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Markerless Motion Capture of Multiple Characters
Using Multi-view Image Segmentation

Yebin Liu, Juergen Gall Member, IEEE , Carsten Stoll, Qionghai Dai Senior Member, IEEE ,
Hans-Peter Seidel, and Christian Theobalt

Abstract—Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting persons is a
very challenging task, even in a multi-camera setup, due to frequent occlusions and ambiguities in feature-to-person assignments.
In order to address this task, we propose a framework that exploits multi-view image segmentation. To this end, a probabilistic
shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given
the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton
pose optimization problem into a local one and a lower dimensional global one, is applied one-by-one to each individual, followed
with surface estimation to capture detailed non-rigid deformations. We show on various sequences that our approach can capture
the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging
multi-person motions, including dancing, wrestling, and hugging.

Index Terms—Markerless motion capture, multi-view video, multiple characters, image segmentation.
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1 INTRODUCTION
Markerless human motion capture has been studied for
several decades and is still a very active field of research
in computer vision [1], [2]. While tremendous amount
of progress has been made in skeleton pose estimation,
e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], many ap-
plications, including realistic character animation for games
and movies, require to capture time-varying geometry more
in detail, e.g., of soft tissue or garment. To this end, 3D
surface estimation methods have been proposed, e.g., [13],
[14], [15], [16]. However, tracking the full geometry over
time is more demanding on processing time and image
quality than skeleton-based methods. Therefore, a two-pass
approach has been proposed [17] that utilizes a skeleton
to increase the robustness of a mesh-based method [15].
In the first pass, a skeleton is semi-automatically fit into
the reconstructed visual hull for each frame. The second
pass deforms a template mesh according to the estimated
skeleton and refines the template to fit the silhouettes.

Our work is related to the approach [17], but instead of
using a two-pass approach we estimate the skeleton pose
and the mesh deformation together for a single frame. To
this end, we use a body model that is a combination of
a bone skeleton with joints, as well as a surface whose
deformation is only loosely coupled with the skeleton mo-
tion. In this way, the skeleton provides a low-dimensional
motion parametrization, which facilitates tracking of fast
movements of the body, and the skeleton pose estimation
benefits from the template mesh adaptation over time. Our
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Tübingen, Germany. E-mail: juergen.gall@tue.mpg.de

• C. Stoll, H.-P. Seidel, and C. Theobalt are with the Max Planck Institute
for Informatik, Saarbrücken, Germany.
E-mail: {stoll,hpseidel,theobalt}@mpi-inf.mpg.de

approach exceeds the performance of related methods from
the literature since both accurate skeleton and surface mo-
tion are found fully-automatically. Moreover, the captured
performances can be easily edited and used in animation
frameworks typical for games and movies, which are almost
exclusively skeleton based [18].

Another advantage of our approach is the ability to
capture multiple characters simultaneously. In contrast to
capturing only a single person, multi-person scenarios
impose additional challenges, in particular, frequent occlu-
sions and ambiguities in assigning commonly used features
like silhouettes, color, edges, or interest points to one
person. Therefore, only very few works [19], [20], [16]
have addressed this scenario and even in these works the
amount of physical contact between two characters is very
limited, e.g., hand shake of two persons.

In this work, we go beyond the abilities of related
methods since our approach captures the skeleton motion
and time-varying geometry of multiple, closely interact-
ing characters performing actions with frequent physical
contact like wrestling, dancing, or hugging. In order to
handle the high dimensionality of the pose parameters of all
persons and to resolve the feature-to-person assignments,
we employ a probabilistic multi-view image segmentation
to determine the image regions each person belongs to. To
this end, we use a 3D shape prior for segmenting interacting
characters that integrates the previously estimated poses and
shapes. The segmentation allows us to generate separate
silhouette contours and image features for each person,
which drastically reduces the ambiguities. This allows us
to perform pose and surface estimation efficiently and in
parallel for each performer.

Preliminary versions of this paper appeared in [21]
and [22]. While [21] introduced the approach for estimating
the skeleton pose and time-varying geometry of a single
character, [22] introduced the probabilistic multi-view im-
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age segmentation framework for capturing the motion of
two characters. The present paper gives a comprehensive
overview of the full system and extends the previous
approaches by the ability to handle more than two per-
sons. The system is also thoroughly evaluated, including
a quantitative evaluation of the impact of the 3D shape
prior and the color model on the segmentation accuracy, a
quantitative evaluation of the impact of the quality of the
template model on the pose and shape estimation, and a
qualitative evaluation on 23 multi-view video sequences.
The sequences comprise 13 sequences with a single person
or an animal, 7 sequences with two interacting persons,
and 3 sequences with three persons. The sequences were
recorded with 7 different camera setups and more than 20
different subjects performing a wide range of motions in a
variety of clothes.

2 RELATED WORK

Many approaches exist for human pose estimation either
from images or videos [1], [2] or from depth data [23],
[24]. We mention only the methods that are most related
to ours. For a more detailed discussion, we refer to the
books [2], [23].

Similar to the work of Bregler and Malik [4], we repre-
sent the kinematic chain of a human skeleton by twists.
In this case, the human motion can be linearized and
efficiently optimized by local optimization. In the literature,
several approaches for optimizing the pose parameters have
been proposed. For instance, stochastic meta descent for
local optimization has been used in [25]. Gavrila and
Davis [3] propose a search space decomposition where the
pose of each limb is estimated in a hierarchical manner
according to the kinematic chain. Starting with the torso
and keeping the parameters of the other limbs fixed, the
pose of each limb is locally searched in a low-dimensional
space one after another. This approach, however, propagates
errors through the kinematic chain such that the extremities
suffer from estimation errors of preceding limbs. Drum-
mond and Cipolla [26] iteratively propagate the distribu-
tions of the motion parameters for the limbs through the
kinematic chain to obtain the maximum a posteriori pose
for the entire chain subject to the articulation constraints.
Besides stochastic approaches [27], [5], global optimization
techniques like simulated annealing [28], [6] have been also
proposed to overcome the limitations of local optimization.
However, global optimization is still too expensive for large
data sets and skeletons with many degrees of freedom.

