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1. Proxy Depth: Filling with Temporal Propagation
We compute proxy depth maps in Section 3.2 Regularization: Prior by propagating information over time so as to fill

in those segments where no sparse points are projected. We use video segment volumes from [3] instead of image segments,
thus it is possible to fill in segments without projected points. First, for each segment of a segment volume that has projected
points, we take the median depth from its projected points and fill in that segment with the value. Second, for those segments
of the segment volume without any projected points, we temporally interpolate the values already assigned in the other
segments, only if more than a half of the segments in the segment volume already have the depth values assigned, otherwise
we do not further fill in those segments.

2. Anaglyph
This section is slightly modified from the proceedings version for clarity. We show anaglyph images converted from

estimated depth maps in the supplementary video. An anaglyph image encodes a pair of stereo images using red and cyan
filters.

We compute the anaglyph images by modifying the technique used in [5]. The heuristic for converting a depth video to
disparity maps is normalize( 1

1+normalize(D) )×L, where normalize(·) scales a video · so that its values stay within [0, 1],

D is an estimated depth video, L = b
√
w · h/cc where (w, h) indicates the width and height of the video, and c = 10 except

an outdoor example with a statue on the lawn for which c = 40 is used. We do not temporally regularize the converted
disparity maps. In order to compute normalize(D), we use the minimum and maximum values in the depth video except
depth from [8], in which a few pixels have abnormally higher values than the other pixels thus default normalization produces
overall dark depth images with very little variation that result in flat anaglyph. Instead we normalize the depth from [8] so
that the values greater than or equal to a high percentile (ex. 99th) over the video is scaled to 1.

3. Original Regularization Equations
Here we repeat the original formulation in [5] for depth regularization using our notation.

3.1. Data term

The data term is defined as

Edata(Dt, C
(1...K)
t ) =

∑
x

K∑
k=1

wt(x, k)
[
ρ(Dt(x)−Ψk(C

(k)
t (x)))+

λ
{
ρ(∇xDt(x)−Ψk(∇xC

(k)
t (x))) + ρ(∇yDt(x)−Ψk(∇yC

(k)
t (x)))

} ]
, (1)

where C(k)
t is the kth candidate frame for the query frame at t, ρ(x) =

√
x2 + ε2 (a differentiable approximation to the

L1 penalty; ε = 0.01), Ψk is a warping operator that uses SIFT flow computed between the query video frame and the kth

candidate frame, and λ = 10. Note that Ψk warps gradients of the candidate depth map as well. wt(x, k) is a weight function
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that gives higher importance to pixel x of the kth candidate frame if its value is more reliable. It is determined by comparing
SIFT descriptors and optical flow of the query frame with those of the candidate frame. Then,

wt(x, k) =
1− sig

(∣∣∣ St(x)−Ψk(S(k)t (x))
∣∣∣ , 10, 0.5

)
2

+ αd ·
1− sig

(∣∣∣ ‖ut(x)‖ −Ψk(‖u(k)
t (x)‖)

∣∣∣ , 10, 0.5
)

2
, (2)

where St(x) defines the SIFT feature vector of the query frame at t, and S(k)t (x) defines the SIFT feature vector of the kth

candidate frame at t. ‖ut(x)‖ and ‖u(k)
t (x)‖ are the flow magnitude of the query frame and the kth candidate frame at t,

receptively, and αd = 1. sig(·) is a sigmoid function in Eq. (5) of the main paper.

3.2. Spatial smoothness

The spatial term is defined as Espat(Dt) =∑
x

sxt (x)ρ(∇xDt(x)) + syt (x)ρ(∇yDt(x)), (3)

where ∇xDt and ∇yDt are horizontal and vertical depth gradients, respectively. The weighting functions sxt and syt are
determined by RGB image boundaries, that is,

sxt (x) = 1− sig(|∇xIt(x)|2, 5000, 0.001)

syt (x) = 1− sig(|∇yIt(x)|2, 5000, 0.001), (4)

where It is the query video frame, sig(·) is a sigmoid function above. ρ(x) =
√
x2 + ε2 where ε = 0.01. A median filter is

applied to It before computing gradients.

