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Abstract. Human motion capturing (HMC) from multiview image sequences is
an extremely difficult problem due to depth and orientation ambiguities and the
high dimensionality of the state space. In this paper, we introduce a novel hy-
brid HMC system that combines video input with sparse inertial sensor input.
Employing an annealing particle-based optimization scheme, our idea is to use
orientation cues derived from the inertial input to sample particles from the man-
ifold of valid poses. Then, visual cues derived from the video input are used to
weight these particles and to iteratively derive the final pose. As our main con-
tribution, we propose an efficient sampling procedure where the particles are de-
rived analytically using inverse kinematics on the orientation cues. Additionally,
we introduce a novel sensor noise model to account for uncertainties based on
the von Mises-Fisher distribution. Doing so, orientation constraints are naturally
fulfilled and the number of needed particles can be kept very small. More gen-
erally, our method can be used to sample poses that fulfill arbitrary orientation
or positional kinematic constraints. In the experiments, we show that our system
can track even highly dynamic motions in an outdoor environment with changing
illumination, background clutter, and shadows.

1 Introduction

Recovering 3D human motion from 2D video footage is an active field of research
[21, 3, 7, 10, 33, 37]. Although extensive work on human motion capturing (HMC) from
multiview image sequences has been pursued for decades, there are only few works, e.g.
[15], that handle challenging motions in outdoor scenes.

To make tracking feasible in complex scenarios, motion priors are often learned
to constrain the search space [18, 29, 30, 32, 37]. On the downside, such priors impose
certain assumptions on the motions to be tracked, thus limiting the applicability of the
tracker to general human motions. While approaches exist to account for transitions be-
tween different types of motion [2, 5, 11], general human motion is highly unpredictable
and difficult to be modeled by pre-specified action classes.

Even under the use of strong priors, video HMC is limited by current technology:
depth ambiguities, occlusions, changes in illumination, as well as shadows and back-
ground clutter are frequent in outdoor scenes and make state-of-the-art algorithms break
down. Using many cameras does not resolve the main difficulty in outdoor scenes,
namely extracting reliable image features. Strong lighting conditions also rule out the
use of depth cameras. Inertial sensors (IMU) do not suffer from such limitations but
they are intrusive by nature: at least 17 units must be attached to the body which poses
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Fig. 1: Orientation cues extracted from inertial sensors are used to efficiently sample
valid poses using inverse kinematics. The generated samples are evaluated against im-
age cues in a particle filter framework to yield the final pose.

a problem from bio-mechanical studies and sports sciences. Additionally, IMU’s alone
fail to measure accurately translational motion and suffer from drift. Therefore, simi-
lar to [27, 24, 35], we argue for a hybrid approach where visual cues are supplemented
by orientation cues obtained by a small number of additional inertial sensors. While
in [35] only arm motions are considered, the focus in [24] is on indoor motions in a
studio environment where the cameras and sensors can be very accurately calibrated
and the images are nearly noise- and clutter-free. By contrast, we consider full-body
tracking in an outdoor setting where difficult lighting conditions, background clutter,
and calibration issues pose additional challenges. The work presented here is an exten-
sion of our previous article [27]. Here, we extend it and show more results and more
implementation details of the proposed approach.

In this paper, we introduce a novel hybrid tracker that combines video input from
four consumer cameras with orientation data from five inertial sensors, see Fig. 1.
Within a probabilistic optimization framework, we present several contributions that
enable robust tracking in challenging outdoor scenarios. Firstly, we show how the high-
dimensional space of all poses can be projected to a lower-dimensional manifold that
accounts for kinematic constraints induced by the orientation cues. To this end, we in-
troduce an explicit analytic procedure based on Inverse Kinematics (IK). Secondly, by
sampling particles from this low-dimensional manifold the constraints imposed by the
orientation cues are implictly fulfilled. Therefore, only a small number of particles is
needed, leading to a significant improvement in efficiency. Thirdly, we show how to
integrate a sensor noise model based on the von Mises-Fisher [8] distribution in the
optimization scheme to account for uncertainties in the orientation data. In the exper-
iments, we demonstrate that our approach can track even highly dynamic motions in
complex outdoor settings with changing illumination, background clutter, and shadows.
We can resolve typical tracking errors such as miss-estimated orientations of limbs and
swapped legs that often occur in pure video-based trackers. Moreover, we compare it
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with three different alternative methods to integrate orientation data. Finally, we make
the challenging dataset and sample code used in this paper available for scientific use4.

2 Related Work

For solving the high-dimensional pose optimization problem, many approaches rely on
local optimization techniques [4, 15, 28], where recovery from false local minima is
a major issue. Under challenging conditions, global optimization techniques based on
particle filters [7, 10, 38, 26] have proved to be more robust against ambiguities in the
data. Thus, we build upon the particle-based annealing optimization scheme described
in [10]. Here, one drawback is the computational complexity which constitutes a bot-
tleneck when optimizing in high-dimensional pose spaces.

Several approaches show that constraining particles using external pose informa-
tion sources can reduce ambiguities [1, 12, 13, 16, 17, 20, 34]. For example, [17] uses
the known position of an object a human actor is interacting with and [1, 20] use hand
detectors to constrain the pose hypotheses. To integrate such constraints into a particle-
based framework, several solutions are possible. Firstly, the cost function that weights
the particles can be augmented by additional terms that account for the constraints. Al-
though robustness is added, no benefits in efficiency are achieved, since the dimension-
ality of the search space is not reduced. Secondly, rejection sampling, as used in [17],
discards invalid particles that do not fulfill the constraints. Unfortunately, rejection sam-
pling can be very inefficient and does not scale well with the number of constraints as
we will show. Thirdly, approaches such as [9, 12, 19, 34] suggest to explicitly generate
valid particles by solving an IK problem on detected body parts. While the proposals in
[19, 34] are tailored to deal with depth ambiguities in monocular imagery, [12] relies on
local optimization which is not suited for outdoor scenes as we will show. In the context
of particle filters, the von Mises-Fisher distribution has been used as prior distribution
for extracting white matter fiber pathways from MRI data [40].

