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Abstract. In this paper, we present a novel approach to three dimen-
sional human motion estimation from monocular video data. We employ
a particle filter to perform the motion estimation. The novelty of the
method lies in the choice of state space for the particle filter. Using a
non-linear inverse kinematics solver allows us to perform the filtering
in end-effector space. This effectively reduces the dimensionality of the
state space while still allowing for the estimation of a large set of motions.
Preliminary experiments with the strategy show good results compared
to a full-pose tracker.

1 Introduction

Three dimensional human motion analysis is the process of estimating the con-
figuration of body parts over time from sensor input [1]. One approach to this
estimation is to use motion capture equipment where electromagnetic mark-
ers are attached to the body and then tracked in three dimensions. While this
approach gives accurate results, it is intrusive and cannot be used outside labo-
ratory settings.

Our long-term goal is to use human motion analysis as part of a physio-
therapeutic rehabilitation system where the motion of a patient is tracked and
analysed during exercise sessions performed both at the hospital and at the pa-
tient’s home. The motion information will then be used to provide real-time
feedback to the patient and to collect statistics on the patient’s progress. The
system should serve as an aid to the patient while performing a self-training
programme at home, in that the patient will get instant response on whether
or not the exercise is performed optimally. Furthermore, the system may act as
a progress measurement tool for the physiotherapist. It is essential to develop
systems that can be used by the patient at home, which rules out marker-based
systems and hard-to-calibrate multi-camera solutions. Thus, the focus is on de-
veloping monocular vision-based systems.

In this paper, we present a novel approach to three dimensional monocular
human motion estimation. The novelty of the system lies in the choice of state
space. Monocular motion estimation in three dimensions is an inherently ill-
posed problem since the observed images are two dimensional. This manifests



itself in that the distribution of the human pose is multi-modal with an unknown
number of modes. To reliably estimate this distribution we need methods that
cope well with multi-modal distributions. Currently, the best method for such
problems is the particle filter [2], which represents the distribution as a set of
weighted samples. Unfortunately, the particle filter is smitten by the curse of
dimensionality in that the necessary number of samples grow exponentially with
the dimensionality of state space. The consequence is that the particle filter is
only applicable to low dimensional state spaces. This is in direct conflict with
the fact that the human body has a great number of degrees of freedom.

Our approach is inspired by recent results from the world of animation [3].
Here animators are faced with the task of posing human figures on a frame by
frame basis. This time-consuming task has created the need for models that
allow animators to create realistic looking figures using few parameters. Inverse
kinematic models allow the animator to pose only a few selected parts of the
human figure, called end-effectors, while the remaining parts can be positioned
by solving a non-linear least-squares optimisation problem. The end-effectors are
most often the head, the hands and the feet of the figure. Although the underlying
optimisation problem is hard to solve, recent work [3] has shown that realistic
looking animations can be created in real-time using inverse kinematics. In this
paper, we investigate the usefulness of estimating human motion in end-effector
space rather than full-pose space. This is done using inverse kinematics to infer
the full pose from end-effector positions.

To simplify the measurement model of the particle filter, our measurement
model is based on a simple Markov random field texture model for each limb of
the current pose model. We do not attempt to handle self-occlusions in this paper
as focus is on the choice of state space. When necessary, this can be introduced
later by appropriately changing the measurement model.

Our main point in this paper is to show the feasibility of tracking in end-
effector space compared to tracking in full-pose space and argue that the former
approach allows for real-time implementations with reasonable accuracy.

1.1 Related Work

Much work has gone into human motion analysis. The bulk of the work is in
locating the position of moving humans in image sequences and classifying their
actions. It is, however, beyond the scope of this paper to give a review of this
work. The interested reader can consult review papers such as [4].

In recent years, much work has gone into more detailed visual human mo-
tion analysis in three dimensions [1]. The main difficulty in this area is the high
number of degrees of freedom in the human body, which gives rise to high di-
mensional state spaces. To overcome this problem, many researchers reduce the
dimensionality of state space using manifold learning [5,6,7]. The basic idea is to
learn a manifold from motion capture data and then perform the motion anal-
ysis on this manifold. It seems that most researchers taking this route focus on
simple low-dimensional motions, such as walking [7,8,9,10], golf swings [9,10],



tennis playing [11] etc. In this context, end-effector tracking using inverse kine-
matics can be interpreted as a dimensionality reduction technique that is based
on domain specific knowledge about general human motion.

