

= z−1
H

∑
h=1

p(xi |si = h)
∫ aJ

a0

N (t|µ ,σ2)
J

∑
j=1

wh j1[a j−1,a j [(t)dt (4.4)

= z−1
H

∑
h=1

p(xi |si = h)
J

∑
j=1

wh jG (a j−1,a j). (4.5)

SinceG can be evaluated using (2.6), we can evaluate the expression. The computational complexity
of this operation isO(HJ).

4.2 Simulating the Importance Distribution

As the importance distributionq(ti |ti−1,xi) is one-dimensional, we can simulate it by usinginverse
transform sampling[1]. This consists of computing the inverse of the cumulative distribution function
and evaluating this function at a uniformly distributed pointr ∈ [0,1].

The first step of this approach is to compute the cumulative distribution functionF(y)=
∫ y
−∞ q(t|ti−1,xi)dt.

Since the union of the intervals[a j−1,a j [covers the entire state space, every value ofy must fall within

6

one of these intervals. We now assume that this interval is[ak−1,ak[and thatk is known. We then get

F(y) =
∫ y

−∞
q(t|ti−1,xi)dt (4.6)

= w−1
i

∫ y

−∞
p(t|ti−1)p(xi |t)dt (4.7)

= (zwi)
−1

∫ y

a0

N (t|µ ,σ2)
H

∑
h=1

p(xi |si = h)
J

∑
j=1

wh j1[a j−1,a j [(t)dt (4.8)

= (zwi)
−1

H

∑
h=1

p(xi |si = h)
J

∑
j=1

wh j

∫ y

a0

N (t|µ ,σ2)1[a j−1,a j [(t)dt (4.9)

= (zwi)
−1

[

H

∑
h=1

k−1

∑
j=1

p(xi |si = h)wh jG (a j−1,a j)+
H

∑
h=1

p(xi |si = h)whkG (ak−1,y)

]

. (4.10)

We now turn to computing the inverse ofF(y). Settingr = F(y) and rearranging (4.10) we get

G (ak−1,y) =

[

H

∑
h=1

p(xi |si = h)whk

]−1[

(zwi)r −
H

∑
h=1

k−1

∑
j=1

p(xi |si = h)wh jG (a j−1,a j)

]

(4.11)

Using the definition ofG (2.6), we can solve this fory, which gives

y= µ +
√

2σ erf−1

[

2
[H

∑
h=1

p(xi |si = h)whk

]−1[

(zwi)r −
H

∑
h=1

k−1

∑
j=1

p(xi |si = h)wh jG (a j−1,a j)
]

+erf
[ak−1−µ√

2σ

]

]

. (4.12)

We can now simulate the importance distribution by generating a uniformly distributed numberr ∈
[0,1] and insertingr in (4.12). The result will then follow the importance distribution. This, however,
assumes that the interval[ak−1,ak[containingy is known. To find this interval, we note thatp(ti |ti−1)>
0, which makesF(y) an increasing function. This tells us that

ak−1 ≤ y ≤ ak ⇔ (4.13)

F(ak−1)≤ F(y) ≤ F(ak). (4.14)

Sincer = F(y), we can findk by searching the sequence(F(ak))k=1...J for a value ofk such that (4.14)
is fulfilled. It should be noted thatF(ak) can be evaluated directly using (4.10). The computational
complexity of the simulation is againO(HJ).

5 A Dramatic Application

The presented algorithm has been developed for the purpose of producing a theatrical play, where an
autonomous computer acts together with a human actor. More specifically, the computer controls a
robot, plays sounds, and displays animations on stage. In the theatrical setting, the manuscript of the
play contains fairly detailed descriptions of both the order and the duration of the actor’s actions. If
an action is thought of as a state, the model is applicable. The idea is to use gesture recognition to
determine what the human actor is doing and compare this with a manuscript of thehuman actor’s

7

actions to get an estimate of the current positionti in the manuscript. On this basis, it is easy to
determine which actions the computer is to perform by comparing the estimate with manuscripts of
the computer controlled actors.

Formally, we must define the distributionp(si = h|ti) in order to use the model. As statesi de-
scribes the action performed by the human actor, the distribution corresponds to the manuscript of the
play. Since the human actor is only able to perform one action at a time, the weights wh j are set to
1 in the intervals where actionh is performed and 0 elsewhere. We also have to define the temporal
predictionp(ti |ti−1), which requires us to specifyµ andσ . Here we letµ = ti−1+∆, where∆ is the
number of seconds since the previous iteration. In the theatrical setting, thecertainty of state duration
information varies. When the information about duration, is very certain we set σ to a small value,
and when the information is uncertain, we setσ to a large value. This has the practical consequence
that particles spread across a larger area of the state space when the duration information is weak,
which makes the algorithm more sensitive towards the input. Whenσ is small, the particles tend to
form groups, which makes the algorithm less sensitive to the input.

If we assume that the likelihoodp(x1:i |si = h) can be evaluated, then we are able to estimate
moments of the distribution ofti . In section 5.1, we present the evaluation of this likelihood.