In contrast to previous work, our method can be used to sample particles that ful-
fill arbitrary kinematic constraints by reducing the dimension of the state space. Fur-
thermore, none of the existing approaches perform a probabilistic optimization in a
constrained low-dimensional manifold. We introduce an IK based on the Paden-Kahan
sub-problems and model rotation noise with the von Mises-Fisher distribution.

3 Global Optimization with Sensors

To temporally align and calibrate the input data obtained from a set of uncalibrated and
unsynchronized cameras and from a set of orientation sensors, we apply preprocessing
steps as explained in Sect. 3.1. Then, we define orientation data within a human motion
model (Sect. 3.2) and explain the probabilistic integration of image and orientation cues
into a particle-based optimization framework (Sect. 3.3).

4 http://www.tnt.uni-hannover.de/∼pons/
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3.1 Calibration and Synchronization

We recorded several motion sequences of subjects wearing 10 inertial sensors (we used
XSens [36]) which we split in two groups of 5: the tracking sensors which we use
for tracking and the validation sensors which we use for evaluation. According to the
specifications, the IMU orientation accuracy is around 2◦ for smooth motions and in
abscence of magnetic field. In practice, unfortunatelly, the error is much higher due
to different sources of uncertainty, see Sect.4.3. The tracking sensors are placed in the
back and the lower limbs and the validation sensors are placed on the chest and the upper
limbs. An inertial sensor s measures the orientation of its local coordinate system FSs
w.r.t. a fixed global frame of reference FT . All sensors derive the same global frame of
reference by merging information from a magnetic field sensor, an accelerometer and a
rate gyro. The orientation data is given as a stream of rotation matrices RTS

s (t) that de-
fine the coordinate transform from FSs to FT . In the process of calibrating the camera,
the global tracking coordinate system FT is defined by a calibration cube placed into
the recording volume. In order to bring F I and FT into correspondence, we carefully
place the calibration cube such that the axes of FT directly correspond to the axes of the
known F I using a compass. Like this, the orientation data RIS

s (t) also directly maps
from the local sensor coordinate system FSs to the global tracking coordinate system
FT and we note RTS := RIS . Note that there might be slight missalignments be-
tween the tracking and inertial frame for which we compensate bt introducing a sensor
noise model, see Sec. 4.3. In this paper, we refer to the sensor orientations by RTS and,
where appropriate, by using the corresponding quaternion representation qTS . Quater-
nions generalize complex numbers and can be used to represent 3D rotations the same
way as complex numbers can be used to represent planar rotations [31]. The video se-
quences recorded with four off-the-shelf consumer cameras are synchronized by cross
correlating the audio signals as proposed in [15]. Finally, we synchronize the IMU’s
with the cameras using a clapping motion, which can be detected in the audio data as
well as in the acceleration data measured by IMU’s.

3.2 Human Motion Model

We model the motion of a human by a skeletal kinematic chain containing N = 25
joints that are connected by rigid bones. The global position and orientation of the
kinematic chain are parameterized by a twist ξ0 ∈ R6 [22]. A twist is an element of
the tangent space of rigid body motions, see [26] for a comprehensive introduction to
human body parameterizations. Together with the joint angles Θ := (θ1 . . . θN ), the
configuration of the kinematic chain is fully defined by a D=6+N -dimensional vector
of pose parameters x = (ξ0, Θ). We now describe the relative rigid motion matrix Gi

that expresses the relative transformation introduced by the rotation in the i− th joint.
A joint in the chain is modeled by a location mi and a rotation axis ωi. The exponential
map of the corresponding twist ξi = (−ωi ×mi, ωi) yields Gi by

Gi = exp(θiξ̂i). (1)
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Let Ji ⊆ {1, . . . , n} be the ordered set of parent joint indices of the i − th bone. The
total rigid motion GTB

i of the bone is given by concatenating the global transformation
matrix G0 = exp(ξ̂0) and the relative rigid motions matrices Gi along the chain by

GTB
i = G0

∏
j∈Ji

exp(θj ξ̂j). (2)

The rotation part of GTB
i is referred to as tracking bone orientation of the i− th bone.

In the standard configuration of the kinematic chain, i.e. , the zero pose, we choose the
local frames of each bone to be coincident with the global frame of reference FT . Thus,
GTB
i also determines the orientation of the bone relative to FT . A surface mesh of the

actor is attached to the kinematic chain by assigning every vertex of the mesh to one of
the bones. Let p̄ be the homogeneous coordinate of a mesh vertex p in the zero pose
associated to the i − th bone. For a configuration x of the kinematic chain, the vertex
is transformed to p̄′ using p̄′ = GTB

i p̄.

3.3 Optimization Procedure

If several cues are available, e.g. image silhouettes and sensor orientation z = (zim, zsens),
the likelihood is commonly factored in two independent terms:

arg max
x

p(x|zim, zsens) = p(zim|x)p(zsens|x)p(x) (3)

where it is assumed that the measurements zim and zsens are conditionaly independent
given that the pose x is known. The human pose x can then be found by minimizing
the negative log-likelihood which yields a weighted combination of cost functions for
both terms as in [24]. Since in outdoor scenarios the sensors are not perfectly calibrated
and the observations are noisy, fine tuning of the weighting parameters would be neces-
sary to achieve good performance. Furthermore, the orientation information is not used
to reduce the state space, and thus the optimization cost and ambiguities. Hence, we
propose a different probabilistic formulation of the problem:

p(x|zim, zsens) =
p(zim, zsens|x)p(x)

p(zim, zsens)
=
p(zim|x)p(zsens|x)p(x)

p(zim)p(zsens)
(4)

where we assumed independence between sensors and using

p(x|zsens) =
p(zsens|x)p(x)

p(zsens)

we obtain the following factorized posterior

p(x|zim, zsens) ∝ p(zim|x)p(x|zsens). (5)

that can be optimized globally and efficiently. We disregard the normalization factor
p(zim) since it does not depend on the pose x. The weighting function p(zim|x) can be
modeled by any image-based likelihood function. Our proposed model of p(x|zsens),
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Fig. 2: Graphical model of the approach. The measurements zim and zsens are shown as
shaded nodes because they are observable during inference. The manifold coordinates,
xa, the full state pose x and the true orientations zgt are hidden. To infer the full state
pose x we optimize the manifold coordinates and marginalize out zgt. To integrate out
zgt, we assume it follows a von-Mises-Fisher distribution with mean direction µ =
zsens.

