
Grassmann Averages for Scalable Robust PCA
— Supplementary Material —

Søren Hauberg
DTU Compute∗

Lyngby, Denmark
sohau@dtu.dk

Aasa Feragen
DIKU and MPIs Tübingen∗

Denmark and Germany
aasa@diku.dk

Michael J. Black
MPI for Intelligent Systems

Tübingen, Germany
black@tue.mpg.de

A. Overview
This document contains the supplementary material for

Grassmann Averages for Scalable Robust PCA [4]. Here we
provide

• pseudo-code for the different algorithms (Sec. B);
• a proof of convergence (Sec. C);
• a more detailed look at the impact of the trimming

parameter in TGA (Sec. D);
• some thoughts on statistical efficiency in the context of

Fig. 6 in the paper (Sec. E);
• an empirical verification of Theorem 2 stating that the

Grassmann Average conincides with PCA for Gaussian
data (Sec. F);

• an empirical study of the influence of outliers when the
inliers are Gaussian (Sec. G);

• an investigation on the impact of robustness in projec-
tions (Sec. H);

• some notes on the comparison with Inexact ALM [2,
10] (Sec. I);

• a brief discussion of the use of extrinsic averages
(Sec. J); and

• the images of the 20 leading components of Star Wars
IV as estimated by EM PCA [9] and TGA (Sec. K).

The supplements further contain video material.

B. Pseudo-Code
In this section we provide pseudo-code for the different

algorithms used in the paper; see Fig. 7. First, we point to
Algorithm 1, which depicts EM PCA. This is very similar to
the Grassmann Average (GA) algorithm, which is depicted
in Algorithm 2. But, the derivation of GA results in an
important difference that translates into the use of a sign

∗This work was performed when the S.H. was at the Perceiving Sys-
tems Dept. at the MPI for Intelligent Systems. A.F. was jointly affiliated
with DIKU, University of Copenhagen and the Machine Learning and
Computational Biology Group, MPI for Intelligent Systems and MPI for
Developmental Biology, Tübingen.

operator in Algorithm 2. It is interesting that this change
already gives improved robustness as shown and derived in
the main paper.

In practice, we further find that the GA algorithm typically
requires substantially fewer iterations to converge than EM
PCA — in our experience this is because EM PCA “zig
zags” around the optimum, which GA avoids as it only has
a discrete set of solutions (it only need to estimate the sign
given to each observation). This also ensure that the exact
optimum is located, which prevents accumulation of errors
when multiple components are estimated.

Algorithm 3 shows the Robust Grassmann Average
(RGA). This is slightly more complicated than the two
previous algorithms, but still only requires a few lines of
code. RGA depends on a function robust mean, which
should be defined on a per-application basis. For most ex-
periments in the paper we use a version of RGA that we
call the Trimmed Grassmann Average (TGA), where the
robust mean simply computes the trimmed mean on a
per-element basis.

C. A Convergence Proof
Here we prove that the Grassmann Average algorithm

converges to a local optima in finite time. Before stating the
result we remind the reader that GA seeks to optimize

arg min
[q]∈Gr(1,D)

N∑
n=1

wndist2Gr(1,D)([un], [q]) (14)

= arg max
q∈SD−1

N∑
n=1

wn

∣∣uT
nq
∣∣ (15)

= arg max
q∈SD−1

N∑
n=1

∣∣xT
nq
∣∣ , (16)

where wn = ‖xn‖.

Theorem 3 Sample the data x1:N from a probability mea-
sure which is absolutely continuous with respect to the

1



Algorithm 1: EM PCA

q0 ← random unit vector
i← 1
while ‖qi − qi−1‖ 6= 0 do
q̃←

∑N
n=1(xT

nqi−1)xn

qi ← q̃
‖q̃‖

i← i+ 1
end while

Algorithm 2: Grassmann Average (GA)

q0 ← random unit vector
i← 1
while ‖qi − qi−1‖ 6= 0 do
q̃←

∑N
n=1 sign(xT

nqi−1)xn

qi ← q̃
‖q̃‖

i← i+ 1
end while

Algorithm 3: Robust Grassmann Average (RGA)

q0 ← random unit vector
i← 1
while ‖qi − qi−1‖ 6= 0 do
x̃n ← sign(xT

nqi−1)xn ∀n
q̃← robust mean(x̃1:N )
qi ← q̃

‖q̃‖
i← i+ 1

end while

Figure 7. Pseudo-code for different algorithms.