3.3. Prior

The prior term minimizes the difference between the estimated depth map and the prior image, P , which is an average
depth map over the database,

Eprior =
∑
x

ρ(Dt(x)− P (x)), (5)

where ρ(x) is the same as above.

3.4. Temporal coherence term

This term encourages temporal coherence of the estimated depth maps by using optical flow of the query video. It is
defined as

Etemp(Dt, Dt+1,ut) =
∑
x

stemp
t (x) · ρ(Dt+1(x + ut(x))−Dt(x)), (6)

where ut is optical flow from t to t+ 1 and stemp
t (x) is a weight function, measured by the flow confidence

stemp
t (x) = 1− sig

(∣∣∣ G(It+1(x + ut(x))− It(x), σ)
∣∣∣ , 1000, 0.005

)
(7)

where It and It+1 are the query frames at t and t+ 1, respectively, and G is a Gaussian filter (σ = 1). Again, ρ(x) and sig(·)
are the same as above.

4. Optimization
In this section we show how to optimize our modified objective equation. In the original method, Eq. (4) in the main paper

is solved by using iteratively reweighted least squares (IRLS). We take the similar approach by deriving an IRLS solution for
each term. We alternately solve for depth D and the scale variable a.

We derive IRLS solutions for Eqs. (7) and (8) in the main paper. This can be applied similarly to other terms. Our prior
term Eq. (7) in the main paper over all frames is∑

t

∑
x

spxy
t (x) · ρ(a ·Dt(x)− Pt(x)), (8)



where Pt is a proxy depth map, and spxy
t is a binary weight mask, which is set to 1 if Pt is valid at that pixel, 0 otherwise.

Our temporal term in Eq (8) of the main paper over all frames is

T−1∑
t=1

∑
x

stemp
t (x) · ρ(St+1(x + ut(x), Rt+1, θ) ·Dt+1(x + ut(x)) · a− St(x, Rt, θ) ·Dt(x) · a+ ot(ct, ct+1)), (9)

where T is the number of frames, ut is optical flow from t to t + 1, St is a scale function in terms of a camera rotation Rt

at t and intrinsic parameters θ. An offset ot is in terms of the 3D camera positions ct+1 at t+ 1 and ct at t, a is an unknown
scale variable, and the weight function stemp

t (x) is in Eq. (7).

Eq. (7) of the main paper. We define N = M · T where M as the number of pixels at each image and T is the number of
frames. We then define vectorized variables over the video volume as follows: D is a N -vector of the depth maps D1···T , P
is a N -vector of the proxy depth maps P1···T , and spxy is a N -vector of the weight maps spxy

1···T . We differentiate Eq. (7) in
the main paper with respect to depth and set it equal to zero:

N∑
p=1

spxy
p ·

d

dDp
ρ(aDp −Pp) · a · (aDp −Pp) = 0, (10)

where vp indicates the element of vector v at pixel index p. Its IRLS solution is

D(i+1) = (a2V(i))+(aV(i)P), V(i) = diag (spxy) · diag
(
d

dD
ρ(aD(i) −P)

)
, (11)

where diag(·) an operator that produces a diagonal matrix from a given vector, (·)+ is the pseudoinverse, and D(i) is the
inferred depth at iteration i.

Eq. (8) of the main paper. Again, N is the number of pixels in the full video volume. We then define that D is a N -vector
of the depth maps D1···T , O is a N -vector for which column-wise combines M -vector of the camera offset ot at t over T − 1
frames (zero vector at T ), and stemp be a N -vector of the flow confidence maps stemp

1···T−1 (zero vector at T ). We define Gts as
an N × N linear operator, that returns the difference between two corresponding pixels at x and x + ut from t and t + 1,
respectively, where the values of the two pixel are scaled by the scale function values St(x) and St+1(x + ut). By applying
similar derivation above, we have the IRLS solution

D(i+1) = (a2GT
tsW

(i)Gts)
+(−aGT

tsW
(i)O), W(i) = diag

(
stemp) · diag( d

dD
ρ(aGtsD

(i) + O)

)
, (12)

where diag(·) an operator that produces a diagonal matrix from a given vector, (·)+ is the pseudoinverse, and D(i) is the
inferred depth at iteration i.