as introduced in Sect. 4, integrates uncertainties in the sensor data and constrains the
poses to be evaluated to a lower dimensional manifold. For single frame pose estima-
tion, optimization is typically performed by importance sampling, i.e. sampling from
the prior p(x) and weighting by the likelihood function p(zim|x). The problem with
this is that the prior is broad compared to p(zim|x) that is peaky and typically multi-
valued. By drawing proposals directly from p(x|zsens) we are effectively reducing the
number of wasted samples, i.e. we are concetrating samples on the likelihood region.
For optimization, we use the method proposed in [10]; the implementation details are
given in Sect. 4.4.

4 Manifold Sampling

Assuming that the orientation data zsens of the Ns orientation sensors is accurate and
that each sensor has 3 DoF that are not redundant 5, the D dimensional pose x can be
reconstructed from a lower dimensional vector xa ∈ Rd where d = D − 3Ns. In our
experiments, a 31 DoF model can be represented by a 16 dimensional manifold using 5
inertial sensors as shown in Fig. 5 (a). The mapping is denoted by x = g−1(xa, z

sens)
and is described in Sect. 4.1. In this setting, Eq. (3) can be rewritten as

arg max
xa

p
(
zim|g−1(xa, z

sens)
)
. (6)

5 Since the sensors are placed in different body parts they are not redundant because they explain
different DoF in the kinematic chain
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Fig. 3: Toy example to illustrate our idea to sample from lower dimensional manifolds.
For this simple kinematic chain the state vector has 2 DoF , x = (α, β). If we impose
the constraint that the cake plate must be perpendicular to the ground the true state
vector has dimensionality 1. The constraint is α+ β = π and therefore the state vector
can be re-parameterized as x = (α, π − α). For the problem of human pose estimation
however the constraints are non-linear and therefore re-parametrization is achieved by
solving small Inverse Kinematics subproblems.

Since the orientation data zsens is not always accurate due to sensor noise and calibra-
tion errors, we introduce a term p(zsensgt |zsens) that models the sensor uncertainty, i.e. ,
the probability of the true orientation zsensgt given the sensor data zsens. We assume the
conditional probability p(zsensgt |zsens) follows a von-Mises Fisher distribution and it is
described in detail Sect. 4.3. Hence, we get the final objective function:

arg max
xa

∫
p
(
zim|g−1(xa, z

sens
gt )

)
p
(
zsensgt |zsens

)
dzsensgt . (7)

where we marginalize out the sensor noise and optimize the manifold coordinates. The
integral can be approximated by importance sampling, i.e. , drawing particles from
p(zsensgt |zsens) and weighting them by p(zim|x). Consequently, we can efficiently con-
centrate the search space in the neighborhood region of a low dimensional manifold. In
addition, we can guarantee that the kinematic constraints are satisfied.

4.1 Inverse Kinematics using Inertial Sensors

For solving Eq. (7), we derive an analytical solution for the map g : RD 7→ RD−3Ns and
its inverse g−1. Here, g projects x ∈ RD to a lower dimensional space and its inverse
function g−1 uses the sensor orientations and the coordinates in the lower dimensional
space xa ∈ RD−3Ns to reconstruct the parameters of the full pose, i.e. ,

g(x) = xa g−1(xa, z
sens) = x. (8)

To derive a set of minimal coordinates, we observe that given the full set of parameters
x and the kinematic constraints placed by the sensor orientations, a subset of these
parameters can be written as a function f(·) of the others, see Fig. 3 for an intuitive
illustration. Specifically, the full set of parameters is decomposed into a set of active
parameters xa which we want to optimize according to Eq. (7) and a set of passive
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(a) (b) (c)

Fig. 4: Manifold Sampling: (a) Original image. (b) Full space sampling. (c) Manifold
sampling. Note that the generated samples in (c) have parallel end-effector orientations
because they satisfy the constraints and uncertainty is therefore reduced.

parameters xp that can be derived from the constraint equations and the active set.
Writing the state as x = (xa,xp) with xa ∈ Rd and xp ∈ RD−d we have

f(xa, z
sens) = xp =⇒ g−1(xa, z

sens) = (xa, f(xa, z
sens)). (9)

Thereby, the direct mapping g is trivial since from the full set only the active parameters
are retained. The inverse mapping g−1 can be found by solving inverse kinematics (IK)
sub-problems. Several choices for the decomposition into active and passive set are
possible. To guarantee the existence of solution for all cases, we choose the passive
parameters to be the set of 3 DoF joints that lie on the kinematic branches where a
sensor is placed. In our experiments using 5 sensors, we choose the passive parameters
to be the two shoulder joints, the two hips and the root joint adding up to a total of
15 parameters which corresponds to 3Ns constraint equations, see Fig. 5 (a). Hence,
the passive parameters consist of Ns triplets of joint angles xp = (θj1 , θj2 , θj3)T , j ∈
{1 . . . Ns} with corresponding rotation matrices Rj . Since each sensor s ∈ {1 . . . Ns}
is rigidly attached to a bone, there exists a constant rotational offset RSB

s between the
i-th bone and the local coordinate system FSs of the sensor attached to it. This offset can
be computed from the tracking bone orientation RTB

i,0 in the first frame and the sensor
orientation RTS

s,0

RSB
s = (RTS

s,0 )TRTB
i,0 . (10)

