
GPU Accelerated Likelihoods for Stereo-Based
Articulated Tracking

Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

{runef, hauberg, kenny}@diku.dk,
The eScience Centre, Dept. of Computer Science, University of Copenhagen

Abstract. For many years articulated tracking has been an active re-
search topic in the computer vision community. While working solutions
have been suggested, computational time is still problematic. We present
a GPU implementation of a ray-casting based likelihood model that is
orders of magnitude faster than a traditional CPU implementation. We
explain the non-intuitive steps required to attain an optimized GPU im-
plementation, where the dominant part is to hide the memory latency ef-
fectively. Benchmarks show that computations which previously required
several minutes, are now performed in few seconds.

Keywords CUDA · GPU Computing · Articulated Tracking · Particle Filtering

Fig. 1. The type of articulated tracking for which we achieve a speed up factor of up
to 600 when using a GPU optimization. The images show stereo points with a super
imposed illustration of the skin model.

1 The Computational Problem of Articulated Tracking

Three dimensional articulated human motion tracking is the process of estimat-
ing the configuration of body parts over time from sensor input [1]. One approach
to this estimation is to use motion capture equipment where e.g. electromagnetic
markers are attached to the body and then tracked in three dimensions. While
this approach gives accurate results, it is intrusive and cannot be used outside
laboratory settings. Alternatively, computer vision systems can be used for non-
intrusive analysis such as the one shown in Figure 1. One standard approach

2 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

is to use a particle filter [2] for finding a sequence of poses that match the ob-
served data well. From a practical point of view this means making many random
guesses of the current pose and comparing these to the observed data. In terms
of performance, the critical part is comparing each guess to the data. In this
paper, we present a GPU-based solution to this problem and show a substantial
increase in performance compared to a CPU-based implementation. Such perfor-
mance increases are essential in allowing us to build proper generative likelihood
models, that otherwise would be impractical.

Before dwelling into the details of this work, we briefly describe in Section 2
the general particle filter based framework for articulated tracking that forms
the foundation for this work. Next we consider related work in Section 3 and in
Section 4 we describe the likelihood model for our work. We focus on using the
GPU in Section 5 and results can be found in Section 6 before we conclude in
Section 7.

2 Particle Filtering for Articulated Tracking

The objective of articulated human tracking is to estimate the position and ori-
entation of each limb in the human body. This, as such, requires a representation
of the human body. The most common choice [1] is the kinematic skeleton which
is a collection of rigid bones organised in a tree structure (see Fig. 2(a)). Each
bone can be rotated at the point of connection between the bone and its parent.
We will refer to such a connection point as a joint.

(a) (b)

Fig. 2. (a) A rendering of the kinematic skeleton. Each bone position is computed by
a rotation and a translation relative to its parent. The joints are drawn as circles. (b)
A rendering of the skin model.

We model the bones as having known constant length (i.e. rigid), so the
direction of each bone constitute the only degrees of freedom in the kinematic
skeleton. The direction in each joint can be parametrised with a vector of angles,
noticing that different joints may have different number of degrees of freedom.
We may collect all joint angle vectors into one large vector θt representing all
joint angles in the model. The objective of the tracking system then becomes to
estimate this vector at each time step.

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 3

At the heart of our articulated tracker is the well-known particle filter [2],
which we will briefly describe here. The particle filter is, in general, concerned
with estimating an unobserved state of a system from observations. In terms of
articulated tracking it is concerned with estimating the pose θt at each frame in
a video sequence. In terms of statistics, we seek p(θt|X1:t), where the subscript
denotes time and X1:t = {X1, . . . ,Xt} denotes all observations seen at time t.
This distribution is crudely represented as a set of samples that are propagated
through time by sampling from p(θt|θt−1). Each sample θ(j)t is assigned a weight
according to its likelihood p(Xt|θ(j)t). Thus, at each time step t we compute

for j = 1 to J do
Sample θ(j)t from p(θt|θ(j)t−1) ;

wj ← p(Xt|θ(j)t) ;
end for

Usually it is computationally cheap to sample from p(θt|θ(j)t−1), whereas it is
expensive to evaluate the likelihood p(Xt|θ(j)t). It is worth noting that the loop
can be executed in parallel as each sample is treated completely independent.