Alternaing between D and a. The unknown factor a is a single constant over the system. We first initialize it as 1, and
after each iteration i we use the estimated depth D(i+1) to solve Eq. (7) + Eq. (8) of the main paper for a. The solution is

a = (D(i+1)TV(i)P−D(i+1)TGT
tsW

(i)O)/(D(i+1)TV(i)D(i+1) + D(i+1)TGT
tsW

(i)GtsD
(i+1)). (13)

We alternate this 20 times.

5. More Examples
Figures 1-6 illustrate representative examples from the NYU RGB-D test cases, and Figures 7-12 illustrate representative

examples from the SUN3D test cases. These results are also shown in the video. Experiments on outdoor footage and non-
rigid scenes with camera motion are shown in the video. The outdoor videos are taken from [8] (no ground truth depth data
available). Our method performs reasonably well on these challenging examples, which captures the overall scene structure
and strong surface discontinuities between objects consistently.



Here we report evaluation on the fully-metric method [8] ([32] in the main paper) that recovers consistent dense depth
maps from a video sequence. Unlike ours or Depth Transfer this method is not example-based but formulate in terms of
structure from motion and multi-vew stereo methods. It optimizes a metric energy based on photo consistency and geometric
coherence. The authors only provide with a GUI based executable that only supports manual user interaction, therefore we
had to apply this method to a subset of the SUN3D tests cases (7 scenes, 7 clips in total, 30 frames for each clip) and a subset
of NYU RGB-D test cases (9 scenes, 12 clips in total, 30 frames for each clip). We gave the same input frames that were
used for SfM reconstruction with VisualSFM. Numerical errors measured over theses examples are shown in Tables 1 and 2.
We found that their method performs poorly on indoor scenes in general.

method rel log10 RMS
Fully-metric Method [8] 1.076 0.986 4.282
Baseline [5] 1.858 0.318 3.133
Ours 0.386 0.145 1.386

Table 1. Estimated depth maps for a subset of the NYU RGB-D tests cases, including all examples in this document.

method rel log10 RMS
Fully-metric Method [8] 1.413 1.049 5.397
Baseline [5] 1.160 0.243 2.939
Ours 0.232 0.078 0.953

Table 2. Estimated depth maps for a subset of the SUN3D tests cases, including all examples in this document.

6. Contour Detection
In Fig. 13 we compare contours from [2] and those from our modified detector. For the contours from [2] we use the model

that is trained on RGB - boundary pairs from the single-frame NYU RGB-D dataset [6] with ground truth boundaries [4]. The
new model for our modified detector is trained on RGB - albedo - shading - boundary pairs using our modified version of the
Sintel dataset [1]. In Fig. 13 we visualize detected contours (the images invert the raw responses for better presentation). Our
detection consistently assigns strong prediction values on most relevant surface boundaries in the scene, while the original
detection does not consistently give high confidence on the surface boundaries.

Although the images in Fig. 13(a,c,e,g) from the original detection might be perceived somewhat cleaner than (b,d,f,h)
from our detection, in fact it is hard to extract good surface boundary maps from the detected images in (a,c,e,g) since their
values are not consistently high along the true surface boundaries. For example, if we apply simple thresholding to Fig.
13(a,c,e,g) most surface boundaries are not captured as shown in Fig. 14(a,c,e,g), while from (b,d,f,h) we consistently extract
clean boundary maps that mostly obey relevant surface boundaries as in Fig. 14(b,d,f,h). Here we apply the same thresholding
1− sig(δ, 50, 0.3), where δ is the raw contour detection map and sig(·) is a sigmoid function in Eq. (5) of the main paper.