At each frame t, we obtain sensor bone orientations RTS
s,tR

SB
s by applying the rota-

tional offset. In the absence of sensor noise, it is desired to enforce that the tracking
bone orientation and the sensor bone orientation are equal:

RTB
i,t = RTS

s,tR
SB
s (11)

In Sect. 4.3 we show how to deal with noise in the measurements. Let Rj be the relative
rotation of the j-th joint given by the rotational part of Eq. (1). The relative rotation Rj
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associated with the passive parameters can be isolated from Eq. (11). To this end, we
expand the tracking bone orientation RTB

i,t to the product of 3 relative rotations6 Rp
j ,

the total rotation motion of parent joints in the chain, Rj , the unknown rotation of the
joint associated with the passive parameters, and Rc

j , the relative motion between the
j-th joint and the i-th joint where the sensor is placed:

Rp
jRjR

c
j = RTS

s RSB
s (12)

Note that Rp
j and Rc

j are constructed from the active set of parameters xa using the
product of exponentials formula (2). From Eq. (12), we obtain the relative rotation
matrix

Rj = (Rp
j )
TRTS

s RSB
s (Rc

j)
T . (13)

Having Rj and the known fixed rotation axes ωj1 , ωj2 , ωj3 of the j-th joint, the rotation
angles θj1 , θj2 , θj3 , i.e. , the passive parameters, must be determined such that

exp(θj1 ω̂j1) exp(θj2 ω̂j2) exp(θj3 ω̂j3) = Rj . (14)

This problem can be solved by decomposing it into sub-problems [23], see Sec. 4.2.
By solving these sub-problems for every sensor, we are able to reconstruct the full state
x using only a subset of the parameters xa and the sensor measurements zsens. In this
way, the inverse mapping g−1(xa, zsens) = x is fully defined and we can efficiently
sample from the manifold, see Fig. 4.

4.2 Paden-Kahan Subproblems

We are interested in solving the following problem:

exp(θ1ω̂1) exp(θ2ω̂2) exp(θ3ω̂3) = Rj . (15)

This problem can be solved by decomposing it into sub-problems as proposed in [23]. A
comprehensive description of the Paden-Kahan subproblems applied to several inverse
kinematic problems can also be found in [22]. The basic technique for simplification
is to apply the kinematic equations to specific points. By using the property that the
rotation of a point on the rotation axis is the point itself, we can pick a point p on the
third axis ω3 and apply it to both sides of Eq. (15) to obtain

exp(θ1ω̂1) exp(θ2ω̂2)p = Rjp = q (16)

which is known as the Paden-Kahan sub-problem 2. For our problem the 3 rotation axes
intersect at the same joint location. Consequently, since we are only interested in the
orientations, we can translate the joint location to the origin qj = O = (0, 0, 0)T . In
this way, any point p = λω3 with λ ∈ R, λ 6= 0 is a valid choice for p. Eq. (16) can
decomposed in two subproblems

exp(θ2ω̂2)p = c and exp(−θ1ω̂1)q = c, (17)

6 The temporal index t is omitted for the sake of clarity
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(a) (b) (c)

Fig. 5: Inverse Kinematics: (a) decomposition into active (yellow) and passive (green)
parameters. Paden-Kahan sub-problem 2 (b) and sub-problem 1 (c).

where c is the intersection point between the circles created by the rotating point p
around axis ω2 and the point q rotating around axis ω1 as shown in Fig. 5 (b). In order
for Eq. (17) to have a solution, the points p, c must lie in the same plane perpendicular
to ω2, and q, c must lie in the same plane perpendicular to ω1. This implies that the
projection of the position vectors 7 p, c,q onto the span of ω1, ω2 respectively must be
equal, see Fig. 6

ωT2 p = ωT2 c and ωT1 q = ωT1 c (18)

Additionally, the norm of a vector is preserved after rotation and therefore

‖p‖ = ‖c‖ = ‖q‖ (19)

Since ω1 and ω2 are not parallel, the vectors ω1, ω2, ω1 ×ω2 form a basis that span R3.
Hence, we can write c in the new basis as

c = αω1 + βω2 + γ(ω1 × ω2) (20)

where α, β, γ are the new coordinates of c. Now, using the fact that ω2 ⊥ ω1 × ω2

and ω1 ⊥ ω1 × ω2, we can substitute Eq. (20) into Eq. (18) to obtain a system of two
equations with two unknowns (α, β)

ωT2 p = αωT2 ω1 + β

ωT1 q = α+ βωT1 ω2 (21)

from which we can isolate the first two coordinates of c

α =
(ωT1 ω2)ωT2 p− ωT1 q

(ωT1 ω2)2 − 1

β =
(ωT1 ω2)ωT1 q− ωT2 p

(ωT1 ω2)2 − 1
(22)

7 Since we translated the joint location to the origin we can consider the points as vectors with
origin at the joint location qj .
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(a) (b)

Fig. 6: Paden-Kahan subproblem 1: (a) the projection length of p and c onto ω2 must be
equal, (b) the projection of the vectors p and c onto the orthogonal plane to the rotation
axes ω2

From Eq. (19) and Eq. (20) we can write

‖p‖2 = ‖c‖2 = α2 + β2 + 2αβωT1 ω2 + γ2‖ω1 × ω2‖2 (23)

and obtain the third coordinate γ as

γ2 =
‖p‖2 − α2 − β2 − 2αβωT1 ω2

‖ω1 × ω2‖2
(24)