While kinematic skeleton models have been used a lot in motion analysis
it seems that inverse kinematics have been given little attention. The approach
closest to ours is that of Sminchisescu and Triggs [12] who use inverse kinematics
to enumerate possible interpretations of the input, which results in a more effi-
cient sampling scheme for their particle filter. They, however, still perform the
motion analysis in full-pose space, whereas we work in end-effector space. This
provides a very efficient way of reducing the dimensionality of the state space
that still allows us to work with a large class of motions.

1.2 Organisation of the Paper

This paper is organised as follows. In the next two sections the theoretical back-
ground is presented. First an introduction to inverse kinematics is given in Sec. 2.
A brief introduction to particle filtering is then given in Sec. 2. In Sec. 3 we dis-
cuss two choices of the state space for the motion analysis system and in Sec. 4
we describe the measurement system used in our implementation. Preliminary
results and a discussion of the pros and cons of the method are presented in
Sec. 5 and the paper is concluded in Sec. 6.

2 Posing with Inverse Kinematics

Inverse kinematics is the problem of manipulating the pose of a skeleton in order
to achieve a desired pose disregarding inertia and forces. The problem can be
posed as a non-linear optimisation problem.

In the context of human modeling a skeleton is often modeled as a collection
of rigid bodies connected by rotational joints of 1–3 degrees of freedom such as
the one shown in Fig. 1. All joints are constrained in their rotation, as exemplified
by joint i in Fig. 1 with li and ui showing the limits of the angle θi. To compute
the position and orientation of a joint in space we perform a transformation
of the bone relative to its parent joint. The transformation consist of a rotation
and a translation corresponding to the shape and orientation of the joint relative
to its parent. These transformations are then nested to create chains of joints.
Each chain ends in an end-effector, which can be regarded as the handle for
controlling the chain. Thus, the full transformation of a joint from local space
to global space can be performed.

The problem can be formally stated as follows. Given the set of joint parame-
ters θ we can change the values of θ and gain explicit control over all joint angles.
This in turn controls the position and orientation of the end-effector a = F (θ).
This is commonly known as forward kinematics. Given a desired end-effector
goal position, g, one seeks the value of θ such that

θ = F−1(g) . (1)



Fig. 1. An illustration of the kinematic model. End-effector positions are shown as
green dots, while the desired positions (goals) are shown as red dots.

This is known as inverse kinematics. Closed form solutions exist for models with
less than 7 degrees of freedom. However, the human body has a lot more than
7 degrees of freedom and has a large degree of interdependency between joints.
Thus, it makes sense to solve the problem globally for the entire skeleton. High
performance implies the need for iterative numerical methods. By posing the
problem as a constrained least-squares fitting problem we are given a number of
possible methods to solve the problem. Given a skeleton containing K kinematic
chains, each with exactly one end-effector, we agglomerate the K end-effector
functions into one function

a =
[
aT1 . . .a

T
K

]T =
[
F 1(θ)T . . .FK(θ)T

]T = F (θ) , (2)

where aj is the world coordinate position of the jth end-effector and F j(θ) is
the end-effector function corresponding to the jth kinematic chain. Using the
agglomerated end-effector function, we create the objective function

f(θ) = (g − F (θ))T (g − F (θ)) , (3)

where g =
[
gT1 . . . gTK

]T is the agglomerated vector of end-effector goals. The
optimisation problem is then

θ∗ = arg min
θ
f(θ) s.t. l ≤ θ ≤ u . (4)

Here l is a vector containing the minimum joint limits and u is a vector of the
maximum joints limits. For a more thorough description of the inverse kine-
matics problem and the constraint model see [13,3]. Any constrained non-linear
optimisation method may be used to solve the problem. In this paper we use a
simple, yet effective, gradient projection method with line search [14]. To com-
pute the gradient we need the Jacobian matrix of f(θ) denoted J . For rotational
joints this can be easily computed. For each chain, the Jacobian matrix contains
a 3 × 1 entry for each rotational degree of freedom. This entry is computed as
the cross product of the rotational axis and the vector from the joint to the
end-effector as shown in Fig. 2. Given this Jacobian matrix the gradient can be
computed as (g − a)JT . A more thorough description of the calculation of the
Jacobian can be found in [15].