Once we have drawn new samples and assigned them weights, we can estimate
the current pose as the mean value of p(θt|X1:t). This can be approximated as

θ̄t ≈
J∑

j=1

wj∑J
l=1 wl

θ
(j)
t . (1)

3 Related Work on Computational Tracking

Most work in the articulated tracking literature falls in two categories. Either the
focus is on improving the image likelihoods or on improving the predictions. Due
to space constraints, we forgo a review of various predictive models as this paper
is focused on computational efficient likelihoods. For an overview of predictive
models, see the review paper by Poppe [1].

Most publications on likelihood models for articulated tracking are concerned
with finding descriptive image features. Sminchisescu and Triggs [3] showed suc-
cessful tracking using a combination of edge strength and horizontal flow in a
monocular setup. This approach is, however, bound to have difficulties due to
only having one viewpoint. One solution is to use multiple calibrated cameras
as, amongst others, was done by Deutscher et. al. [4] who used a combination of
edge strength and background subtraction. Due to the difficulties of calibration,
such approaches are, however, hard to use in non-laboratory settings. A possible
compromise is to use a pre-calibrated stereo camera as was done by Hauberg et.
al. [5]. Their solution did, however, not cope with limbs occluding each other.

While much work has gone into developing functional likelihood models, not
much has been published on efficient implementations on GPU hardware. Ex-
ceptions include the work of Bandouch et. al. [6] that use a simple colour based
appearance model in a multiple camera setup. By representing pixel colours as

4 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

bitmasks they are able to make likelihood evaluations using only bitwise oper-
ations that can be efficiently implemented on the GPU. Cabido et. al. [7] use
a combination of background subtraction along with binary template matching
for a planar low-dimensional articulated model. They rephrase the entire opti-
misation as an application of textures on the GPU and as such get very high
frame rates.

4 Our Likelihood Model

In this section we define the likelihood model p(Xt|θt) used in this paper. We
use an off-the-shelf consumer stereo camera1, which provides us with a set of
points in 3D at each time step. We, thus, have Xt = {x1,t, . . . ,xI,t}, where I
denotes the number of points and each xi,t ∈ R3.

We will assume that each point generated by the stereo camera is independent
and is normally distributed around the skin of the pose. Thus, we have

p(Xt|θ(j)t) ∝
I∏

i=1

exp

(
−d

2
i (θ

(j)
t)

2σ2

)
, (2)

where d2i (θ
(j)
t) denotes the square Euclidean distance between the ith stereo

point and the skin of the pose parametrised by θ(j)t . For numerical stability [2]
we implement the particle filter on a logarithmic scale and as such only need to
compute

log p(Xt|θ(j)t) = − 1

2σ2

I∑
i=1

d2i (θ
(j)
t) + constant , (3)

where the constant term can be ignored. For this definition to be complete, we
need a definition of the skin model and a suitable metric.

For the skin of the jth sample we will use a collection of capsules Cj =
{cj1, . . . , c

j
K}. Specifically, we assign a capsule to each bone in the kinematic

skeleton, such that the capsule is aligned with the bone. The radius of the capsule
depends on the bone. We then define the skin of the skeleton as the union of
these capsules. This gives us skins such as the one in Fig. 2(b). This model is
very similar to the common model (see e.g. [8, 9]) where a cylinder is assigned
to each bone. Here, we use capsules for mathematical convenience.

