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1 Parameter values
This section contains the parameter values we used for our experiments for both algorithms, PCA-Flow and PCA-
Layers. All parameters were determined to mimimize the average endpoint error on the respective training sets.

1.1 PCA-Flow

Value

Description Symbol Sintel KITTI

Noise estimation
for robust function σ 1.0 0.6

Regularization λ 0.2 0.4

1.2 PCA-Layers

Value

Description Symbol Sintel KITTI

Noise estimation
for robust function σ 0.1 0.3

Regularization λ 0.002 0.3

Weight of color unary cost γc 3.0 3.0

Weight of location unary cost γl 9.0 40.0

Weight of pairwise cost γ 450 250

Scaling in warping energy σw 3.0 0.7

Scaling in feature distance cost σl 15
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2 Experiment: Number of principal components
Fig. 1 shows the average endpoint error across the whole training set as a function of the number of principal
components that were used. The projected ground truth is given in green, the estimation results using the learned
basis is given in blue, and the estimation results using the DCT is given in red. Here we plot the results of
PCA-Flow, i.e. only a single layer, since this is the part of our pipeline that is most directly affected by the
maximum number of principal components.

Note that with very few principal components, the projected ground truth result is worse than the estimated
results. The reason for this is that the projection minimizes the distance of the ground truth flow field to the
projected ground truth field on the optical flow subspace. This does not necessarily minimize the average endpoint
error.

While the results using the DCT basis are very close to the results using our learned basis, they are consistently
slightly worse. Therefore, we prefer our basis.
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Figure 1: Average endpoint error as a function of the number of principal components
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Fig. 2 shows the same results, split between the final pass (dotted) and the clean pass (dashed). Due to the
more accurate feature matching, the results on the clean pass are much better. The shape of the curves, however,
is not significantly different from Fig. 1.
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Figure 2: Average endpoint error as a function of the number of principal components, split by pass
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3 Experiment: Feature quality
One important source of error are incorrect or insufficient feature matches. Here, we show two experiment ana-
lyzing this effect, first the influence of errors in the feature matching, and second the influence of insufficient (but
potentially very good) feature matches.

3.1 Feature errors and endpoint error
Fig. 3 shows the average endpoint error within a frame, as computed using PCA-Flow, compared to the average
error of all features founds in that frame.
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Figure 3: The feature error and the computed endpoint errors are very correlated. The feature errors are higher on
the final pass.

3.2 Feature density and endpoint error
Fig. 4 and Fig. 5 shows the relationship between the number of features found in a single frame and the average
endpoint error across this frame. Here, blue points correspond to the found feature matches. Yellow points
correspond to the ground truth matches at the locations of the found matches. To obtain those ground truth
matches, we first compute the matches, and then replace them with the ground truth flow at the detected feature
locations.

The more features are found, the better the reconstruction generally is. Reversely, if only few features are
found, they usually do not sufficiently cover the image, causing high errors. Additionally, the matching quality in
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frames with lower feature density is also lower, since those frames do not contain enough structure everywhere to
reliably match features.

An additional source of errors are motion and camera blur and atmospheric effects. The final pass (shown in
Fig. 5) contains such artifacts, while the clean pass (Fig. 4) does not. Consequently, the feature match quality is
generally lower (in addition to more frames with only very few available features), leading to a higher error rate
(See Table 1).

Sintel-clean Sintel-final Average

Error of estimated features 1.83 px 2.67 px 2.25 px

Error over full frame, using estimated features 4.00 px 5.23 px 4.62 px

Error over full frame, using ground truth features 3.20 px 3.60 px 3.40 px

Table 1: Errors on MPI-Sintel for estimated and ground truth features
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Figure 4: Clean pass
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4 Using a warping-based approach
As mentioned in the paper, it is also possible to use a warping-based approach to estimate the coefficients w. Such
an approach does not rely on feature matches, but instead iteratively rewarps the image to minimize the brightness
constancy error [1]. It is commonly used in patch-based motion subspace methods, e.g. [2].

To be able to cope with large motions, a multiscale framework is usually used. Here, we use 7 pyramid levels,
at a scale factor of 1.5 per pyramid level. Furthermore, the error term is robustified, and the same prior as in the
feature-based approach is taken into account. We refer to this approach as PCA-Warp.

Table 2 shows the results for the feature-based PCA-Flow and the warping-based PCA-Warp. PCA-Warp
results in significantly higher errors, mostly due to large motions. At the same time, it is much slower, and takes
approximately 30 seconds per frame, as compared to 300 ms for PCA-Flow. An interesting observation is that
when using PCA-Warp, the difference between the clean and the final pass is much smaller, since the increased
difficulty of finding features in the final pass does not affect PCA-Warp.

Sintel-clean Sintel-final Average

PCA-Flow 4.00 px 5.23 px 4.62 px

PCA-Warp 7.16 px 7.21 px 7.19 px

Table 2: Errors on MPI-Sintel for PCA-Flow and PCA-Warp.