This last equation has no solution when the circles do not intersect, one solution when
the circles are tangential and two solutions when the circles intersect at two points.
For our choice of decomposition, the passive parameters correspond to 3DoF joints
which are modeled as 3 concatenated revolute joints whose axis are mutually orthogo-
nal. Therefore, there always exists a solution [22]. We note that the inverse kinematic
solutions presented here are also valid for other decompositions, e.g. one could choose
as passive parameters two rotation axes of the shoulder joint and one rotation axis of
the elbow joints. However, the existence of solution should then be checked during the
sampling process. Once we have the new coordinates (α, β, γ) we can obtain the inter-
section point c in the original coordinates using equation Eq. (20). Thereafter, Eq. (17)
can be decomposed into two problems of the form

exp(θ2ω̂2)p = c

exp(−θ1ω̂1)q = c (25)

which simplifies to finding the rotation angle about a fixed axis that brings a point p to
a second one c, which is known as Paden-Kahan sub-problem 1

exp(θ2ω̂2)p = c. (26)

This problem has a solution when the projections of the vectors p and c onto the or-
thogonal plane to ω2 have equal lengths. Let p′ and c′ be the projections of p, c onto
the plane perpendicular to ω2, see Fig. 6,

p′ = p− ω2ω
T
2 p and c′ = c− ω2ω

T
2 c. (27)
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If the projections have equal lengths ‖p′‖ = ‖c′‖ then the problem is as simple as
finding the angle between the two vectors

ωT2 (p′ × c′) = sin θ2‖p′‖‖c′‖
p′ · c′ = cos θ2‖p′‖‖c′‖ (28)

By dividing the equations we finally obtain the rotation angle using the arc tangent

θ2 = atan2(ωT2 (p′ × c′),p′ · c′). (29)

We can find θ1 using the same procedure. Finally, θ3 is obtained from Eq. (15) after
substituting θ1 and θ2

exp(θ3ω̂3) = exp(θ1ω̂1)T exp(θ2ω̂2)TRj = R (30)

where the rotation matrix R is known. The rotation angle θ3 satisfies

2 cos θ3 = (trace(R)− 1) (31)
2 sin θ3 = ωT3 r (32)

where r = (R32 − R23,R13 − R31,R21 − R12) (page 584 of [14]). Finally, the
rotation angle θ3 can be computed from cos θ3 and sin θ3 using atan2. By solving these
sub-problems for every sensor, we are able to reconstruct the full state x using only a
subset of the parameters xa and the sensor measurements zsens. The good property of
this geometric algorithms for solving inverse kinematics is that they are numerically
very stable. More importantly, the same principle can be applied to solve more complex
IK problems involving a number of positional and orientational constraints.

4.3 Sensor Noise Model

In practice, perfect alignment and synchronization of inertial and video data is not pos-
sible. In fact, there are at least four sources of uncertainty in the inertial sensor mea-
surements, namely inherent sensor noise from the device, temporal unsynchronization
with the images, small alignment errors between the tracking coordinate frame FT and
the inertial frame F I , and errors in the estimation of RSB

s . Hence, we introduce a noise
model p(zsensgt |zsens) in our objective function (7). Rotation errors are typically mod-
eled by assuming that the measured rotations are distributed according to a Gaussian in
the tangent spaces which is implemented by adding Gaussian noise vi on the parameter
components, i.e. , x̃j = xj + vi. The topological structure of the elements, a 3-sphere
S3 in case of quaternions, is therefore ignored. The von Mises-Fisher (MF) distribution
models errors of elements that lie on a unit sphere Sp−1 [8] and is defined as

fp(x;µ, κ) =
κp/2−1

(2π)p/2Id/2−1(κ)
exp(κµTx) (33)

where Iv denotes the modified Bessel function of the first kind, µ is the mean direction,
and κ is a concentration parameter that determines the dispersion form the true position.
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(a) (b) (c) (d)

Fig. 7: Sensor noise model. (a) Points disturbed with rotations sampled from a von
Mises-Fisher distribution. (b) The orientation of the particles can deviate from the sen-
sor measurements. Tracking without (c) and with (d) sensor noise model.

The distribution is illustrated in Fig. 7. For our problem, p = 4 and thus the elements x
are quaternions. Therefore, on the one hand samples of the MF disutribution are quater-
nions whose corresponding axis of rotation are uniformly distributed in all directions.
On the other hand, the sample concentration decays with the angle of rotation. To see
this, observe that the distribution can be expressed as a function of the angular rotation
θ from the mean µ where we replaced the inner product µTx by cos

(
θ
2

)
( the inner

prodcut between two quaternions results in cos( θ2 ), where θ is the geodesic angle dis-
tance between rotations).
In order to approximate the integral in Eq. (7) by importance sampling, we use the
method proposed in [39] to draw samples qw from the von Mises-Fisher distribution
with p = 4 and µ = (1, 0, 0, 0)T , which is the quaternion representation of the iden-
tity. We use a fixed dispersion parameter of κ = 1000. The sensor quaternions are then
rotated by the random samples qw:

q̃TSs = qTSs ◦ qw (34)

where ◦ denotes quaternion multiplication. In this way, for every particle, samples q̃TSs
are drawn from p(zsensgt |zsens) using Eq. (34) obtaining a set of distributed measure-
ments z̃sens =

(
q̃TS1 . . . q̃TSNs

)
. This can be interpreted as the analogous of additive

Gaussian Noise where qw is a rotation noise sample. Thereafter, the full pose is re-
constructed from the newly computed orientations with g−1(xa, z̃

sens) as explained in
Sect. 4.1 and weighted by p(zim|x).
In Fig. 8, we compare the inverse kinematic solutions of 500 samples i ∈ {1 . . . 500}
by simply adding Gaussian noise only on the passive parameters {g−1(xa, z

sens)+vi}i
and by modeling sensor noise with the von Mises-Fisher distribution {g−1(xa, z̃

sens,i)}i.
For the generated samples, we fixed the vector of manifold coordinates xa and we used
equivalent dispersion parameters for both methods. To visualize the reconstructed poses
we only show, for each sample, the elbow location represented as a point in the sphere.
This example shows that simply adding Gaussian noise on the parameters is biased
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(a) (b)

Fig. 8: Sensor noise model. 500 samples of the IK elbow location are shown as points
using: (a) added Gaussian noise and (b) noise from the von Mises-Fisher distribution.