Fig. 2. Finding the rotational derivative of a joint. The derivative is found as the cross
product of the rotational axis (red) and the vector from joint to end-effector (green)
the resulting tangent vector is shown in blue.

Bayesian Filtering Bayesian filtering is concerned with estimating the unob-
served state of a system from observations. In terms of human motion analysis,
it is concerned with estimating a sequence of human poses given a sequence of
images. This section provides a brief overview of the topic. For more details, the
interested reader should consult papers such as [2] and the references therein.

In Bayesian filtering it is assumed that the observation It at time t is solely
governed by a hidden variable st. The distribution of this variable is in turn
assumed to form a Markov chain, such that

p(s1:T , I1:T ) = p(s1)p(I1|s1)
T−1∏
t=1

p(st+1|st)p(It+1|st+1) . (5)

Here s1:T = {s1, . . . , sT } denotes a sequence of state variables and likewise for
I1:T .

The objective of estimating the current state given all observations is ex-
pressed as estimating the filtering distribution p(st|I1:t). This can be estimated
recursively as [2]

p(st|I1:t) ∝
∫
p(st−1|I1:t−1)p(st|st−1)p(It|st)dst−1 . (6)

Unfortunately, this integral can only be computed exactly in simple cases. For
instance, if the state is finite valued the corresponding algorithm is called Baum-
Welsh filtering [16] and if the model is linear and Gaussian, it can be computed
by the Kalman filter [17]. In more general cases approximations are necessary. In
recent years the particle filter [2] has seen growing popularity. It represents the
filtering distribution as a set of weighted samples, which allows for multi-modal
distributions and non-linear processes.

In general the filtering objective is to estimate moments of the filtering distri-
bution instead of estimating the distribution itself. In particle filtering the basic
idea is to draw samples, also called particles, from the distribution and estimate
the moments using these, i.e.∫

h(st)p(st|I1:t)dst ≈
1
N

N∑
j=1

h(s(j)
t ) , (7)



where s(j)
t are the samples, and h(·) is any function of interest. In practice,

we cannot draw samples from the filtering distribution as it is unknown. We
therefore draw samples from an instrumental distribution q(st|It, st−1). These
samples are then weighted such that the weighted sum of the samples provides
an unbiased estimate of the moments. It can be proved [2] that these weights
can be recursively updated as

ω
(j)
t ∝ ω

(j)
t−1 ·

p(It|s(j)
t )p(s(j)

t |s
(j)
t−1)

q(s(j)
t |It, s

(j)
t−1)

. (8)

Most often the instrumental distribution is chosen to be the predictive distri-
bution p(st|st−1) as this simplifies the weight update. The resulting algorithm
is known as the Bootstrap filter, which we are employing in this paper. This
algorithm performs the following iterative steps for all particles

– Draw new samples s(j)
t from p(st|s(j)

t−1);
– Compute normalised weights ω(j)

t ∝ ω
(j)
t−1p(It|s

(j)
t ) .

From a practical point of view this approach is not numerically stable as all but
one of the weights tends towards zero. To overcome this issue it is common to
only keep samples with large weights, which is done by resampling the samples.
In the Bootstrap filter a sample is kept in the next iteration with a probability
equal to its weight. This can result in the same sample appearing several times
after resampling.

To model the dynamics of the state process it is necessary to include either
second order information or velocity. This can be done by either extending the
state with a velocity vector or by changing the state distribution from a first to a
second order Markov chain. The latter approach keeps the dimensionality of the
state space at a minimum allowing for a computationally efficient filter, while the
former approach allow us to estimate velocities. Since this is not needed in the
current application we choose the latter approach. This corresponds to drawing
new samples from p(st|s(j)

t−1, s
(j)
t−2) instead of p(st|s(j)

t−1), while the weight update
remains unchanged.

Although the particle filter in general is able to cope with multi-modal dis-
tributions and non-linear state changes it is not without flaws. Unless very good
predictive models are available the filter generally needs O(ND) samples to reli-
ably estimate the moments [2], where D is the dimensionality of the state space.

3 Human Motion Analysis

As mentioned in the introduction, we wish to infer the full pose of the human in
the scene from the image sequence. To simplify matters, we will restrict ourselves
to working on the upper body, i.e. torso, head and hands. We will also assume
known limb-sizes. This effectively reduces the full-pose space to being the space
of joint angles. The most straight-forward choice of state space is then the space
of angles, which will be discussed in Sec. 3.1. An alternative low dimensional
state space will be discussed in Sec. 3.2.