The Figs. 6–11 show the best examples for PCA-Warp relative to PCA-Flow, that is, the frames for which
the difference EPEPCA−Warp − EPEPCA−Flow is lowest. We show three examples for the clean pass, and three
for the final pass. The main advantages of PCA-Warp is that it does not rely on matched features, and hence
is able to estimate motion in regions that are not sufficiently textured to extract feature points. Nevertheless, as
shown in Table 2, the average error in the Sintel training set is significantly higher for PCA-Warp compared to
PCA-Flow.

(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=13.6 (d) PCA-Flow, EPE=14.1

Figure 6: Clean pass, best result for PCA-Warp relative to PCA-Flow
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(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=0.80 (d) PCA-Flow, EPE=1.03

Figure 7: Clean pass, 2nd best result for PCA-Warp relative to PCA-Flow

(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=0.29 (d) PCA-Flow, EPE=0.49

Figure 8: Clean pass, 3rd best result for PCA-Warp relative to PCA-Flow
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(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=31.2 (d) PCA-Flow, EPE=49.3

Figure 9: Final pass, best result for PCA-Warp relative to PCA-Flow

(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=35.5 (d) PCA-Flow, EPE=51.3

Figure 10: Final pass, 2nd best result for PCA-Warp relative to PCA-Flow
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(a) First input frame (b) Ground truth flow

(c) PCA-Warp, EPE=18.9 (d) PCA-Flow, EPE=26.0

Figure 11: Final pass, 3rd best result for PCA-Warp relative to PCA-Flow
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5 Visual results
In the following section, we show additional results from the training sets of MPI-Sintel (both Clean and Final
passes) and KITTI. For each example, we show:

• (a) The first of the two input frames.

• (b) The ground truth optical flow.

• (c) The model assignment at each pixel. This can be seen as a coarse motion segmentation.

• (d) The estimated optical flow.

• (e) The homography, robustly fitted to all matched features.

• (f) The result of PCA-Flow, added as an additional motion proposal.

• (g)-(l) The individual motion models computed by our hard EM algorithm; each model also shows which
tracked feature point contributes to it. If too few features are assigned to a given model, it is removed from
the estimation, and not shown here.

Note that all images were scaled to 512× 256 pixel, since this is the resolution that our algorithms use internally.

5.1 Sintel clean
The following pages show examples from the “Clean” pass of MPI-Sintel.
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 0.82

(e) Homography (f) PCA-Flow, EPE = 2.48

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 5.30

(e) Homography (f) PCA-Flow, EPE = 28.0

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 7.04

(e) Homography (f) PCA-Flow, EPE = 16.5

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 1.33

(e) Homography (f) PCA-Flow, EPE = 2.10

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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5.2 Sintel final
The following pages show examples from the “Final” pass of MPI-Sintel.
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 1.88

(e) Homography (f) PCA-Flow, EPE = 5.58

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 0.76

(e) Homography (f) PCA-Flow, EPE = 0.86

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 0.88

(e) Homography (f) PCA-Flow, EPE = 1.13

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 0.42

(e) Homography (f) PCA-Flow, EPE = 0.61

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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5.3 KITTI
The following pages show examples from KITTI. Since the motion in KITTI is inherently low dimensional, it is
fairly well captured by the pure PCA-Flow approach; using multiple models does not improve the accuracy in
terms of endpoint error. It does, however, reduce the number of “wrong” pixels with an error larger than 3 pixel.
Additionally, as shown in the following examples, it increases the accuracy near motion boundaries.
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 1.07

(e) Homography (f) PCA-Flow, EPE = 1.34

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 2.69

(e) Homography (f) PCA-Flow, EPE = 4.88

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 2.08

(e) Homography (f) PCA-Flow, EPE = 2.71

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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(a) Frame (b) Ground truth flow

(c) Computed segmentation (d) Computed optical flow, EPE = 3.90

(e) Homography (f) PCA-Flow, EPE = 4.42

(g) Model 1 (h) Model 2

(i) Model 3 (j) Model 4

(k) Model 5 (l) Model 6
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6 Failure cases
Our algorithm fails primarily for two reasons, missing or wrong features, and large unstructured regions. Figs. 24
and 25 show examples for both cases.

In Fig. 24, the girl is absent from the estimated optical flow field. As can be seen from Fig. 24(c), due to
motion blur, not many features are detected on her body, especially on her legs. Even worse, the few features
that are detected are very noisy, and are eliminated by the robust estimation. Better features can help improve the
performance in cases like this; nevertheless, such features often come at higher computational cost. Whether they
should be used or not is therefore dependent on the application; here, we decided against it.

(a) First input image (b) Ground truth optical flow

(c) Matched features (d) Estimated optical flow

Figure 24: Failure case: Missing or incorrect features.

In Fig. 25, one can see a wrong, “blocky” structure in the background. While many features are found, they
are not all assigned to the same model. In such a case and in the absence of other image cues, the MRF tends to
create blocky assignments, causing artifacts at the seams. One way to fix this would be to use a better inference
scheme than the simple pairwise MRF we currently use; for example a densely connected CRF. We leave this for
future work.
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(a) First input image (b) Ground truth optical flow

(c) Matched features (d) Estimated optical flow

Figure 25: Failure case: Artifacts in weakly structured regions.
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