Lebesgue measure in RD. With probability 1, the GA al-
gorithm converges to a local optimum of Eq. 16 in finite time.

The proof, while independently developed, follows that of
Kwak [6] and is included only for completeness.

To prove the theorem, we split the statement into two
parts from which the result follows.

Lemma 4 Sample the data x1:N from a probability measure
which is absolutely continuous with respect to the Lebesgue
measure in RD. With probability 1, GA converges in finite
time.

Proof GA iteratively computes the following weighted
mean until convergence:

qi = arg max
‖q‖=1

N∑
n=1

wnu
T
n,iq, (17)

where

un,i = sign(xT
nqi−1)un. (18)

We show that, with probability 1, there exists M ∈ N0

such that qi = qi′ for all i, i′ ≥M , and

max
‖q‖=1

N∑
n=1

wnu
T
n,iq < max

‖q‖=1

N∑
n=1

wnu
T
n,i′q, (19)

whenever i < i′ < M . That is, the value of (17) increases
strictly for steps 1 to (M − 1). In the ith iteration, the set
of points u1:N,i orthogonal to qi−1 has Lebesgue measure
0, so with probability 1, uT

n,iqi−1 6= 0 ∀n. If uT
n,iqi−1 > 0

for all n, then the algorithm has converged and i ≥ M .
Otherwise, there exists some n for which uT

n,iqi−1 < 0 and
it remains to prove that

max
‖q‖=1

N∑
n=1

wnu
T
n,i+1q > max

‖q‖=1

N∑
n=1

wnu
T
n,iq. (20)

In order to see this, note that we have:

N∑
n=1

wnu
T
n,i+1qi >

N∑
n=1

wnu
T
n,iqi (21)

since un,i 6= un,i+1 if and only if uT
n,iqi < 0. Because

uT
n,i+1qi > 0 we must have uT

n,iqi < uT
n,i+1qi. But then,

certainly,

max
‖q‖=1

N∑
n=1

wnu
T
n,i+1q >

N∑
n=1

wnu
T
n,i+1qi (22)

>

N∑
n=1

wnu
T
n,iqi (23)

= max
‖q‖=1

N∑
n=1

wnu
T
n,iq, (24)

which proves (20). The fact that M exists and GA converges
in a finite number of steps follows from the fact that there
are only finitely many ways to change the sign of u1:N , each
giving a fixed value of (17), so there cannot be an infinite
sequence of increasing values. �

Remark 1 The “with probability 1” is a necessary condition.
Pathological examples exist where GA fails, e.g. for x1:N =
{x,−x}, initializing GA with q0 orthogonal to x.

Remark 2 While the algorithm does converge in finite time,
the number of iterations may in theory be very large. The
notion of “finite time” is therefore mostly of theoretical
interest, though in practice the algorithm generally converges
in fewer iterations than e.g. EM PCA.



0 10 20 30 40 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Trimming percentage (%)

M
ea

n
 a

b
so

lu
te

 d
ev

ia
ti

o
n

 

 

Groundhog Day

Pulp Fiction

Figure 8. The mean absolute deviation measured at noisy pixels for
two sequences.

Lemma 5 Under the assumptions of Theorem 3, GA finds a
local optimum of Eq. 16.