To increase the accuracy of human body models, implicit
surfaces based on metaballs [29], shape-from-silhouette
model acquisition [30], or the learned SCAPE body
model [31], [32] have been proposed. Most of these ap-
proaches model the human body without clothing. Balan
and Black [33] use SCAPE to estimate the human body
underneath clothes from a set of images. Tracking humans
wearing more general apparel has been addressed in [34]
where a physical model of the cloth is assumed to be
known.

In contrast to skeleton-based approaches, 3D surface
estimation methods are able to capture time-varying ge-
ometry in detail. Many approaches like [13], [14] rely
on the visual hull but suffer from topology changes that
occur frequently in shape-from-silhouette reconstructions.
Mesh-based tracking approaches, e.g., [35], [15], provide
frame-to-frame correspondences with a consistent topology.
Fitting a mesh model to silhouettes and stereo, however,
requires a large amount of correspondences to optimize the
high dimensional parameter space of a 3D mesh. This, in
turn, makes them more demanding on processing time and
image quality than skeleton-based methods.

Our approach for single person tracking is most similar
to the work of Vlasic et al. [17] where a two-pass approach
has been proposed. In the first pass, a skeleton is geomet-
rically fit into the visual hull for each frame. The second
pass deforms a template model according to the estimated
skeleton and refines the template to fit the silhouettes.
Despite visually appealing results, a considerable amount
of manual interaction is required in [17] (up to every 20th
frame) to correct the errors of the skeleton estimation. The
errors are caused by fitting the skeleton to the visual hull
via local optimization without taking a complete surface
model or texture information into account. In contrast, our
local-global optimization is fully-automatic and also works
on data of poor image quality. In [36], our approach has
been further extended to estimate not only surface and pose
parameters, but also the parameters of the skeleton. Another
extension has been proposed in [37] where the approach is
applied to depth data and camera poses are estimated in
addition.

Markerless motion capture of multiple performers has
only been considered in very few works. Cagniart et
al. [20], [16] use a patch-based approach for surface track-
ing of multiple moving subjects based on the visual hull
geometry. However, they do not provide skeleton motion
and the subjects are well separated and never interact
closely. Guillemaut et al. [38] propose a volumetric graph-
cut method for the segmentation and reconstruction of
multiple players in sports scenes like football games. This
approach reconstructs only a rough 3D shape of each
player, which is suitable for applications like 3D televi-
sion broadcast, but not for detailed performance capture.
Egashira et al. [19] propose a volumetric segmentation
on the visual hull of the scene to separate the persons.
However, when multiple persons are in physical contact,
volumetric segmentation of the visual hull is not as accurate
as image-based segmentation prior to 3D reconstruction.

A number of researchers have investigated methods for
tracking bounding boxes of multiple humans from a single
camera [39] or multiple cameras [40], [41], [42]. In the
very restricted context of pedestrians and only walking
motion, the skeleton motions of several persons have been
estimated in [43], [44]. Zhang et al. [45] present a joint
object detection, segmentation, and tracking approach to
segment a group of people into individual human objects
and track them across the video sequence using multi-
view video, without the estimation of skeleton motion and
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Fig. 1. Overview of our processing pipeline: (a) Articulated template models. (b) Input silhouettes. (c)
Segmentation. (d) Contour labels assigned to each person. (e) Estimated surface. (f) Estimated 3D models
with embedded skeletons.

surface geometry for each human.
Image segmentation techniques have been used for skele-

ton pose estimation of a single person in [46], [47], [48].
In [47], [48], the articulated pose of the previous frame is
used as shape prior for level-set segmentation and the pose
is either estimated within an analysis-by-synthesis frame-
work [48] or in combination with optical flow and SIFT
features [47]. Graph-cut segmentation is used in [46] where
a multi-view foreground image segmentation is coupled
with a simple stick model for pose estimation. For each time
instant, the method computes the segmentation costs for all
candidate poses and chooses the pose with minimal energy.
However, the pose estimates may sometimes be inaccurate
since the minimum cut cost does not necessary coincide
with the correct pose. In the case of multiple persons, this
may become even more of a problem since occlusions often
change the 2D topology.

3 OVERVIEW

We capture one or multiple human performers using syn-
chronized and calibrated cameras. For each input image,
foreground silhouettes are extracted by background sub-
traction. As in [17], we aim at estimating the skeleton
configuration (pose), consisting of the global rigid trans-
formation of the torso and the joint angles of the skeleton,
as well as non-articulated surface deformations (shape) that
can not be represented by a skeleton driven deformation.
Unlike previous work, we go beyond single person tracking
and capture pose and shape in the context of challenging
human-human interactions with physical contact.

An outline of the processing pipeline is given in Fig. 1.
Starting with the estimated poses and shapes of all persons
in the previous frame, the proposed algorithm estimates
the poses and the shapes in the current frame based on
the captured multi-view images and foreground silhouettes
(Fig. 1(b)). Since the whole space for the unknown pose
and shape parameters becomes very large for multiple
persons, we split the tracking problem into a multi-view
2D segmentation problem (Fig. 1(c,d)) and a 3D pose and
shape estimation problem (Fig. 1(e,f)). The segmentation
separates the persons in the image domain by assigning a
label to each foreground pixel. Then, based on the labeled
pixels, the pose and the shape are estimated for each person

independently. To facilitate understanding, we discuss the
pose and shape estimation given the segmentation first in
Sec. 4 and then introduce the multi-person motion capture
approach with segmentation in Sec. 5.

4 POSE AND SHAPE ESTIMATION

The body model of each human character consists of two
components, a 3D triangle mesh surface model S with 3D
vertices Vi and an underlying bone skeleton as shown in
Fig. 1 (a). The configuration of the skeleton is represented
by a set of twists θj ξ̂j ∈ se(3) as in [4]. Each twist can be
converted into a rigid body motion using the exponential
map: exp(θj ξ̂j) ∈ SE(3). For more details on the twist
representation, we refer to [49].

Each vertex Vi is associated to a bone m with a skinning
weight αi,m, where

∑
m αi,m=1. Since each bone m is

influenced by nm out of totally N joints, the transformation
of a vertex Vi with blend skinning is given by

Ti(Θ)Vi = DLB (αi,m;Tm(Θ))Vi, (1)

Tm(Θ) =

nm∏
j=0

exp
(
θιm(j)ξ̂ιm(j)

)
, (2)

where DLB computes the weighted mean of the trans-
formations Tm(Θ) using dual quaternion skinning [50].
The mapping ιm represents the order of the joints in the
kinematic chain. Since the joint motion depends only on
the joint angle θj , the state of a kinematic chain is defined
by a parameter vector Θ := (θ0ξ0,Θjoints) ∈ Rd that
consists of the six parameters for the global twist θ0ξ̂0 and
the joint angles Θjoints := (θ1, . . . , θN ). While the joints
are manually placed into each mesh, the skinning weights
αi,m are automatically computed using the approach [51].