To compute the distance between a point and the skin, we compute the
distance from the point to each capsule and pick the smallest, i.e.

d2i (θ
(j)
t) = min

k
d2(xi,t, c

j
k) , (4)

where d2(xi,t, c
j
k) denotes the square distance from the ith stereo point to the kth

capsule of the jth sample. We will define this distance in terms of ray casting in

1 http://www.ptgrey.com/products/bumblebee2/

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 5

the following. To avoid notational clutter, we will omit the time subscript from
our notation in the rest of the paper.

Let the capsule cjk be defined by the two bone end points a ∈ R3 and b ∈ R3

and the radius r ∈ R+. Consider the stereo point xi. This is a point seen by
the camera. Thus, xi must lie on a ray starting at the camera origin p ∈ R3

and casting in the direction of v = xi−p
‖xi−p‖ . We can therefore think of xi as a

function of the ray length parameter ∆. That is, we have the ray definition

xi(∆) = p+ v∆ ∀∆ ≥ 0 . (5)

From this definition we may define a measure indicating how well a given stereo
point xi fits with a given capsule. Let ∆ be the ray length of the stereo point
and let ∆min be the shortest ray length corresponding to an intersection point
between the ray and the capsules then intuitively a distance measure may be
taken as |∆−∆min|. This corresponds to rendering a depth map of the capsules,
and computing the absolute difference between this and the depth map from the
stereo camera.

Since stereo data contains outliers, both from other objects appearing in the
scene and from false matches, we need a robust metric. Here we simply truncate
the distance if it exceeds a given threshold

d(xi, c
j
k) =

{
|∆min −∆| if ∆min exists and |∆min −∆| ≤ τ .
τ otherwise.

(6)

For this metric to be computable, we need to be able to determine if a given
ray intersects the capsules and if so compute the distance ∆min. The details of
ray capsule intersection can be found in Appendix A. It is worth noting that the
basic model works for all skin models, though ray casting details will have to be
adapted.

5 Optimizing for the GPU

The algorithm presented in this paper achieves a major speedup when imple-
mented on the GPU. However, it requires careful planning in designing for the
massive parallelism in the GPU architecture. The first problem to be addressed
is how to block data and computations most efficiently with respect to perfor-
mance. The task is to minimize data communication and maximize the amount
of computations done by one block of threads. Our targeted GPU architectures
are the CUDA enabled Nvidia GPUs with compute capability from 1.1 to 1.3.

For our current applications we typically use in the order of I ≈ 50000 stereo
points, K ≈ 40 capsules and J ≈ 2000 samples. One simple approach would be
to create a 3D float array of dimension J×K×I where entry (j, k, i) would hold
the value of d(xi, c

j
k). This would result in a naive data parallel computation

where each thread would compute a single distance measurement. However, such
an array would require 2000× 40× 50000× 4 bytes ≈ 16 Gigabytes of memory.

6 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

This clearly exceeds the maximum available device memory, so some tiling must
be applied to our problem.

Thus, we create a grid of thread blocks in such a way that each thread
block corresponds to one sample and one tile of stereo points and we launch a
measure kernel on this grid. During execution the measure kernel will loop over
samples in consecutive launches to avoid kernel time-outs. Additionally, support
for multiple GPU devices is performed by dividing the samples into one chunk
for each GPU. If multiple GPUs are available the same number of CPU worker
threads is created and then given a GPU to control. The overhead of launching
CPU threads is small and the effect will only be visible for small problem sizes
which are not the target for this paper. This orchestration results in the grid
setup illustrated in Figure 3. Using this approach we will have an intermediate
2D result array A consisting of J × POINTS_TILES computed measurements,
where POINT_TILES is set to I

POINTS_PER_BLOCK . The number of threads
in each block is identical to POINTS_PER_BLOCK, thus this value is tuned
to achieve the best occupancy for a given GPU.

Fig. 3. Illustration of the grid layout and kernel launches for a single GPU. A se-
quence of measure kernel launches is executed: one for each tile of samples where SAM-
PLE_TILES = SAMPLES_PER_GPU/SAMPLES_PER_KERNEL. Only a single
reduction kernel is launched prior to returning to the CPU thread handling the GPU.