3.1 Full-Pose Motion Analysis

We have seen in Sec. 2 that Bayesian motion analysis can be performed using a
particle filter. The obvious way of realising such a filter is to perform the filtering
in the space of all poses θ. This only requires that we provide a predictive
distribution p(θt|θt−1,θt−2) and a likelihood function p(It|θt).

The likelihood function will be described in detail in Sec. 4, so here we focus
on prediction. This can simply be performed by extrapolating the two previous
states and adding noise. In more detail we define

p(θt|θt−1,θt−2) = N (θt|θt−1 +∆t−1,Σ) , (9)

where ∆t−1 = θt−1 − θt−2 represents the current displacement and Σ is the
covariance matrix of the prediction noise. In absence of additional knowledge
about the motion, we choose the least committed model and define Σ = σ2I,
with σ being a parameter and I being the identity matrix.

This simple setup provides a full system for Bayesian motion analysis. The
problem with this approach is the high dimensionality of the state space. In
this paper we restrict ourselves to studying an upper body model that has 47
degrees of freedom. Since the necessary number of particles grows exponentially
with the dimensionality of the state space, we cannot expect to reliably use a
particle filter in this state space. We therefore seek a more low dimensional state
space with a similar amount of expressive power.

3.2 End-Effector Motion Analysis

As an alternative to the full-pose state space, we propose to use inverse kinemat-
ics to reduce the dimensionality of the state space. This is essentially done by
performing the tracking in end-effector space. Here we define the end-effectors
as the head and the hands. The end-effector space is thus the three dimensional
positions of the three end-effectors, i.e. R9. The strategy is then to use inverse
kinematics to infer the full pose. Once the full pose has been infered it can be
measured just like the system working in full-pose space (see Sec. 4). This allows
us to compare results from both systems.

In more details we define xhead, xhand0 and xhand1 as the three dimensional
positions of the end-effectors. To simplify matters, we will assume that the hands
are conditionally independent given the position of the head. That is,

p(xhead,xhand0 ,xhand1) = p(xhead)p(xhand0 |xhead)p(xhand1 |xhead) . (10)

This simply means we represent the hands relative to the position of the head.
Thus we define the state as s = (xhead,xhand0 − xhead,xhand1 − xhead). This
factorisation has the consequence that we can treat the end-effectors separately
in the filtering.

To be able to make measurements we need to be able to compute p(It|st). As
described in Sec. 2 we can compute the full pose θt from the state st. This allows



us to perform the measurement in full-pose space rather than simply measuring
the position of the head and the hands. So we define p(It|st) ≡ p(It|θt).

The prediction can be performed much like the full-pose system (9). This
boils down to linear extrapolation of the end-effectors followed by addition of
Gaussian noise. In more detail

p(st|st−1, st−2) = N
(
st|st−1 +∆t−1, σ

2I
)
, (11)

where ∆t−1 = st−1 − st−2 represents the current displacement.

4 Visual Measurements

In this section we present a method for computing the likelihood of a full pose, i.e.
p(It|θt). To avoid notational clutter we will drop the t subscript in the following.

The basic idea is to assume that the individual limbs are independent, i.e.

p(θ) =
N∏
n=1

p(θ(n)) and p(θ|I) =
N∏
n=1

p(θ(n)|I) , (12)

where θ(n) are the parameters of the nth limb. From this assumption we see that

p(I|θ) =
p(I)p(θ|I)
p(θ)

(13)

= p(I)−(N−1)
N∏
n=1

p(I)p(θ(n)|I)
p(θ(n))

(14)

∝
N∏
n=1

p(I|θ(n)) . (15)

That is, we only need to be able to evaluate the likelihood p(I|θ(n)) of individual
limbs.

The basic assumption in the measurement model is that limbs can be treated
independently. However, if one limb occludes another this assumption no longer
holds. In this paper we do not attempt to model this situation as we are con-
cerned with the choice of state space rather than the visual measurements.