Proof Let q denote the point of convergence of GA and let
u1:N denote the representations picked by the algorithm. If
q̃ is any small perturbation of q then, with probability 1,
the algorithm will pick the same representations u1:N when
started from q̃ and the algorithm returns q. �

D. Impact of the Trimming Parameter
Our algorithm only has two parameters – the number of

robust principal components and the amount of trimming to
use. With 0% trimming the algorithm is only as robust as
the original GA algorithm (still more robust than PCA); at
50% we have maximal robustness for this approach.

In Sec. 4.1 of the main paper we perform an experiment
on images where we add approximately 5% noise from Nos-
feratu to scenes from the two contemporary Hollywood
movies Pulp Fiction and Groundhog Day. As we change the
value of the trimming parameter of TGA we will get differ-
ent results. Fig. 8 show the impact. When we trim more than
10–15% we see substantial improvements compared to no
trimming.

E. Statistical Efficiency vs. Robustness
In Sec. 4.4 of the paper we conduct an experiment on ro-

bustness when the outliers appear at the vector-level; Fig. 6
in the paper provides the results. Here it is worth noting that
TGA(25,1) performs better than TGA(50,1) when the num-
ber of outliers is small. It is a well-known [5] that medians
require more observations to give accurate answers than e.g.
a non-robust average, but on the other hand the median is
maximally robust. The trimming parameter, thus, provides a
trade-off between statistical efficiency and robustness. This
is well-known trade-off for robust estimators and it is not

0 2000 4000 6000 8000 10000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of observations (N)

E
x
p
re

ss
ed

 v
ar

ia
n
ce

 

 

0%

6%

11%

17%

22%

28%

33%

39%

44%

50%

Trimming

Figure 9. The expressed variance as a function of the number of
observations N . Here the dimensionality is fixed at D = 100. The
different curves correspond to different levels of trimming.

surprising that the TGA is affected by this as well. One
should, thus, use as low a trimming parameter as the data
allows to get as efficient an estimator as possible; see e.g. [5]
for further discussions on the matter.

Some insight into the efficiency of the TGA estimator can
be gained by studying its behavior on data with no outliers.
Figure 9 show the expressed variance as a function of the
number of observations N and the level of trimming. Here
the dimensionality is fixed at D = 100. In low-sample
scenarios the amount of trimming has a large impact on
the quality of the estimator. As the number of observations
increase, the negative impact of trimming decreases.

In the paper, we consistently trim 50%, i.e. a pixel-wise
median. In some experiments slightly better results can be
attained by trimming less, but we opted for a median to avoid
parameter tuning.

F. Performance on Gaussian Data

Theorem 2 in the main paper says that for Gaussian data,
the expected component as estimated by GA conincides with
the principal component as defined by PCA. The result is,
however, only in expectation and may not hold for finite data
samples. We investigate this empirically by sampling data
from a Gaussian distribution with known covariance, such
that the ground truth principal component can be estimated
through an eigen decomposition. Figure 10 show the ex-
pressed variance as a function of the number of samples for
both EM PCA, GA and TGA with 50% trimming. EM PCA
has slightly better performance compared to GA, which, in
turn, is slightly better than TGA. This is to be expected as
EM PCA directly optimizes to get the principal component.
TGA does slightly worse than GA due to lowered statistical
efficiency, c.f . Sec. E.



0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

Number of observations

E
x
p
re

ss
ed

 V
ar

ia
n
ce

 

 

EM PCA (5 comp)

GA (5 comp)

TGA(50, 5)

Figure 10. Expressed variance as a function of number of samples
from a known Gaussian distribution. The provides results are
for D = 30 dimensional data, and have been averaged over 5
expriments with randomly generated covariance matrices.

G. Performance with Synthetic Outliers
We further measure the performance of the different meth-

ods when the data is Gaussian with added outliers. We gen-
erate a random covariance matrix Σ and sample from the
corresponding Gaussian distribution. We add an increasing
number of outliers to this data, which is sampled from a
Gaussian distribution with a mean placed along the eigen-
vector of Σ with the smallest eigenvalue. This gives a consis-
tent bias away from the principal components of the inliers.
Figure 11 show the experessed variance for an increasing
number of outliers for EM PCA, GA and TGA with 50%
trimming. As expected, the performance of EM PCA quickly
drops, while the performance of GA drops with lower speed.
TGA, on the other hand, is very robust and attains a strong
performance until the number of outliers exceed that of the
inliers.