Subsequently we will launch a partial sum reduction kernel. We execute the
reduction kernel on a grid where each thread block corresponds with one sample.
The kernel performs partial sum reduction on the result array A to produce
the final measurement set M. The jth component in set M holds the final
measurement value of the jth sample. Observe that partial sum reduction is a
well studied problem on the GPU and we will therefore not treat it further in this
paper. The NVIDIA CUDA SDK version 3.0 contains a sample with code [10]
and the next release of CUDPP will also contain sum reduction [11].

To perform the entire computation on the GPU we need to transfer the
stereo points X and the capsules {Cj}Jj=1 to the GPU device and then read

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 7

back the set M from the GPU device. We also need to setup the intermediate
storage A. Since each capsule takes 7 floats to store and each stereo point 3
floats the total memory requirements on device memory is for our typical use:
7JK + 3I + J POINT_TILES + I ≈ 3 Megabytes. This is far from our upper
bound on global memory of 256 Megabytes and means that we can keep all
points, capsules and measurements in device memory during execution.

The problem that we have specified is memory bound, since it traverses
the set of capsules {Cj}Jj=1 for every stereo point in X while the computation
does not outweigh the latency of the memory. It is essential that we hide this
memory latency. The GPU is perfect for doing exactly this, if enough thread
blocks are active and the memory operations are handled with care. For optimal
performance it will be necessary to keep data aligned in host memory and ensure
coalesced access to host memory by using the 16 Kb shared memory available in
each SM (streaming multiprocessor)2. Seven threads are used to fetch the data of
one capsule (7 floats). In Figure 4 and Listing 1.1 we show how the stereo point
data, consisting of the coordinates x, y, and z for a single point, are handled in
a similar manner, where every set of three threads is working together to fetch
one stereo point (3 floats).

/∗ blockDim . x = POINTS_PER_BLOCK ∗/
__shared__ f l o a t Xds [3] [blockDim . x] ;
s i z e_t i = threadIdx . x ;
s i ze_t t o t a l = blockDim . x∗3u ;
s i ze_t o f f s e t = blockDim . x∗blockIdx . y∗3u ;
f o r (s i ze_t i i = i ; i i < t o t a l ; i i += blockDim . x)

Xds [i i %3][i i /3] = Xd[o f f s e t+i i] ;

Listing 1.1. All threads in a warp of 32 threads will request data from aligned
neighboring addresses in device memory, Xd. This results in two coalesced
memory requests of maximum size (64 bytes). The data is then copied to shared
memory and organized as illustrated in Figure 4, to avoid bank conflicts.

Fig. 4. Ensuring coalesced memory transfers when transferring stereo points from GPU
device memory to shared memory. Data is fetched in blocks of 16 and thus aligned in
host memory.

2 The Nvidia Fermi architecture has 64 Kb of cache / shared memory reserved for
each SM.

8 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

The reason for orchestrating the arrays coordinate-wise in shared memory is
to avoid bank conflicts [12]. The GPU is a SIMT (single instruction, multiple
thread) architecture and executes in an SM one instruction for a warp of 32
threads. When the 32 threads access a shared memory address, it is crucial
that they balance the requests onto all 16 banks. Since the shared memory is
organized in a round-robin fashion to the 16 banks, we can make sure that we
access neighbouring addresses.

When the GPU executes branch instructions all threads in a warp (32 threads)
follow the same branch. This means that if some threads in a warp follow one
branch and others follow another branch, all threads must visit both branches
and the instruction count goes up. With this in mind we have worked to minimize
the number of divergent branches, and where we knew there would be divergent
branches, conditional expressions were preferred instead, since both expressions
would be evaluated anyway.