towards one direction that depends on the current pose x. By contrast, the samples us-
ing von Mises-Fisher are uniformly distributed in all directions and the concentration
decays with the angular error from the mean. Note, however, that Fig. 8 is a 3D visual-
ization, in reality the bone orientations of the reconstructed poses should be visualized
as points in a 3-sphere S3.

fp(θ;κ) =
κp/2−1

(2π)p/2Id/2−1(κ)
exp

(
κ cos

(
θ

2

))
(35)

4.4 Implementation Details

To optimize Eq. (7), we have implemented ISA (Interacted Simulated Annealing), the
global optimization approach that has been proposed in [10] and use only the first stage
of the algorithm, i.e. we do not locally optimize. ISA is based on simulated annealing
which is a stochastic optimization technique to locate a good approaximation of the
global optimum of a cost function in a large search space. In the remainder of this paper
we will use the term global optimization whenever ISA was used for optimization to
make the distinction with local optimization methods. As cost function, we use the
silhouette and color terms

V (x) = λ1Vsilh(x) + λ2Vapp(x) (36)

with the setting λ1 = 2 and λ2 = 40. Although a good likelihood model is essential
for good performance, it is not the focus of our work and we refer the interested reader
to [26] for more details. During tracking, the initial particles {xia}i are predicted from
the particles in the previous frame using a 3rd order autoregression and projected to
the low-dimensional manifold using the mapping g; see Sect. 4.1. The optimization is
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Fig. 9: Tracking with background clutter.

performed only over the active parameters xa ∈ RD−3Ns , i.e. , the diffusion step is
performed in RD−3Ns . Specifically, diffusion is performed with a Gaussian kernel with
zero mean and covariance matrix

Σa,k =
αΣ
N − 1

(
ρI +

N∑
i

(x
(i)
a,k − µa,k)(x

(i)
a,k − µa,k)T

)
(37)

proportional to the sampling covariance matrix scaled by αΣ where µk is the particle
set mean at the current iteration k.

For the weighting step, we use the approach described in Sect. 4.3 to generate a
sample z̃sens,i from p(zsensgt |zsens) for each particle xia. Consequently, we can map each
particle back to the full space using xi = g−1(xia, z̃

sens,i) and weight it by

π
(i)
k = exp

(
−βk · V

(
g−1(xia,k, z̃

sens)
))
, (38)

where βk is the inverse temperature of the annealing scheme at iteration k and V (·) is
the image cost function defined in Eq. (36). From the obtained set of weighted particles
{π(i)

k ,x
(i)
a,k}Ni=1 we draw a new set of particles with resampling and probability equal

to the normalized weights. The weighting, resampling and diffusion step are iterated
M times before going to the next frame. In our experiments, we used 15 iterations for
optimization. Finally, the pose estimate is obtained from the remaining particle set at
the last iteration as

x̂t =
∑
i

π
(i)
k g−1(x

(i)
a,k, z̃

sens,i). (39)

The steps of our proposed sampling scheme are outlined in Algorithm 1.



16 G. Pons-Moll et al.

Dynamics: To model the dynamics we use a 3rd order auto-regression using Gaus-
sian Process regression that provides a prediction xpred and a covariance matrix Σpred

related with the confidence of the prediction. Thereby, the particles from the previous
frame are drifted towards the predicted mean xpred and diffused with a Gaussian kernel
with zero mean and covariance Σpred. In order to obtain the low dimensional particle
set, every particle is projected g(xit) = x

(i)
a,t

8. We note that we do not learn a mapping
directly in the low dimensional space since the previous estimates of passive parameters
xp,t−4:t−1 are in general also correlated with the active parameters xa,t. The particle
set is used as the initial proposal distribution for the first iteration of ISA.

Algorithm 1 Proposed algorithm
Require: number of layers M , number of samples N , initial distribution L0, sensor orientations
zsens, image cost function V (·)
Initialize: Draw N initial samples from L0 → x

(i)
a,k

for layer k = 0 to M do
1. MANIFOLD SAMPLING
start from the set of un-weighted particles of the previous layer
for i = 1 to N do

1.1 SENSOR NOISE
/* draw a sample z̃sens,i from p(zsensgt zsens) */
for s = 1 to Ns do

draw sample from von-Mises Fisher fp(µ, κ)→ qw

q̃TS
s = qTS

s ◦ qw

end for
set z̃sens,i = (q̃TS

1 . . . q̃TS
Ns

)T

1.1 INVERSE KINEMATICS
/* computation of x

(i)
k = g−1(xi

a,k, z̃
sens) */

for j = 1 to Ns do
compute: RTS

s = quat2mat(q̃TS
j )

compute: F(xa)→ Rp
j ,R

c
j

set: Rj = (Rp
j )

TRTS
s RSB

s (Rc
j)

T

solve: exp(θj1 ω̂j1) exp(θj2 ω̂j2) exp(θj3 ω̂j3) = Rj

end for
set: π(i)

k = exp
(
−βk · V

(
x
(i)
k

))
end for
set: Lk = {π(i)

k ,x
(i)
a,k}

N
i=1

2. RESAMPLING
draw N samples from Lk → x

(i)
a,k

3. DIFFUSION
x
(i)
a,k+1= x

(i)
a,k +Bk {Bk is a sample fromN (0, Σa)}

end for

8 Since the basic Gaussian process does not take the correlation of the output variables into
account the process is equivalent to a 3rd order regression from previous full state estimates to
the manifold coordinates