H. Robust vs. Orthogonal Projections
In the experiments, we estimate robust subspaces with a

basis Q ∈ RD×K , where K is the number of components
and D is the dimensionality of the data space. Data is then
projected into the subspace using orthogonal projection,

P = XQQT , (25)

where X ∈ RN×D is the data matrix. This projection finds
the point P in the subspace that is closest to the original point
X. This is a least-squares optimization problem where Eq. 25
is the solution [1]. As least-squares problems are sensitive to
outliers, it is reasonable to have a robust projection operator.

One such robust projection operator is derived by Black
and Jepson [1] using the Geman-McClure error functions.
This projection operator is then optimized using gradient
descent.

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Outlier percentage (%)

E
x
p
re

ss
ed

 V
ar

ia
n
ce

 

 

EM PCA (5 comp)

GA (5 comp)

TGA(50, 5)

Figure 11. Expressed variance for Gaussian inliers with an increas-
ing number of outliers. The provides results are for D = 30
dimensional data, and have been averaged over 50 expriments with
randomly generated covariance matrices.

We have experimented with the robust operator, and have
found that it generally improves results. First, we consider
a synthetic experiment: we select an increasing number of
random pixels from the Groundhog Day sequence and make
them white, thereby adding consistent outliers. We estimate
a subspace from the noise-free data, and reconstruct the
noisy data by projecting it into the subspace. We consider
both orthogonal and robust projection. We measure the mean
absolute difference between the projection from the noise-
free data and those from noisy data. Figure 12 show that the
robust projection generally performs better than orthogonal
projection.

For non-synthetic examples we observe less of a differ-
ence. To illustrate this, we reconstruct a frame from the
Nosferatu experiment using both orthogonal and robust pro-
jection. The data and results are given in Fig. 13a–c, where
the different projections appear to give nearly identical re-
sults. Minor differences between the methods do appear and
Fig. 13d show the pixels where they disagree. When the
images are represented using 8 bits per pixel (i.e. between 0
and 255), the largest observed absolute difference between
the reconstructions were 1.

As the use of a robust projection only resulted in small
improvements, we opted for the much faster orthogonal
projection throughout the paper. We speculate that the small
difference between robust and orthogonal projection is due
to 1) the fairly small amount of outliers in the images; and
2) the limited range of the outliers, i.e. they have values
between 0 and 255.

I. Notes on the Regualirization of Inexact ALM

The Inexact ALM [2, 10] algorithm relies on a regular-
ization parameter λ, which indrectly controls the rank of the



0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Outlier percentage (%)

M
ea

n
ab

so
lu

te
de

vi
at

io
n

Orthogonal projection
Robust projection

Figure 12. Mean absolute deviation of a reconstruction attained
by different projection operators. Robust projection generally im-
proves results.

(a) Original data (b) Orthogonal projection

(c) Robust projection (d) Thresholded difference
Figure 13. Comparison between orthogonal and robust projection.
(a) The data. (b) The reconstruction of (a) using orthogonal projec-
tion onto a 80 dimensional subspace estimated using the trimmed
Grassmann average. (c) The reconstruction using a robust pro-
jection onto the same subspace. (d) The pixels where the two
reconstructions differ; when pixels are represented using 8 bits (be-
tween 0 and 255), the maximal observed absolute pixel-difference
is 1.

resulting data reconstruction. In all experiments we use the
default setting of this parameter as provides by the reference
implementation. The GA and TGA algorithms, on the other
hand, are given a suitable number of components, which
directly controls the rank of the reconstructed data matrices.
A completely fair comparison between the GA algorithms
and Inexact ALM, should choose λ such that the resulting
data reconstruction has same rank as those provided by the
GA algorithms. We opted against this as we found tuning
of λ to be rather difficult as the relationship between λ and