The resulting measure kernel uses 24 registers, which means that we can run
up to 320 threads on devices with compute capability 1.1 or 1.2 (8192 registers)
and 640 threads on devices with compute capability 1.3 (16384 registers). 24
registers is not low enough to completely hide the memory latency, but to go
lower would require to split the measure kernel into multiple kernels which could
each use less registers. This task would require a huge temporary data set in
device memory and thus we concluded that 24 registers is the best we can do. The
block size used for the benchmarks in Section 6 is chosen so that the maximum
number of active blocks is 8 and can go to either 320 or 640 active threads.

6 Two Orders of Magnitude Speedup

To benchmark the implementation, it was run on the three systems listed in Table
1. For every benchmark, a sequential CPU implementation was also executed and
the result values compared for correctness. We varied the number of stereo points
and the number of samples to see how well the solution scales for up to 43000
stereo points and 3500 samples. The number of capsules was constant at 48. The
current GPU implementation is only limited by the maximum grid sizes and
the shared memory, thus it actually supports up to 4.194.240 stereo points and
65535 samples of 64 capsules, which can all fit inside 256Mb device memory.

Table 1. Benchmark systems

System 1 System 2 System 3
Intel Core 2 Quad @ 2.4Ghz Intel Core 2 Duo @ 2.33Ghz Intel Core 2 Duo @ 2.4Ghz
4Gb DDR2 800Mhz 4Gb DDR2 800Mhz 2Gb DDR2 667Mhz
Nvidia C1060 Tesla 4Gb 2 * Nvidia 9800GX2 1Gb Nvidia 8600M GT 256Mb
Compute cap. 1.3 Compute cap. 1.1 Compute cap. 1.1
240 cores @ 1.30Ghz 512 cores @ 1.50Ghz 32 cores @ 0.94Ghz

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 9

When comparing the performance of the two 9800GX2 with the C1060, no-
tice that one 9800GX2 actually consists of 2 GPUs with hardware similar to a
8800GTX. This means that we are comparing a system with a total of 4 GPUs
with a system with 1 GPU, which gives a disadvantage to the system with 4
GPUs, since the benchmark results include the overhead of handling 4 threads.
The plots in Figure 5 clearly shows that the GPU implementation scales linearly
with an increasing number of stereo points or samples for both systems. The
effect of handling the extra threads can be seen for the smaller problems and we
expect that the C1060 will be fastest for small problems. For the largest prob-
lem the two 9800GX2 are 2.1 times faster than the C1060, but theoretically two
9800GX2 can actually execute 2.46 times more FLOPS than one C1060. The
two 9800GX2 are also more capable at hiding the memory latency, since they
can have 4 times 320 active threads, while the C1060 is limited to 512 active
threads for our implementation. System 3 was not included in these plots, since
the benchmark results was around 20 times slower.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5000 10000 15000 20000 25000 30000 35000 40000 45000

Ti
m

e
(m

illi
se

co
nd

s)

Stereo points

Nvidia 2x9800GX2
Nvidia Tesla C1060

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

illi
se

co
nd

s)

Samples

Nvidia 2x9800GX2
Nvidia Tesla C1060

Fig. 5. Plots showing linear scaling for increasing number of stereo points or samples.
The number of capsules is kept constant at 48.

The speedup plot in Figure 6 is created using the CPU implementation in
Listing 1.2 as the reference. We have used the same input data set for the CPU
and the GPU benchmarks. The measurement function used in the CPU imple-
mentation (Listing 1.2) is identical to the measurement function used in the GPU
implementation (Listing 1.3), but the invocation of the measurement function in
listing 1.2 is purely sequential and thus only utilize one core. Since the problem
is memory bound, the one thread will have to wait on memory. We expect that
an optimized CPU implementation could execute twice as fast, compared to the
reference CPU implementation. On the GPU the memory latency has been suc-
cessfully hidden, which becomes apparent when looking at the speedup numbers
in Figure 6.