Data-driven Manifolds for Outdoor Motion Capture 17

Fig. 10: Tracking with strong illumination

5 Experiments

The standard benchmark for human motion capture is HumanEva that consists of indoor
sequences. However, no outdoor benchmark data comprising video as well as inertial
data exists for free use yet. Therefore, we recorded eight sequences of two subjects per-
forming four different activities, namely walking, karate, basketball and soccer. Multi-
view image sequences are recorded using four unsynchronized off-the-shelf video cam-
eras. To record orientation data, we used an Xsens Xbus Kit [36] with 10 sensors. Five
of the sensors, placed at the lower limbs and the back, were used for tracking, and five
of the sensors, placed at the upper limbs and at the chest, were used for validation. As
for any comparison measurements taken from sensors or marker-based systems, the ac-
curacy of the validation data is not perfect but is useful to evaluate the performance of a
given approach. The eight sequences in the data set comprise over 3 minutes of footage
sampled at 25 Hz. Note that the sequences are significantly more difficult than the se-
quences of HumanEva since they include fast motions, illumination changes, shadows,
reflections and background clutter. For the validation of the proposed method, we ad-
ditionally implemented five baseline trackers: two video-based trackers based on local
(L) and global optimization (G) respectively and three hybrid trackers that also inte-
grate orientation data: local optimization (LS), global optimization (GS) and rejection
sampling (RS) which we briefly describe here

• (L): Local optimization tracker. The model is projected to the image to find corre-
spondences between the image silhouette contours and the model points. Then, the
non-linear least squares problem is solved using a variant of Levenberg-Marquardt
algorithm, see [15, 25] for more details.
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• (G): Global Particle based optimization. Optimization here is performed by means
of simulated annealing, i.e. , pose hypotheses are generated and weighted with pro-
gressively smooth versions of the image likelihood. The final pose is obtained as
the average of the particle set in the last annealing layer, see [6, 10] for more details.

• (LS): Local optimization + inertial Sensors. Optimization is again performed by
means of non-linear least squares but the cost function to be minimized consists of
an image term and a term that models the likelihood of the inertial sensor measure-
ments

V (x) = µ1V
im(x) + µ2V

sens
1 (x)

where V sens
1 (x) is defined as the squared Frobenious norm between the sensor and

the tracking bone orientation matrices. Both the model-image Jacobian and the
orientational Jacobian are derived analytically for better accuracy and efficiency.
The algorithm is the based on [24].

• (GS): Global particle based optimization with Sensors. Like the (G) method but
including the inertial sensor measurements in the weighting function. We optimize
a cost function

V (x) = µ1V
im(x) + µ2V

sens
2 (x)

where the image term V im(x) is the one defined in Eq. (36) and is chosen to be to
be a piece-wise increasing linear function of the angular error between the track-
ing and the sensor bone orientations. That is, for angular errors bigger than 10
degrees we scale the cost by a factor of 5. Big deviations from the orientation mea-
surement could in principle be penalized with a quadratic function but this yields
to many particles being rejected in early stages and results in lower performance.
Note that although µ2V

sens
2 (x) and µ2V

sens
1 (x) are not identical they are both func-

tions of distance metrics for rotations and are thus equivalent. For (LS) we optimize
µ2V

sens
1 (x) because derivatives are easier to compute. We hand tuned the influence

weights µ1, µ2 to obtain the best possible performance.
• (RS): Rejection Sampling. This method is commonly used to sample hypotheses

that satisfy a set of constraints. The method works by sampling hypotheses and
rejecting hypotheses that do not satisfy the constraints up to a certain tolerance.
It was for example used in [17] to integrate object interaction constraints. For our
problem, to combine inertial data with video images we draw particles directly from
p(xt|zsens) using a rejection sampling scheme. In our implementation of (RS), we
reject a particle when the angular error for any of the constraints is bigger than 10
degrees.

For a comprehensive overview of model based methods for human pose estimation we
refer the interested reader to [26].

Let the validation set be the set of quaternions representing the sensor bone orien-
tations not used for tracking as vsens = {qval1 , . . . ,qval5 }. Let is, s ∈ {1 . . . t} be the
corresponding bone index, and qTBis the quaternions of the tracking bone orientation
(Sect. 3.2). We define the error measure as the average geodesic angle between the
sensor bone orientation and the tracking orientation for a sequence of T frames as

dquat =
1

5 T

5∑
s=1

T∑
t=1

180◦

π
2 arccos

∣∣〈qvals (t),qTBis (t)
〉∣∣ . (40)
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Fig. 11: Tracking results of a karate sequence

Comparison with video and local trackers: We compare the performance of four
different tracking algorithms using the distance measure, namely (L), (G), (LS) and our
proposed approach (P). We show dquat for the eight sequences and each of the four
trackers in Fig. 12. For (G) and (P) we used the same number of particles N = 200.
As it is apparent from the results, local optimization is not suitable for outdoor scenes
as it gets trapped in local minima almost immediately. Our experiments show that LS
as proposed in [24] works well until there is a tracking failure in which case the tracker
recovers only by chance. Even using (G), the results are unstable since the video-based
cues are too ambiguous and the motions too fast to obtain reliable pose estimates. By
contrast, our proposed tracker achieves an average error of 10.78 ◦ ± 8.5◦ and clearly
outperforms the pure video-based trackers and (LS).

Comparison with GS: In Fig. 13 (a), we show dquat for a varying number of parti-
cles using the (GS) and our proposed algorithm (P) for a walking sequence.

The error values show that optimizing a combined cost function leads to bigger
errors for the same number of particles when compared to our method. This was an
expected result since we reduce the dimension of the search space by sampling from
the manifold and consequently less particles are needed for equal accuracy. Most im-
portantly, the visual quality of the 3D animation deteriorates more rapidly with (GS) as
the number of particles are reduced9. This is partly due to the fact that the constraints
are not always satisfied when additional error terms guide the optimization.

9 see the video for a comparison of the estimated motions at http://www.tnt.uni-
hannover.de/∼pons/
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Fig. 12: Mean orientation error of our 8 sequences (2 subjects) for methods (bars left to
right) L (local optimization), LS (local+sensors), GL (global optimization), and ours P.
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Fig. 13: (a): Orientation error with respect to number of particles with (red) the GS
method and (black) our algorithm. (b): Running time of rejection sampling (RS) with
respect to number of constraints. By contrast our proposed method takes 0.016 seconds
for 15 DoF constraints. The time to evaluate the image likelihood is excluded as it is
independent of the algorithm.