An outline of the pose and surface estimation is given
in Fig. 2. Starting with the estimated mesh and skeleton
from the previous frame, the skeleton pose is optimized
as described in Sec. 4.1 such that the projection of the
deformed surface fits the image data in an optimal way
(Fig. 2 (b)). Since this step only captures deformations
that can be approximated by articulated surface skinning
(Fig. 2 (c)), the non-rigid surface is subsequently refined
as described in Sec. 4.2 (Fig. 2 (d)). The estimated refined
surface and skeleton pose serve as initialization for the next
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Fig. 2. Using the estimated surface of the previous frame, the pose of the skeleton (b) is optimized such that
the deformed surface (c) fits the image data (a). Since skeleton-based pose estimation is not able to capture
garment motion (c), the surface is refined to fit the silhouettes (d).

Algorithm 1: Pose and shape estimation of one person.
Data: Surface St = {V t

i } and pose Θt of frame t;
silhouettes {Fc} of frame t+ 1; matched SIFT
features between frames t and t+ 1.

Result: Surface St+1 and pose Θt+1.
begin

Skeleton-based pose estimation (Sec. 4.1)
Compute correspondences (V t

i , xi)
Get Θt+1 by solving (4)
Compute errors Em(Θt+1) for all limbs m (5)
if ∃m : Em(Θt+1) > Ē then

Update Θt+1 = P−1(Θ̃) by solving (6)

Deform surface by V t+1,p
i = Ti(Θ

t+1)V t
i (1)

Surface refinement (Sec. 4.2)
Compute correspondences (V t+1,p

i , xi)

Estimate surface V t+1,r
i by solving (10)

Update surface by V t+1
i =λV t+1,r

i +(1−λ)V t+1,p
i

frame to be tracked (Fig. 2 (e)). The approach for pose and
surface estimation is summarized in Algorithm 1.

4.1 Skeleton-based Pose Estimation

Since local pose optimization is prone to get stuck in
local minima of the energy function and global pose
optimization is very expensive, our method estimates poses
in two phases. The first phase searches for the nearest local
minimum of an energy functional that assesses the model-
to-image alignment based on silhouettes and texture fea-
tures (Sec. 4.1.1). In the second phase, misalignments are
detected and resolved by global optimization (Sec. 4.1.2).

4.1.1 Local Optimization
For estimating the pose parameters Θ, a sufficient set of
point correspondences between the 3D model, Vi, and the
current frame, xi, is needed. For the local optimization, we
rely on silhouette contours and texture. Contour correspon-
dences are established between the projected surface and
the image silhouette by searching for closest points between

the respective contours. Texture correspondences between
two frames are obtained by matching SIFT features [52].
In both cases, the 2D correspondences are associated with
a projected model vertex Vi yielding the 3D-2D correspon-
dences (Vi, xi). In the contour case, xi is the point on the
image contour closest to the projected vertex location vi
in the current frame. In the texture case, xi is the 2D
location in the current frame that is associated with the
same SIFT feature as the projected vertex Vi in the previous
frame. Since each 2D point xi defines a projection ray that
can be represented as Plücker line Li = (Di,Mi)

1 [53],
the error of a pair (Tmi(Θ)Vi, xi) is given by the norm
of the perpendicular vector between the line Li and the
transformed point Tmi(Θ)Vi:

∥Π(Tmi(Θ)Vi)×Di −Mi∥2 , (3)

where Π denotes the projection from homogeneous co-
ordinates to non-homogeneous coordinates. In contrast to
(1), the skinning weights are not used and mi is the limb
with the highest skinning weight, i.e., argmaxm αi,m. The
resulting least squares problem with weights wi for the
correspondences,

argmin
Θ

1

2

∑
i

wi ∥Π(Tmi(Θ)Vi)×Di −Mi∥22 , (4)

can be solved iteratively and linearized by using the Taylor
approximation exp(θξ̂) ≈ I + θξ̂, where I denotes the
identity matrix. In order to stabilize the optimization, the
linear system is regularized by βθj = βθ̂j where θ̂j is the
predicted angle from a linear 3rd order autoregression and
β is a small constant. Since the optimization regards the
limbs as rigid structures, the mesh is updated between the
iterations by dual quaternion blending (1) to approximate
smooth surface deformations.

While contour correspondences are all weighted equally
with wC

i = 1, the texture correspondences have higher
weights wT

i during the first iteration since they are more
stable under large displacements. For the first iteration,
we set the weights such that

∑
i w

T
i = α

∑
i w

C
i with

1. A Plücker line L = (D,M) is determined by a unit vector D and
a moment M , where X ×D −M = 0 for all points X on the line.
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Fig. 3. Although local optimization is prone to errors,
often only a single branch of the kinematic chain is
affected (a). This reduces the computational burden
for global optimization since it can be performed in a
lower dimensional subspace to correct the estimation
error (b). After detecting misaligned limbs (red circle),
the kinematic chain is traversed (red arrows) to label
bones and associated joints that have to be globally
optimized (c,d).

α = 2.0. This means that the impact of the texture features
is twice as high as the contour correspondences. After the
first iteration, the solution will already be close to the
nearest local minimum such that the texture features can be
down-weighted by α = 0.1. In addition, obvious outliers
are discarded by thresholding the re-projection error of the
texture correspondences.

4.1.2 Particle-Based Global Optimization
After the local optimization has converged to a solution
Θ, the error for each limb is evaluated individually. Since
each correspondence is associated with one limb m, the
limb-specific energy is obtained by

Em(Θ)=
1

Z

∑
{i;mi=m}

∥Π(Tmi(Θ)Vi)×Di −Mi∥22 , (5)

where only contour correspondences are used and Z =
|{i;mi = m}|. When the energy exceeds a given threshold
Ē, the affected limb is labeled as misaligned. While large
values for Ē increase the runtime, low values increase the
risk to get stuck in a local minimum. In our experiments,
we found that thresholds above 400, corresponding to a
RMSE error of 20mm, give good results. In addition, the
preceding limb in the kinematic chain is also labeled when
the joint between the limbs has less than three degrees of
freedom (e.g., knee or elbow) as illustrated in Fig. 3. For
instance, a wrong estimate of the shank might be caused
by a rotation error along the axis of the thigh.