10 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

f o r (s i ze_t j = 0 ; j < J ; ++j)
{
M[j] = 0 .0 f ;
f o r (s i ze_t i = 0 ; i < I ; ++i)
{

s i ze_t const i i = i ∗3u ;
f l o a t 3 const x_i = make_float3 (X[i i] ,X[i i +1] ,X[i i +2]) ;
f l o a t va lue = MAX_DISTANCE;
f o r (s i ze_t k = 0u ; k < K; ++k)
{

s i ze_t const kk = (j ∗K + k) ∗7u ;
f l o a t 3 const a = make_float3 (C[kk] , C[kk+1] , C[kk+2]) ;
f l o a t 3 const b = make_float3 (C[kk+4] ,C[kk+5] , C[kk+6]) ;
f l o a t const r = C[kk+3] ;
va lue = min (measurement (x_i , r , a , b) , va lue) ;

}
M[j] += value ;

}
}

Listing 1.2. The CPU implementation used for benchmarking. This code is
executed in a single thread for the CPU.

/∗ Extracted from the body o f the measurement_kernel ∗/
f l o a t 3 const x_i=make_float3 (Xds [0] [i] , Xds [1] [i] , Xds [2] [i]) ;
f l o a t va lue = Ads [i] ;
f o r (s i ze_t k = 0u ; k<K; ++k)
{

f l o a t 3 const a = make_float3 (Cds [0] [k] , Cds [1] [k] , Cds [2] [k]) ;
f l o a t 3 const b = make_float3 (Cds [4] [k] , Cds [5] [k] , Cds [6] [k]) ;
f l o a t const r = Cds [3] [k] ;
va lue = min (value , measurement (x_i , r , a , b)) ;

}
Ads [i] = value ;

Listing 1.3. The GPU implementation, which computes results identical (apart
from rounding differences) to the CPU implementation in Listing 1.2. This code
is executed in J ∗ I threads for the GPU.

The 8600M GT achieves a stable speedup of ≈ 20, while the others increase
in speedup until reaching their maximum stage. The increase in speedup is ex-
plained by the overhead of running many kernels. For these benchmarks a kernel
was called for every 8 samples, thus the overhead of calling a kernel takes up a
larger proportion when the problem size is small and the GPUs are fast.

The fact that we see a correlation in Figure 6 between the speedup of the
GPUs and with the GPU hardware specifications, means that we can conclude
that the GPU implementation has succeeded to utilize the GPUs efficiently.

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 11

 0

 100

 200

 300

 400

 500

 600

6144,500

12288,1000

18432,1500

24576,2000

30720,2500

36864,3000

43008,3500

Sp
ee

du
p

Data size: Stereo points, Samples

Nvidia 8600M GT
Nvidia Tesla C1060
Nvidia 2x9800GX2

Fig. 6. The speedup achieved when computing a data set of the specified size on a
GPU vs. the CPU. The number of capsules is kept constant at 48.

7 Conclusions and Future Work

In this work we have presented a tiling approach that results in a very efficient
GPU acceleration of the measurement process for articulated tracking with a
particle filter. The main causes to our two orders of magnitude speedup factor
lies in careful hiding memory latencies from device memory and avoiding memory
bank conflicts in the shared memory. We not only gain from the raw processing
power of the GPU, but also from its alternative memory layout.

Our future work involves benchmarking on small scale GPU clusters as this
may further interactive markerless computer vision based articulated tracking.
Besides this, the sampling process of the particle filter is currently implemented
in a naive consumer-producer scheme using a single CPU thread for each sample.
This appears to be the next performance bottleneck that we will investigate.