Comparison with Rejection Sampling (RS): Another option for combining iner-
tial data with video images is to draw particles directly from p(xt|zsens) using a simple
rejection sampling scheme. In our implementation of (RS), we reject a particle when
the angular error is bigger than 10 degrees. Unfortunately, this approach can be very
inefficient especially if the manifold of poses that fulfill the constraints lies in a nar-
row region of the parameter space. This is illustrated in Fig. 13 (b) where we show the
processing time per frame (excluding image likelihood evaluation) using 200 particles
as a function of the number of constraints. Unsurprisingly, rejection sampling does not
scale well with the number of constraints taking as much as 100 minutes for 15 DoF
constraints imposed by the 5 sensors. By contrast, our proposed sampling method takes
in the worst case (using 5 sensors) 0.016 seconds per frame. These findings show that
sampling directly from the manifold of valid poses is a much more efficient alternative.
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Fig. 14: Angular error for the left hip of a walking motion with (red) no sensor noise
model (NN), (blue) Gaussian noise model (GN) and (black) our proposed (MFN).

Fig. 15: Tracking results of a soccer sequence

Sensor Noise Model: To evaluate the influence of the sensor noise model, we
tracked one of the walking sequences in our dataset using no noise (NN), additive Gaus-
sian noise (GN) in the passive parameters and noise from the von Mises-Fisher (MFN)
distribution as proposed in Sect. 4.3. In Fig. 14 we show the angular error of the left
hip using each of the three methods. With (NN) error peaks occur when the left leg is
matched with the right leg during walking, see Fig. 7. This typical example shows that
slight misalignment (as little as 5◦−10◦) between video and sensor data can miss-guide
the tracker if no noise model is used. The error measure was 26.8◦ with no noise model,
13◦ using Gaussian noise and 7.3◦ with the proposed model. The error is reduced by
43% with (MFN) compared to (GN) which indicates that the von Mises-Fisher is a more
suited distribution to explore orientation spaces than the commonly used Gaussian. This
last result might be of relevance not only to model sensor noise but to any particle-based
HMC approach. Finally, pose estimation results for typical sequences of our dataset are
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shown in Fig. 9, 10, 11 and 15. A video of the proposed approach along with tracking
results can be found in the authors website 10.

6 Discussion and Limitations

State-of-the-art video trackers, either based on local or global optimization, suffer from
3D ambiguities inherent in video and usually fail to recover from errors. Our experi-
ments reveal that video based pose estimation algorithms benefit from using a set of
small IMUs, specially in outdoor scenarios where the image observation models are
weak and ambiguous. Nonetheless, combining inertial and video measurements poses a
difficult optimization problem that has to be dealt efficiently. Local optimization is fast
and accurate in indoor scenarios. However, our findings indicate that to integrate orien-
tation, (LS) is not suited in outdoor scenarios because it suffers from tracking failures
that occur frequently. Optimizing a global cost function (GS) is also not the best choice
since it yields an optimization in a high dimensional space which is computationally
more expensive. In particular, a high number of hypotheses have to be generated since
the search space volume is huge. Rejection sampling (RS) is not suited because it scales
very poorly with the number of constraints and the computational time grows exponen-
tially. Finally, we showed that the commonly used Gaussian Noise is outperformed by
the proposed von Mises-Fisher noise model when it comes to modeling orientation am-
biguities. The reason is that spherical sampling in the joint angle domain does not yield
spatially spherical joint configurations as opposed to sampling using (MF). Our pro-
posed method overcomes much of the described limitations: on the one hand the search
space is explored only in the region that satisfies the constraints, and on the other hand
sampling using Inverse Kinematics has a reinitialization power that overcomes track-
ing failures in many occasions. Unfortunately, the proposed method is limited by the
availability of IMUs. Even though the IMUs are very small and we use only five, they
are unavailable in several applications such as surveillance or MoCap and scene under-
standing from video archives. Another issue that requires improvement is robustness to
unsynchronization produced by the IMUs lag during fast motions. The performance of
our proposed tracker is still affected from such unsynchronization between IMUs and
the video cameras. Since IMUs do not provide any positional measurement, our tracker
fails when the body limbs (specially the arms) are not detectable due to long term oc-
clusions. Finally, even though we achieve considerable computational gains w.r.t opti-
mizing the full state space, evaluating the image cost function for every sample is still a
bottle neck. To further reduce computational time, an option would be to use very few
particles e.g. 25 and then locally optimize to obtain better accuracy. Although in this
work we have presented an algorithm to combine IMUs with video, the ideas shown
here are of significant relevance for the computer vision community. Firstly, the Inverse
Kinematics sampling scheme can be used to generate pose hypotheses that satisfy a set
of kinematic constraints (we leave extensions to positional constraints as interesting fu-
ture work). Secondly, the proposed sensor noise model can be used in any problem that
involves modeling or optimization of rotation elements.

10 http://www.tnt.uni-hannover.de/∼pons/
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7 Conclusions

By combining video with IMU input, we introduced a novel particle-based hybrid
tracker that enables robust 3D pose estimation of arbitrary human motions in outdoor
scenarios. As the two main contributions, we first presented an analytic procedure based
on Inverse Kinematics for efficiently sampling from the manifold of poses that fulfill
orientation constraints. Notably, we show how the IK can be solved in closed form
by solving smaller Paden-Kahan subproblems. Secondly, robustness to uncertainties in
the orientation data was achieved by introducing a sensor noise model based on the
von Mises-Fisher distribution instead of the commonly used Gaussian distribution. Our
experiments on diverse complex outdoor video sequences reveal major improvements
in the stability and time performance compared to other state-of-the art trackers. Al-
though in this work we focused on the integration of constraints derived from IMU, the
proposed sampling scheme can be used to integrate general kinematic constraints. In
future work, we plan to extend our algorithm to integrate additional constraints derived
directly from the the video data such as body part detections, scene geometry or object
interaction.
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