After labeling the joints of the misaligned limbs, the
parameter space of the skeleton pose Rd is projected onto
a lower dimensional search space P (Θ) → Θ̃ ∈ Rh with
h ≤ d by keeping the parameters of the non-labeled joints
fixed. In order to find the optimal solution for Θ̃, we
minimize the energy

argmin
Θ̃

{
ES(P

−1(Θ̃)) + γ ER(Θ̃)
}

. (6)

While the first term measures the silhouette consistency
between the projected surface and the image, the second

term penalizes deviations from the predicted pose and
serves as a weak smoothness prior weighted by γ = 0.01.

The silhouette functional ES(P
−1(Θ̃)) is a modification

of the Hamming distance. Using the inverse mapping Θ =
P−1(Θ̃) as new pose, the surface model is deformed by (1)
and projected onto the image plane for each camera view
c, denoted by Bc(Θ). As shown in Fig. 4(b), the projection
encodes the body parts of all persons.

The consistency error between the segmented silhouette
Fc of a person and a projection Bc(Θ) of its model is
measured pixel-wise by

ES(Θ) =
1

|{c}|
∑
c

∑
i

dc,i(Θ) (7)

with the general bi-directional distance:

dc,i(Θ) = IF (Fc,i, Bc,i(Θ)) gF (Fc,i, Bc,i(Θ))

+ IB (Bc,i(Θ), Fc,i) gB (Bc,i(Θ), Fc,i) . (8)

While I is an indicator function of an error, g specifies
the cost of an error. The first term measures how well the
silhouette data is explained by the model. In detail, IF (f, b)
is only one if f belongs to the silhouette of the person and
b is not a projected body part of the person. In this case,
the error is measured by gF (f, b) =

λ
ZF

where λ = 80 is
a constant and ZF denotes the area of the silhouette. The
second term measures how well the projection is explained
by the silhouette. Hence, IB(b, f) is only one if b is a body
part that was visible in the previous frame and f is not part
of the silhouette. In this case, gB(b, f) =

d(f)
ZB

where d(f)
denotes the distance to the closest point on the silhouette
Fc and ZB the area of the visible body parts. The explicit
handling of occlusions is necessary since the pose of each
person is estimated individually. Furthermore, gF uses in
contrast to gB a weaker, namely constant, cost model due
to efficiency.

The second term of the energy function (6) introduces
a smoothness constraint by penalizing deviations from the
predicted pose Θ̂ in the lower dimensional space:

ER(Θ̃) = ∥Θ̃− P (Θ̂)∥22. (9)

Since we seek for the globally optimal solution for
Θ̃ ∈ Rh, we use a particle-based global optimization
approach [54], [6]. The method is appropriate to our
optimization scheme since the computational effort can be
adapted to the dimensions of the search space and the
optimization can be initiated with several hypotheses. It
uses a finite set of particles to approximate a distribution
whose mass concentrates around the global minimum of
an energy function as the number of iterations increases. In
our setting, each particle represents a single vector Θ̃ in the
search space that can be mapped to a skeleton pose by the
inverse projection P−1. The computational effort depends
on two parameters, namely the number of iterations and
the number of particles. While the latter needs to be scaled
with the search space, the number of iterations can be fixed.
In our experiments, we have used 15 iterations and 20 ∗ h
particles with a maximum of 300 particles. These limits are
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necessary to have an upper bound for the computation time
per frame. Furthermore, the optimization is performed on
the whole search space when more than 50% of the joints
are affected. It usually happens when the torso rotation
is not well estimated by the local optimization which is,
however, rarely the case.

The initial set of particles is constructed from two
hypotheses, the pose after the local optimization and the
predicted pose. To this end, we uniformly interpolate be-
tween the two poses and diffuse the particles by a Gaussian
kernel.

4.2 Surface Refinement

Since quaternion blend skinning is based on the overly sim-
plistic assumption that the surface deformation is explained
only in terms of an underlying skeleton, the positions of
all vertices need to be refined to fit the image data better
as illustrated in Fig. 2(c,d). To this end, we abandon the
coupling of vertices to underlying bones and refine the
surface by an algorithm that is related to the techniques
used by de Aguiar et al. [15] and Vlasic et al. [17]. As
in Sec. 4.1, we extract contour correspondences (Vi, xi)
from all views c, but we minimize the error in the image
domain instead of the 3D space for better accuracy. This
makes the linear system to be solved for the refined surface
more complex, as we have to solve for all three dimensions
concurrently rather than sequentially. On the other hand
this gives the deformation further degrees of freedom to
adapt to our constraints in the best way possible. Using
a Laplacian deformation framework [55], we refine the
surface Sp, obtained from skeleton-based pose estimation
(Sec. 4.1), by solving the least-squares problem

argmin
Sr

{ ∑
V r∈Sr

∥LV r−LV p∥22+α
∑
i

∥P ciV r
i −xi∥22

}
,

(10)
where L is the cotangent Laplacian matrix [55] and V p are
the vertex positions of the previous surface Sp correspond-
ing to V r. While the first term preserves the differential
properties of the previous mesh, the second term, weighted
by α, aims at minimizing the error of the correspondences.
Given the 3 × 4 projection matrix P c of a camera c, split
into its translation vector T c and the remaining 3 × 3
transformation N c, we can express a silhouette alignment
constraint of the second term using two linear equations:

(N c
1 − xi,1N

c
3 )Vi = −T c

1 + xi,1T
c
3

(N c
2 − xi,2N

c
3 )Vi = −T c

2 + xi,2T
c
3

(11)

Here the subscripts l of Nl, xi,l, and Tl correspond to
the respective rows of the matrix or entry of the vector.
These equations force the vertex to lie somewhere on the
ray going through the camera’s center of projection and
the pixel position xi. Since the error of this constraint is
depth-dependent and thus not linear in the image plane,
we weight each constraint such that the error is 1 for
a single pixel difference at the original vertex position.
Enforcing too high weights for our constraints may lead

Algorithm 2: Pose and shape estimation of multiple
persons.
Data: Surfaces St

k and poses Θt
k of frame t for all

persons k; images {Ic} and silhouettes {Fc} of
frame t+ 1; matched SIFT features between
frames t and t+ 1.