References

1. Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision
and Image Understanding 108 (2007) 4–18

2. Cappé, O., Godsill, S.J., Moulines, E.: An overview of existing methods and recent
advances in sequential Monte Carlo. Proceedings of the IEEE 95 (2007) 899–924

3. Sminchisescu, C., Triggs, B.: Kinematic Jump Processes for Monocular 3D Human
Tracking. In: In IEEE International Conference on Computer Vision and Pattern
Recognition. (2003) 69–76

4. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed
particle filtering. In: cvpr, Published by the IEEE Computer Society (2000) 2126

12 Rune Møllegaard Friborg, Søren Hauberg, and Kenny Erleben

5. Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articu-
lated tracking. In: Proceedings of ECCV’10. Lecture Notes in Computer Science,
Springer (2010)

6. Bandouch, J., Beetz, M.: Tracking Humans Interacting with the Environment
Using Efficient Hierarchical Sampling and Layered Observation Models, IEEE Int.
Workshop on Human-Computer Interaction (HCI) (2009)

7. Cabido, R., Concha, D., Pantrigo, J.J., Montemayor, A.S.: High Speed Articulated
Object Tracking Using GPUs: A Particle Filter Approach. In: 2009 10th Interna-
tional Symposium on Pervasive Systems, Algorithms, and Networks, IEEE (2009)
757–762

8. Rohr, K.: Towards model-based recognition of human movements in image se-
quences. CVGIP-Image Understanding 59 (1994) 94–115

9. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3d human figures
using 2d image motion. In: Proceedings of ECCV’00. Volume II of Lecture Notes
in Computer Science 1843., Springer (2000) 702–718

10. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu comput-
ing. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, Aire-la-Ville, Switzerland, Eurographics Association (2007)
97–106

11. CUDPP: Cuda data parallel primitives library. Accessed Online April (2010)
http://code.google.com/p/cudpp/.

12. NVIDIA Corporation: NVIDIA CUDA Best Practices Guide. (2010) version 3.0.

A Computing the Ray–Capsule Intersection Point

To find the intersection between the ray and the capsule we first consider the
situation with an infinitely long capsule. Here we can find the point of intersection
by first finding the point yi on the line through a and b that is closest to the
ray xi(∆). By orthogonal projection we find this as

yi = a+
(

(xi(∆)− a)
T
c
)
c (7)

where we have defined c = b−a
‖b−a‖ .

At the point of intersection between the ray and the infinite capsule we must
have

‖ xi(∆)− yi ‖2= r2 . (8)

Inserting the ray definition from Eq. 5 gives us

r2 =‖ p+ v∆− yi ‖2=‖ v⊥∆+ p⊥ ‖2 , (9)

where P =
(
I− ccT

)
and v⊥ = Pv and p⊥ = P (p− a). This is readily identi-

fied as a second order polynomial in ∆

Pc(∆) = vT⊥v⊥∆
2 + 2vT⊥p⊥∆+ pT⊥p⊥ − r2 = 0 . (10)

If no roots to this polynomial exist then the ray does not intersect the infinite
long capsule. Otherwise we solve for the minimum positive root ∆cap which will
give us the intersection point on the infinite long capsule.

GPU Accelerated Likelihoods for Stereo-Based Articulated Tracking 13

In practice, the skeleton model does not have infinite long limbs and as such
we do not have infinite long capsules. The above approach thus needs to be
modified to cope with finite capsules. In the case where 0 ≤ cT (y − a) ≤ 1
the above analysis still holds. In all other cases we only need to see if the ray
intersects with the spheres of radius r centred in a and b. If the ray intersects
the sphere centred in a, we must have

‖ xi(∆)− a ‖2= r2 . (11)

Once again, this gives as a second order polynomial

Pa(∆) = vTv∆2 + 2vT (p− a)∆+ (p− a)
T

(p− a)− r2 = 0 . (12)

If this polynomial has no roots then the ray does not intersect the sphere centred
in a. If it does have roots, we find the intersection from the smallest positive
root. A similar treatment can be given to the sphere centred in b.

Thus, the ray intersection algorithm will solve three second order polynomials
Pa(∆), Pb(∆), and Pc(∆) and use some if -statements that will determine select
the proper smallest positive root as the ray intersection length.