In order to determine which actions the computer actors are to perform, we compute the probabil-
ity of an actionac being performed. To compute this probability, we introduce a manuscriptp(ac|ti)
which describes the computer actor’s actions.

p(ac|x1:i) =
∫

p(ac|ti)p(ti |x1:i)dti . (5.1)

Since this is a moment ofp(ti |x1:i), we can evaluate it using (3.1). The manuscriptp(ac|ti) is specified
in the same way as the manuscript of the human actor.

5.1 Gesture Recognition

To be able to use the algorithm, we need a measurementp(x1:i |si = h). In the theatrical setting, we
have chosen to use a gesture recognition system to provide this likelihood. More specifically, 13
different gestures are recognised. The recognition system is based on “Motion History Images” as
described by Bobick and Davis [2]. Briefly put, these images reduce a sequence of black and white
images to one gray-scale image that describes the current action. The gesture is then recognised by
the matching of this image to a set of templates, which each describe an action. This matching is
performed by computing global image featuresFi of the current image and afterwards computing
the likelihood of each action. Here, we assume that each action class is a Normal distribution, i.e.
p(x1:i |si = h) = N (Fi |µh,Σh). Bobick and Davis [2] use Hu moments as global features, but we have
improved results greatly by using Zernike moments [8] instead. In fact, whenusing Hu moments the
success-rate is 30%, whereas the success-rate is 60% when using 15 Zernike moments.

5.2 Results

To actually produce the play, it is essential to know when the computer has to perform an action.
Using the methods described so far, we can compute the probability of an action. The actual decision
algorithm is based on a simple threshold of this probability. If the probability of an action exceeds
60%, it is performed. By means of this simple rule, we have been able to produce a theatrical play
successfully. The play lasts approximately 10 minutes, during which the computer performs 68 differ-
ent actions. The play has been performed successfully several times, and could easily be extended to

8

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900

(a) (b) (c)

Figure 3: Data from a short play designed for testing. The horizontal axis shows the image number,
and the vertical axis shows the gesture number. (a) The likelihoods from the gesture recognition
system. (b) The ground-truth data. (c) The resulting filtering distribution.

last longer. If the acting is to be convincing, timing is of the essence. Using thepresented algorithm,
the timing is actually surprisingly good, and, from a practical point of view, the actions are nearly
performed at exactly the right time. Video material is available at the project website1.

To get a better understanding of the quality of the algorithm, a shorter and more simple play
has been produced. This consists of 9 different gestures performedby a human actor in a period
lasting approximately 2 minutes. The actual likelihoodp(x1:i |si) is shown in figure 3a. This should
be compared with the ground-truth data presented in figure 3b. As appears, the data contains a fair
amount of noise, but the true pattern is visible. In figure 3c, the filtering distribution p(si |x1:i) is
shown. As can be seen, the results are quite good, and even short actions with poor likelihoods are
detected. It should be noted that the used manuscriptp(si |ti) encodes the order of the actions correctly,
but the durations are not perfectly aligned with the signal.

6 Conclusion and Future Work

This paper has presented an efficient algorithm for modelling duration in hidden Markov models.
This algorithm is based on the optimal particle filter. It seems to be the first algorithm where duration
is modelled explicitly with a continuous variable. It also seems to be one of the fewcases where
the optimal particle filter can be implemented. The algorithm was originally designedto produce a
theatrical play, in which autonomous computer actors play together with a humanactor. Such a play
has been successfully produced, and the algorithm has proved to be very stable. It would, however,
be quite interesting to see how well the algorithm would work with more traditional problems, e.g.
speech recognition. Before such experiments can be performed, it would, however, be necessary to
develop algorithms for learning manuscriptsp(si |ti).

References

[1] Christopher M. Bishop.Pattern Recognition and Machine Learning. Springer, August 2006.

[2] Aaron F. Bobick and James W. Davis. The recognition of human movement using temporal
templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):257–267,
2001.

1http://image.diku.dk/projects/robotics/theater/

9

[3] O. Capṕe, S. J. Godsill, and E. Moulines. An overview of existing methods and recent advances
in sequential monte carlo.Proceedings of the IEEE, 95:899–924, May 2007.

[4] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling methods for bayesian
filtering. Statistics and Computing, 10:197–208, 2000.

[5] M.T. Johnson. Capacity and complexity of hmm duration modeling techniques.Signal Processing
Letters, IEEE, 12:407–410, May 2005.

[6] Claudio S. Pinhanez and Aaron F. Bobick. ”it/i”: a theater play featuring an autonomous computer
character.Presence: Teleoper. Virtual Environ., 11(5):536–548, 2002.

[7] Lawrence R. Rabiner. A tutorial on hidden markov models and selectedapplications in speech
recognition.Proceedings of the IEEE, 77(2):257–286, February 1989.

[8] C.H. Teh and R.T. Chin. On image analysis by the methods of moments.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 10(4):496–513, 1988.

10