4.1 Modeling the Likelihood of a Limb

We use a simple Markov random field (MRF) model to describe the appearance
of a limb, in which the limb appearance statistics is described by histograms
of a set of descriptive features capturing texture and colour information. The
likelihood function p(I|θ(n)) thus takes the form of a Gibbs distribution with an
energy functional consisting of terms for texture, colour and background. Each
of these are considered independent and we thus define the likelihood as

− log p(I|θ(n)) = αT d
2
T (HTm , HT |θ(n)) + αCd

2
C(HCm , HC |θ(n))

+ αBd
2
B(HBm , HB |θ(n)) + constant ,

(16)



where d2
T (HTm , HT |θ(n)) is the distance between a texture model HTm and the

observed texture HT . d2
C(·) and d2

B(·) are the similar counterparts of the colour
and background models. The α parameters control the relative importance of
the individual terms.

The texture and colour models are based on the same principle, which boils
down to computing a normalised histogram of a descriptive feature within the
limb and comparing that with a normalised model histogram. When construct-
ing these histograms we use a Gaussian aperture to weigh the individual pixel
contributions. This aperture will be described in the next section. When com-
paring the histograms we are using the earth mover’s distance [18], which takes
into account small perturbations and shifts of the histograms.

The background model is based on a simple thresholding of the absolute
difference between a background image and the current image. This binary image
B is then compared to a simple rendering R of the pose. The rendered pose is
created by thresholding the Gaussian apertures used in the histogram creation.
We thus define d2

B(HBm , HB |θ(n)) as the number of pixels where the two binary
images do not agree.

The final objective of tracking is to provide an estimate of the current pose.
When using Bayesian filtering, one such estimate is the maximum a posterior
solution (MAP), which corresponds to finding the maximum of the filtering
distribution. With our specific choice of MRF measurement model, the MAP
solution will correspond to minimising the energy functional (16) with respect
to the pose. Hence, the objective is to find the pose for which the earth mover’s
distance between the model histograms and the actual observation histograms
is minimised.

4.2 Gaussian Limb Aperture

In the kinematic model each limb correspond to a line segment as was illustrated
in Fig. 1. Hence, in order to create texture and colour histograms we need to
define a spatial extend of each limb. This is done by forming a Gaussian aperture
around each limb line segment. This aperture is used to weight individual pixel
contributions in the histograms.

To compute the aperture, the line segment is projected onto the image plane
and its mean point µn is computed. From the orientation vector v1 along the
projected line segment and its perpendicular counter-part v2 a covariance matrix

Σn = λ1v1v
T
1 + λ2v2v

T
2 (17)

is formed. The Gaussian aperture can then be defined as

Ln(x|θ(n)) = exp
(
−1

2
(x− µn)TΣ−1

n (x− µn)
)

. (18)

The first eigenvalue λ1 is chosen such that 2.5
√
λ1 = d/2, where d is the length

of the projected line segment. The second eigenvalue is computed as λ2 = wnλ1,
where wn controls the width of the nth limb. The entire process is illustrated in
Fig. 3.



(a) (b) (c)

Fig. 3. An illustration of the Gaussian apertures. (a) The kinematic skeleton with one
high-lighted limb. (b) The direction of the limb is computed and a Gaussian aperture
stretching in this direction is formed. (c) All Gaussian apertures of the same pose.
Notice that the apertures of different limbs can have different widths.

4.3 Texture and Colour Features

In each pixel we compute both colour and texture features. Specifically, we com-
pute colour saturations and gradient orientations. The colour saturation is com-
puted as the S-channel of the HSV representation of the image. Each pixel entry
in the histograms are weighted with the value of the Gaussian limb aperture in
the pixel. In more detail, we collect the colour saturation histogram as

HC
k (C{I}|θ(n)) =

M∑
x=1

Ln(x|θ(n))1∆k
[C{I}(x)], k = 1, . . . ,K , (19)

where k is the index of the histogram bin, 1∆k
is the indicator function of the

bin interval ∆k and C{I} is the colour saturation of the image I.
The texture model is computed in much the same manner, except the gra-

dient orientations are also weighted with the gradient lengths. Specifically, the
histogram is computed as

HT
k (ψ{I}|θ(n)) =

M∑
x=1

β(x)Ln(x|θ(n))1∆k
[ψ{I}(x)], k = 1, . . . ,K , (20)

where β is the gradient length and ψ is its orientation. To make the features
independent of the orientation of the limb, we compute the gradient in the
principal coordinate system of the Gaussian aperture.