Result: Surfaces St+1
k and poses Θt+1

k .
begin

Multi-person segmentation (Sec. 5)
Compute 3D shape prior (22)
foreach c do

Compute ϕ(Ic|{St
k}, {Θt

k}, li=k) (15), (17)
Get labels Lc by optimizing (12)
Label contours (Sec. 5.3)

Pose and shape estimation (Sec. 4)
foreach k do

Estimate St+1
k and Θt+1

k using Algorithm 1.

to an overadaptation in presence of inaccurate silhouettes.
We therefore perform several iterations of the deformation,
using lower weights. As the silhouette points on the mesh
may change after a deformation, we have to recalculate
the correspondences following each deformation. In all our
experiments, we performed 8 iterations and used weights of
α = 0.5. The estimation for the next frame is then initiated
with the estimated skeleton and an adapted surface model
which is obtained by a linear vertex interpolation between
the mesh from skeleton pose estimation Sp and the refined
mesh Sr, i.e., Vi = λV r

i + (1− λ)V p
i . In general, a small

value λ = 0.1 is sufficient and enforces mesh consistency.

5 MULTI-PERSON SEGMENTATION

Before estimating the pose and shape, we label the fore-
ground pixels according to which person they belong to
(Fig. 1(b,c)). To this end, we integrate appearance, pose,
and shape information into a MAP-MRF [56] optimization
framework to achieve segmentations that are both efficient
and robust for human motion capture under serious oc-
clusions and ambiguous appearance. The full approach for
multi-person pose and surface estimation with multi-person
segmentation is outlined in Algorithm 2.

5.1 Multi-view Image Segmentation
For determining the pixel labels in each image I , we
resort to MAP inference in a Markov Random Field. Previ-
ous MRF-based image segmentation methods use standard
appearance-based likelihood terms, as well as smoothness
potentials. In our work, we exploit our knowledge about the
3D shape of each performer k at the previous time instant to
assign each pixel i a label li = k by optimizing an energy
of the form:

Ψ(L)=
∑
i

ϕ(I|{Sk}, {Θk}, li)+
∑
j∈Ni

γ(I|li, lj)

. (12)
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The solution of this multi-label problem L is obtained by
graph cuts [56].

While the unary potential ϕ(I|{Sk}, {Θk}, li), which
fuses appearance, pose, and shape information of all per-
sons, is specific to multi-person motion capture (Sec. 5.2),
the pairwise potentials γ(I|li, lj)=ϕ(I|li, lj)+ψ(li, lj),
which are computed over a neighborhood Ni of 8-
connected pixels, are commonly used in image segmen-
tation.

As in [57], [46], ϕ(I|li, lj) is a contrast term, which
favors pixels with similar color having the same label:

ϕ(I|li, lj)=

{
µ

S(i,j) exp
(

−||Ii−Ij ||2
2σ2

)
if li ̸= lj ,

0 if li = lj ,
(13)

where ||Ii−Ij ||2 measures the difference in the color values
of pixels i and j and S(i, j) is the spatial distance between
the pixels. In addition, an observation independent smooth-
ness prior in the form of a generalized Potts model [58] is
used:

ψ(li, lj) =

{
κi,j if li ̸= lj ,
0 if li = lj .

(14)

5.2 Appearance, Pose, and Shape
Since the appearance of humans is often very similar,
e.g., skin or hair color, commonly used appearance models
for image segmentation are too weak to segment several
persons that are very close and occlude each other. In our
case, however, the poses Θ = {Θk} and shapes S = {Sk}
of all persons have been recovered in the previous frame,
which are strong cues that can be integrated as shape priors
for segmentation. We therefore model the unary potential
ϕ(I|S,Θ, li) not only conditioned on the label li but also
on S and Θ:

ϕ(I|S,Θ, li) ∝ − logP (I|S,Θ, li). (15)

Since the appearance of the body usually comprises
various colors and the color distribution of the whole body
is often not discriminative enough to distinguish different
persons, we use a color model for each body part. The
intuition behind this is that the color distribution is usually
consistent for a body part but varies strongly between
different body parts, e.g., while hands are typically skin
colored, other parts like upper body or legs are often
covered by clothes of a specific color. We therefore model
the appearance locally on the surface of each person and
integrate shape priors for each person into a common
multi-view segmentation approach. We model the person’s
appearance for each of the body parts Bj

k as:

P (I|S,Θ, li) = (16)∑
j

P (I|i ∈ Bj
k, S,Θ, li)P (i ∈ Bj

k|S,Θ, li).

P (i ∈ Bj
k|S,Θ, li) is a shape prior modeling the probability

that a pixel i belongs to body part Bj of person k. This term
will be described in Sec. 5.2.1. Since the appearance of a

pixel depends only on the body part, (16) can be simplified
as

P (I|S,Θ, li)=
∑
j

P (I|i ∈ Bj
k)P (i ∈ Bj

k|S,Θ, li). (17)

The color term P (I|i ∈ Bj
k) ∝ P (Ii|Hj

k) measures the
consistency of the color Ii of a pixel i with the color
distribution Hj

k for body part Bj of person k. The color
distributions Hj

k are modeled in the RGB color space using
Gaussian Mixture Models (GMMs). Since the appearance
of the person may change over time due to the change in
illumination, the color distribution Hj

k is updated during
tracking by estimating the GMMs from the labeled pixels
of the first and the previous tracked frame.

Fig. 4 illustrates the impact of the terms used for
segmentation. While the labels of the three persons are
illustrated by the colors red, green, and blue, the color
values represent the probability of a pixel belonging to
each person. Fig. 4(c) shows that a single color model for
each person is insufficient. The skin colored regions, hair,
and the legs are not well associated to one person. Using
the body part appearance model (Fig. 4(b,d)) improves
the probability maps, but there are still some ambiguities
at the legs. The shape prior (Fig. 4(e)) is a strong cue
although there are still many regions with low confidence,
indicated by the dark colors. The probability maps and
the segmentation using the full model (17) are shown in
Fig. 4(f,g). Minor ambiguities are removed by the pairwise
potentials in (12).