0 1 2 3 4 5 6

x 10
−3

10
0

10
1

10
2

R
an

k

Regularization strength (λ)

Figure 14. The rank of reconstructed data matrices according to
Inexact ALM as a function of the regularization parameter λ. Note
the logarithmic scale.

the resulting rank was sensitive. Figure 14 show the rank
of reconstructed data matrices as a function of λ (note the
logarithmic scale); here we used the data from Sec. 4.1 in
the paper. As can be seen, the rank grows exponentially fast
with λ until full rank is attained. Combined with the large
running time of Inexact ALM we found the tuning of λ to
be impractical.

J. Extrinsic vs. Intrinsic Averages
In the computation of the Grassmann average we rely

heavily on closed-form computations of spherical averages.
This average is also known as an extrinsic average as it
relies on the Euclidean metric of the ambient space of the
unit sphere. One can argue, that this might not be the best
metric to use on the sphere and that the intrinsic metric,
i.e. the angle between vectors, is more natural. We did
not investigate this further as the computation of averages
under the intrinsic metric is not available in closed-form and
requires non-linear optimization [7, 8].

K. Star Wars
To show the scalability of TGA we have computed the

leading 20 components of the entire Star Wars IV movie on
a desktop computer. To make this practical we work only
with grayscale images and reduced the image resolution to
352× 153.

Fig. 15 shows the average and median images of the
movie. Likewise Fig. 16 shows the 20 leading ordinary prin-
cipal components as computed by EM PCA; and Fig. 17
show the leading 20 components as computed by TGA with
50% trimming. It is interesting to note the the robust compo-
nents appear more focused on specific regions of the images
— in particular close to the center where most of the action



Mean Pixel-wise median
Figure 15. Pixel-wise mean and median of the entire Star Wars IV
movie.

appears. One can also clearly see the effects of outliers in
some of the non-robust components; e.g. in the bottom row
of Fig. 16 far left and right images. It is interesting to note
some similarities between the estimated components and
those attained from analysis of natural images [3].

References
[1] M. J. Black and A. D. Jepson. Eigentracking: Robust

matching and tracking of articulated objects using a
view-based representation. IJCV, 26:63–84, 1998. 4

[2] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust prin-
cipal component analysis? Journal of the Association
for Computing Machinery, 58(3), 2011. 1, 4

[3] P. J. Hancock, R. J. Baddeley, and L. S. Smith. The
principal components of natural images. Network: com-
putation in neural systems, 3(1):61–70, 1992. 6

[4] S. Hauberg, A. Feragen, and M. J. Black. Grassmann
averages for scalable robust pca. In Computer Vision
and Pattern Recognition (CVPR), 2014. 1

[5] P. J. Huber. Robust Statistics. Wiley: New York, 1981.
3

[6] N. Kwak. Principal component analysis based on l1-
norm maximization. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 30(9):1672–1680,
Sept 2008. 2

[7] K. V. Mardia and P. E. Jupp. Directional Statistics.
Wiley, 1999. 5

[8] X. Pennec. Probabilities and statistics on Riemannian
manifolds: Basic tools for geometric measurements. In
Proceedings of Nonlinear Signal and Image Processing,
pages 194–198, 1999. 5

[9] S. T. Roweis. EM algorithms for PCA and SPCA. In
NIPS. MIT Press, 1998. 1

[10] L. W. Z. Lin, M. Chen and Y. Ma. The augmented
lagrange multiplier method for exact recovery of cor-
rupted low-rank matrices. Technical report, UILU-
ENG-09-2215, 2009. 1, 4



Figure 16. The leading 20 principal components of Star Wars IV as computed by EM PCA. The top row contains components 1–4 from left
to right; the second row components 5–8 and so forth.

Figure 17. The leading 20 principal components of Star Wars IV as computed by TGA(50%, 20). The top row contains components 1–4
from left to right; the second row components 5–8 and so forth.