To control the relative importance of the features we compute the parameters
αT and αC in an ad-hoc manner as

αT =
H(HCm)

H(HTm) +H(HCm)
and αC =

H(HTm)
H(HTm) +H(HCm)

, (21)

where H(·) is the entropy of a histogram. The intuition behind this choice is that
more peaked model histograms should have a greater influence on the likelihood.
The importance αB of the background model has been selected manually.

The training of the model requires collecting texture and colour histograms
for each limb. This is done by letting the human in front of the camera take
a known pose, which allows us to collect the histograms from the first frame.
The known starting pose also provides us with an initial state for the motion
analysis.



5 Discussion

In the previous sections two different motion analysis systems have been de-
scribed: one working on full-pose space and one working in end-effector space.
Both use the same measurement system and their prediction systems are as
similar as possible. This enables a comparison of the two trackers. It should be
noted that the visual measurements are by far the computationally most expen-
sive part of the tracking. Since each particle requires one visual measurement,
the number of particles is proportional to the final computational time.

Fig. 4 shows selected frames from an image sequence with tracking results
superimposed.1 The result is computed as the mean of all particles, as this seems
to stabilise the estimate when only few particles are used. First, we tracked the
motion in full-pose space using 100 particles. Here the system quickly looses track
of one arm and produces a large amount of “jitter” in the motion estimation.
The computations took approximately five minutes on standard PC hardware.
We then increased the number of particles to 5000, which resulted in a successful
tracking with only little jitter. Unfortunately, this required more than 10 hours
of computation time. As a final experiment we ran the tracking in end-effector
space using 25 particles. The result of this experiment is a successful tracking
that is comparable in quality with the previous experiment, but with somewhat
more jitter. This jitter is a direct consequence of the small amount of particles.
If this is increased the jittering decreases. The computations took approximately
five minutes.

The results show that tracking in end-effector space is possible and that large
speed-ups can be achieved using this approach. When creating a tracker for use
in a physiotherapeutic rehabilitation programme it is essential to have real-time
performance in order to provide feedback to the patient. Tracking in end-effector
space makes this requirement more plausible compared to tracking in full-pose
space.

Tracking in end-effector space does provide speed-ups while it still allows
for a large set of motions. The resulting tracker is thus more versatile than low
dimensional trackers that are tuned towards very specific motion types, such as
walking, golf or tennis playing and so forth. However, the tracking will most
often be less precise when it is performed in end-effector space. When infering
the full pose from the end-effectors, the inverse kinematics solver finds one out
of several minima. Hence, a particle can get a low weight even if it is in the
correct part of end-effector space due to limitations of the inverse kinematics
solver. This problem will result in a loss of accuracy.

The choice of state space basically boils down to a choice between accuracy,
versatility and speed. Tracking in full-pose space allows for a high accuracy
and versatility, but sacrifices speed. By learning manifolds in full-pose space it is
possible to track on these. This allows for high accuracy and speed, but sacrifices
versatility as the manifolds can only describe single types of motion. Tracking in

1 The sequences are available on-line at http://humim.org/emmcvpr2009/.



Full-Pose Full-Pose End-Effector
100 particles 5000 particles 25 particles

Fig. 4. Images from tracking sessions. The first column corresponds to tracking using
100 particles in full-pose space and the second column corresponds to 5000 particles
in the same space. The third column corresponds to 25 particles in end-effector space.
The rows correspond to the 32nd, 94th, 126th and the 196th frame of the sequence.



end-effector space allows for great versatility and speed, but comes with a loss
of accuracy.

6 Conclusion and Future Work

In this paper we presented a low dimensional state space — the end-effector
space — suitable for fast and versatile human motion estimation. Experiments
with tracking in this space shows that good results can be achieved using only
few particles. Due to the use of an inverse kinematics solver the approach can be
expected to have less accuracy than when working in full-pose space, but makes
real-time tracking of humans feasible.

In the immediate future we plan on improving the measurement model such
that it can handle self-occlusions. The work of Sidenbladh and Black [19] and
Roth et. al. [20] seems like good sources of inspiration. Also, a more detailed ex-
perimental validation will be performed. Specifically, we will validate our method
on the ground truth data set of Knossow et.al. [21] and compare with their
method, which should allow us to quantitatively evaluate the accuracy of our
approach.
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