5.2.1 3D Shape Prior

The shape prior P (i ∈ Bj
k|S,Θ, li) in (17) encodes an

a-priori probability for assigning a body part label Bj
k

for each pixel i, and therefore encodes the probability
to which person k it belongs to. As in previous work,
this probability can be modeled by projecting each body
model and diffusing the projected body parts in the 2D
image domain to obtain a shape prior for all persons.
This can be implemented by either projecting each person
independently and combining the priors or by projecting
all persons together. While the first approach does not
handle occlusions at all (Fig. 5(b)), the second approach
gives zero probability to parts that were occluded but
reappear in the current frame. For instance, the right arm
of the woman (green) has zero probability (Fig. 5(c))
although the arm reappears in this frame (Fig. 5(e)). This
shows that projecting 3D shapes to the image domain and
then modeling the shape priors based on 2D distances is
incorrect. We therefore model the shape prior in the 3D
space and project the probabilistic 3D prior to the image
domain. As shown in Fig. 5(d,e), the 3D shape prior gives
a reasonable probability map for image segmentation.

To this end, we model the shape prior using the posterior
probability of the poses P (Θ|I, S) given the silhouette
images I of all views and the estimated shapes S of the
persons. In order to sample new pose configurations Θ in
the current frame for all the persons, we use importance
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Segmentation with shape and appearance information. (c)-(f) show the probability maps calculated
according to different terms. (a) Input image after background subtraction. (b) Projections of the body parts Bj

k.
(c) Color term using a whole body appearance model. (d) Color term using the body part appearance model. (e)
Shape prior. (f) Combined shape prior and body part appearance model (17). (g) Segmentation result from (f).

Fig. 5. Comparison of shape priors using 2D shape
diffusion and 3D shape posterior. Tracked model from
previous time step (a). Combining the 2D diffused
shape priors for two persons yields ambiguities due to
occlusions (b). When occluded pixels are removed be-
fore 2D diffusion, the obtained shape prior (c) will give
zero probability to the part (right arm of the woman)
that is occluded in the previous frame. In contrast, the
proposed 3D shape diffusion gives a better probability
in this region (red ellipse) (d), which leads to a better
segmentation (e).

sampling [59]:

P (Θ|I, S) ∝ P (I|Θ, S)P (Θ), (18)

where we take the shapes from the previous frame and
rely only on linear blend skinning as for the skeleton-
based pose estimation (Sec. 4.1). The pose parameters Θ
are predicted from a Gaussian distribution P (Θ) with mean
corresponding to the previously estimated pose parameters.
The likelihood term P (I|Θ, S) measures the importance of
each sample through consistency evaluation of the projected
surfaces Bc(Θ) and the foreground silhouettes Fc for all
views c:

P (I|Θ, S) ∝ exp

(
−
∑
c

∑
i

d′c,i(Θ)

)
, (19)

where d′c,i(Θ) is the general bi-directional distance as in
(8):

d′c,i(Θ) = I ′F (Fc,i, Bc,i(Θ)) g′F (Fc,i, Bc,i(Θ))

+ I ′B (Bc,i(Θ), Fc,i) g
′
B (Bc,i(Θ), Fc,i) . (20)

In contrast to the pose and shape estimation that is per-
formed for each person independently based on the labeled
foreground silhouettes (Sec. 4), Fc contains the unlabeled
foreground silhouettes of all persons (Fig. 4(a)) and the
projection Bc(Θ) contains the body parts of all persons
(Fig. 4(b)). Hence, the indicator function I ′B(b, f) does not
need an explicit handling of occlusions and is therefore
only one if b is a body part and f is not part of the
silhouette. I ′F (f, b) is, as previously, only one if f belongs
to the silhouette of the person and b is not a projected
body part of the person. The error cost functions g′ are
defined by g′F (f, b) = 1 and g′B(b, f) =

Zk

Zb
, where Zb is

the area of the body part b belongs to and Zk the area of
the corresponding person k. Zk

Zb
equalizes the impact of all

body parts independent of their size to avoid that parts with
small regions are dominated by parts with large regions as
shown in Fig. 6.

To approximate P (i ∈ Bj
k|S,Θ, li), we therefore draw a

set of samples {Θn} from P (Θ) and weight them by

wn =

exp

(
−
∑
c

∑
i

d′c,i (Θ
n)

)
∑

n exp

(
−
∑
c

∑
i

d′c,i (Θ
n)

) . (21)

Hence, the shape prior for assigning a pixel i the body part
label bjk for person k in (17) becomes:

P (i ∈ Bj
k|S,Θ, li) =

∑
n

wn · δbjk(Bc,i(Θ
n)), (22)

δbjk
(Bc,i(Θ

n)) =

{
1 if Bc,i(Θ

n) = bjk,

0 otherwise,
(23)

where c is the corresponding view. Since several poses
lead to similar projections, good estimation results can be
achieved with a relatively low number of samples, despite a
39×K-dimensional space for Θ with K being the number
of persons. In our experiments, we found 300 samples
enough for a reasonable approximation of the shape prior.

5.2.2 Resolving Intersections
The evaluation of Θn in (21) requires the projection of
the meshes. When the interacting persons are close to each
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Fig. 6. Impact of the body part dependent cost factor
Zk

Zb
for g′B(b, f) (20). (a) Shape prior with g′B(b, f) = 1.

(b) Shape prior with g′B(b, f) = Zk

Zb
. (c) Segmentation

with g′B(b, f) = 1. (d) Segmentation with g′B(b, f) =
Zk

Zb
.

other, the sampling from P (Θ) might generate meshes that
intersect with each other in 3D. For instance, over 80% of
the samples have slight or serious intersections in some of
the sequences shown in Fig. 11. Although we can define
P (Θ) to generate only meshes without intersections, the
additional intersection tests and constraints would make the
sampling procedure extremely time consuming.