7. Progressive Improvement
In Figures 15-18 we present progressive improvement of depth estimation as better cues are introduced. In the figures, (a)

shows the results from the baseline method [5], (b) shows the results from our method without SfM cues, (c) shows the results
from our method with contours from [2] that only relies on RGB values, and (d) shows the results from our full method that
fully utilizes SfM cues as well as RGB - albedo - shading values. From (a) to (d), we can observe the results are progressively
enhanced both qualitatively and quantitatively. Qualitatively we can see that (a) is over-smooth while almost missing scene
structure, (b) captures crude structure with sharper surface boundaries, (c) captures overall structure well but fine surface
details are missing, and (d) shows the best quality with strong depth discontinuities and extra fine details.
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(f) ... ... ...

Figure 1. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.
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(d) [7] ... ... ...

(e) GT ... ... ...

Figure 2. Results for the example in Fig. 1. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 3. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.
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Figure 4. Results for the example in Fig. 3. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 5. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.



(a) ID ... ... ...

(b) DT ... ... ...

(c) [8] ... ... ...

(d) [7] ... ... ...

(e) GT ... ... ...

Figure 6. Results for the example in Fig. 5. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 7. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.
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Figure 8. Results for the example in Fig. 1. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 9. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.
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Figure 10. Results for the example in Fig. 1. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 11. Intrinsic images. (a) Images from the query video. (b) Albedo. (c) Shading. (d) Contours. (e) Point projections. (f) Proxy depth.
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Figure 12. Results for the example in Fig. 1. (a) Intrinsic Depth (ours). (b) Depth Transfer [5]. (c) Fully metric method [8]. (d) Example-
based single image method [7]. (e) Ground truth.
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Figure 13. Contour detection. (a),(c),(e),(g) Contours from [2] trained on RGB - boundary pairs for the examples in Fig. 1 of the main
paper, Figures. 1, 7 and 9, respectively. (b),(d),(f),(h) Contours from our modified detector trained on RGB - albedo - shading - boundary
pairs. Note that images are inverted from the raw detection values for better presentation.
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Figure 14. Thresholding on the detection images in Fig. 13. The output shows that our contours in (b,d,f,h) better capture most relevant
surface boundaries than the contours from [2] in (a,c,e,g).
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(b) ... ... ...

(c) ... ... ...

(d) ... ... ...

method rel log10 RMS
(a) 1.187 0.277 2.489
(b) 0.777 0.218 2.055
(c) 0.141 0.064 0.765
(d) 0.138 0.062 0.762

Figure 15. Progressive improvement for the example in Fig. 1 of the main paper. (a) Baseline method [5]. (b) Our method without SfM
cues. (c) Our method with contours from [2] that only relies on pixel RGB values. (d) Our full method. The results are progressively
improved qualitatively and quantitatively from (a) to (d).
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(b) ... ... ...

(c) ... ... ...

(d) ... ... ...

method rel log10 RMS
(a) 2.868 0.414 3.252
(b) 2.306 0.313 2.392
(c) 0.930 0.188 1.503
(d) 0.680 0.148 1.126

Figure 16. Progressive improvement for the example in Fig. 1. (a) Baseline method [5]. (b) Our method without SfM cues. (c) Our method
with contours from [2] that only relies on pixel RGB values. (d) Our full method. The results are progressively improved qualitatively and
quantitatively from (a) to (d).
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(b) ... ... ...

(c) ... ... ...

(d) ... ... ...

method rel log10 RMS
(a) 2.758 0.486 4.158
(b) 1.780 0.396 3.338
(c) 0.676 0.202 1.659
(d) 0.487 0.164 1.439

Figure 17. Progressive improvement for the example in Fig. 7. (a) Baseline method [5]. (b) Our method without SfM cues. (c) Our method
with contours from [2] that only relies on pixel RGB values. (d) Our full method. The results are progressively improved qualitatively and
quantitatively from (a) to (d).
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(b) ... ... ...

(c) ... ... ...

(d) ... ... ...

method rel log10 RMS
(a) 1.391 0.334 4.095
(b) 0.765 0.242 2.872
(c) 0.192 0.073 1.072
(d) 0.158 0.063 0.881

Figure 18. Progressive improvement for the example in Fig. 9. (a) Baseline method [5]. (b) Our method without SfM cues. (c) Our method
with contours from [2] that only relies on pixel RGB values. (d) Our full method. The results are progressively improved qualitatively and
quantitatively from (a) to (d).
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