To obtain a reliable shape prior without intersection
test, a simple yet efficient rendering approach is applied.
Fig. 7(a) shows an example where the right hand of a
person intersects the chest of the other person, removing its
contribution to the data term (Fig. 7(b)). When this happens
for several samples, the shape prior (22) becomes inaccurate
and segmentation errors occur (Fig. 7(c,d)). However, when
rendering using front-face culling, only mesh facets that are
not facing the camera are rendered, making the hand visible
even inside of the body (Fig. 7(e)). We also observe that
front-face culling may produce inaccurate labeling between
body parts belonging to the same person. For example, the
marked red pixel on the face in Fig. 7(e) is inconsistently
labeled as belonging to the chest. We therefore generate for
each sample Θn and view c two projections Bc and B̃c,
one with normal rendering and one with front-face culling.
For each pixel i, the label Bc,i is then only changed to
B̃c,i if the labels Bc,i and B̃c,i correspond to two different
persons. Otherwise, the label remains unchanged. While
this procedure does not resolve the intersection problem
accurately and can create additional artifacts, it improves
the shape prior and the corresponding segmentation as
shown in Fig. 7(f,g) with very low computational overhead.

5.3 Contour Labeling
After having labeled each pixel in the input images
(Fig. 1(c)), we assign boundary pixels of the segmented
regions to the correct person (Fig. 1(d)). There are two
types of boundary pixels to be assigned. The first type
of pixels lies on the boundary between a person and the
background, which can be easily assigned to the correct
person. Boundary pixels in regions where two or more
persons overlap get the label of the person whose boundary
region is closest to the camera. To this end, we evaluate the
depth values of the projected models in a neighborhood

Fig. 7. Resolving intersections. (a) Intersection be-
tween two persons. The hand is inside the chest. (b)
Standard projection. (c) Corresponding data term and
(d) Segmentation from (c). (e) Projection with front-face
culling. (f) Data term combining both projections. (g)
Corresponding segmentation.

of the boundary pixel and take the label with the lowest
average depth.

6 EXPERIMENTS

We have evaluated our approach quantitatively and qualita-
tively on 13 sequences with a single person or animal, 7 se-
quences containing two persons interacting with each other,
and 3 sequences with three persons. The 23 sequences
consist of over 9000 frames of multi-view video. While 4
sequences have been newly recorded, the other sequences
have been used in previous publications [13], [17], [15],
[21], [1], [22]. The sequences cover a wide range of differ-
ent motions, including dancing, fast fighting, and jumping.
An overview of all sequences is given in Table 1. Examples
of the sequences with two or three persons are shown
in Fig. 11. The sequences include performances by 20
different subjects wearing casual apparel, from tight jeans
and t-shirt to wide skirts. For the quantitatively evaluation,
we use the HumanEva benchmark [1] and an evaluation
sequence where one of the persons was simultaneously
tracked by a marker-based motion capture system, yielding
ground-truth data. The number of cameras in each sequence
varies between 4 and 12 cameras, with frame rates between
15fps and 60fps. The 3D surface models have either been
acquired using a full body laser scanner or using multi-view
stereo reconstruction. In the experiments, we also evaluate
the impact of the quality of the body model. In Sec. 6.1,
we first evaluate the pose and shape estimation (Sec. 4)
independently of the multi-person segmentation. The full
approach for capturing multiple persons interacting with
each other is then evaluated in Sec. 6.2. More experimental
results are accompanied in the submitted supplemental
videos.2

2. Videos of the preliminary versions [21], [22] are available at http://
www.youtube.com/watch?v=qCz68ukbZ7k and http://www.youtube.com/
watch?v=j4Zuj82FeLo.
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TABLE 1
Sequences used for evaluation.

Sequence K1 F1 fps C1 resolution
Handstand 1 401 40fps 8 1004 × 1004

Wheel 1 281 40fps 8 1004 × 1004
Dance 1 574 40fps 8 1004 × 1004
Skirt 1 721 40fps 8 1004 × 1004
Dog 1 60 40fps 8 1004 × 1004

New-dance2 1 1000 45fps 12 1296 × 972
Crash 2 250 45fps 11 1296 × 972

Couple-dance 2 300 45fps 11 1296 × 972
Jump 2 250 45fps 11 1296 × 972
Hug 2 200 45fps 11 1296 × 972
Hit 2 200 45fps 12 1296 × 972

Wrestle 2 200 45fps 12 1296 × 972
Fight (marker) 2 500 45fps 12 1296 × 972

Crossover2 3 200 15fps 12 1024 × 768

Bend2 3 200 15fps 12 1024 × 768

Hop2 3 200 15fps 12 1024 × 768

Lock [13] 1 250 25fps 8 1920 × 1080
Capoeira1 [15] 1 499 25fps 8 1004 × 1004
Capoeira2 [15] 1 269 25fps 8 1004 × 1004

Jazz Dance [15] 1 359 25fps 8 1004 × 1004
Skirt1 [15] 1 437 25fps 8 1004 × 1004
Skirt2 [15] 1 430 25fps 8 1004 × 1004

HuEvaII S4 [1] 1 1258 60fps 4 656 × 490

1 Number of persons (K), frames (F), and cameras (C).
2 Newly captured sequences.

6.1 Pose and Shape Estimation

We evaluated the pose and shape estimation approach
(Sec. 4) on 13 sequences of subjects performing different
motions. These sequences include low quality sequences
with few cameras, such as the HumanEvaII benchmark [1],
as well as high resolution sequences with more cameras
where the subjects perform fast and challenging motions.
To show that our method is not limited to capturing humans,
we also tracked the motion of a small dog. Our local-
global optimization approach is able to track all sequences
successfully without any manual intervention. Even the
challenging lock sequence [13] can be tracked fully au-
tomatically using our method, whereas the approach [17]
requires a manual pose correction for 13 out of 250 frames.

Fig. 8. Visual comparison of our approach with [15].
(a) Input image. (b) Tracked surface mesh from [15]. (c)
Tracked surface mesh with lower resolution obtained by
our method. Our approach estimates the human pose
more accurately.

A visual comparison with a mesh-based method [15] is

Fig. 9. Visual comparison of skeleton-based pose
estimation, mesh-based surface estimation, and the
proposed coupled approach. (a) Input image. (b) Esti-
mated surface mesh with skeleton-based pose estima-
tion. (c) Estimated surface mesh with mesh tracking.
(d) Estimated surface mesh with proposed approach.

shown in Fig. 8. While [15] estimates the apparel but not
the human pose well, in particular the orientations of the
extremities like head and feet, our approach benefits from
the underlying skeleton model and estimates the pose and
shape accurately. In order to validate the benefit of coupling
pose estimation and surface estimation in a direct compari-
son, we compared our approach with two variants. As most
previous work, the first variant performs only skeleton-
based pose estimation (Sec. 4.1) without surface estimation.
The second variant estimates only the surface (Sec. 4.2) and
is therefore comparable to a mesh-based method as [15].
A visual comparison is shown in Fig. 9. As shown in
Fig. 9(b), the linear blend skinning of the pose estimation
does not capture the motion of the shirt and the trousers.
Since the surface model does not fit perfectly, the residual
error of each limb m after the local optimization, cf. (5),
becomes larger and the global optimization is triggered
more often. In this case, the amount of global optimization
increased from 8% using the proposed approach (Fig. 9(d))
to 68%.3 Although the global optimization takes care that
the pose does not get lost, the computation time greatly
increases. The mesh-based approach without utilizing a
skeleton completely fails to capture the arms as shown in
Fig. 9(c). A quantitative comparison of skeleton-based pose
estimation, mesh tracking, and the proposed approach is
given in Sec. 6.2.3.

In contrast to [15] and [17], our single person mo-
tion tracking algorithm can also handle medium-resolution
multi-view sequences with extremely noisy silhouettes like
the HumanEvaII benchmark [1]. The dataset provides
ground truth for 3D joint positions of the skeleton that has
been obtained by a marker-based motion capture system
that was synchronized with the cameras. The sequence S4
with three subsets contains the motions walking, jogging,

3. The sequence contains 1000 frames and tracking the sequence with
one person would require to estimate 39 × 1000 parameters in total.
Due to the local-global optimization scheme, only a percentage of these
parameters need to be estimated by global optimization whereas the other
parameters are estimated by local optimization.
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Fig. 10. Comparison of various optimization schemes.
The bars show the average error and standard de-
viation of the joint positions of the skeleton for
the S4 sequence of the HumanEva benchmark.
The three sets cover the frames 2 − 350 (walk-
ing), 2 − 700 (walking+jogging), and 2 − 1258 (walk-
ing+jogging+balancing). Despite of the use of SIFT
features, the error of the local optimization is signifi-
cantly higher in comparison to schemes that include a
particle-based global optimization approach (PB).

and balancing. The average errors for all three subsets
are given in Fig. 10. The plot shows that our method
provides accurate estimates for the skeleton pose, but
it also demonstrates the significant improvement of our
optimization scheme compared to local optimization. We
also compared our optimization scheme to a particle-based
global optimization without local optimization. The global
optimization with 15 iterations and 300 particles is not
only slower, the error is also slightly higher. Although this
seems to be counterintuitive, it can be explained by the
different objective functions that are optimized. While local
optimization minimizes the error of the contour and SIFT
correspondences (4), the global optimization minimizes a
very simple, pixel-wise consistency measure (7). The error,
however, becomes similar when both methods use only
silhouettes, i.e., when SIFT features are not used by our
approach, even though the objective functions are still
not the same. Since our approach switches between local
and global optimization and therefore between different
objective functions, the standard deviation over frames is
higher for our approach compared to the particle-based
global optimization that estimates the pose more con-
sistently over frames. In Sec. 6.2.3, we show that the
difference between the two objective functions becomes
smaller for high-resolution multi-view sequences with less
noisy silhouettes.

6.2 Multi-Person Tracking

To evaluate the proposed approach for multi-person motion
capture, we used 10 sequences containing two or three
persons closely interacting with each other. Fig. 11 shows
for each sequence one frame with segmentation results

Fig. 12. (a) Input image after background subtraction.
(b) Motion capture without segmentation. (c) Motion
capture with segmentation. Without segmentation, fea-
tures are assigned to the wrong model which leads to
significant errors.

and estimated skeleton poses and surface meshes. More
results are shown in the supplemental video. Although
the sequences are very challenging due to fast motions,
severe occlusions, and appearance similarities, our approach
provides accurate and visual appealing results. In particular,
the segmentation results are very robust due to the 3D shape
prior. For instance, the legs of the persons in the sequences
Wrestle and Hug are correctly labeled even though both
persons wear trousers of nearly the same color. Moreover,
the feet in Hop and Crossover are assigned to the correct
persons despite occlusions. In some cases, however, the
segmentation is not perfect in one of the multi-view frames
due to very fast motions or color similarities that can
not be resolved by the shape prior, e.g., foot in Hit and
Jump. However, this happens only at very few frames and
the motion capture method is robust enough to deal with
small inaccuracies in segmentation. Our method can also
successfully capture pose and deforming surface geometry
of people in loose apparel, e.g., in Couple-dance.

6.2.1 Impact of Segmentation
To show the importance of the segmentation (Sec. 5) for
tracking multiple persons, we compared our approach with
a variant where the poses and shapes are estimated (Sec. 4)
based on unsegmented foreground silhouettes. A visual
comparison is shown in Fig. 12. Without segmentation
the data-to-model associations become ambiguous yielding
estimation errors (Fig. 12(b)). In particular, interactions
with close physical contact and severe occlusions are
problematic. Since the errors originate from problems in
the underlying energy function of the pose estimation,
even global optimization strategies can not resolve them.
Furthermore, relying only on global optimization would be
very expensive due to the very high dimensional search
space for multiple persons. In contrast, the proposed ap-
proach correctly and efficiently determines shape and pose
of both persons, as local optimization succeeds in finding
the correct poses for most frames (Fig. 12(c)).

6.2.2 Accuracy of Segmentation
For a quantitative evaluation of the segmentation, we
manually labeled every 10th frame of all cameras for the
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Fig. 11. Markerless motion capture results. First row: input images after background subtraction; second row:
their corresponding segmentation results; third row: estimated surfaces and skeletons. From left to right: Hop,
Crossover, Bend, Wrestle, Hug, Hit, Jump, Crash, Couple-dance, and Fight.

sequences Wrestle and Crossover. Although these manual
segmentations are not 100% accurate, they serve as ground
truth data for evaluation. The tracking accuracy of our
approach depends on the quality of the segmentation, while
in turn the segmentation depends on the tracking accuracy
due to the shape prior. A high segmentation accuracy there-
fore also indicates accurate tracking results. Our method
achieves pixel labeling accuracies of 98.4% and 98.9% on
the sequences Wrestle and Crossover. These high values
indicate that our approach is very successful in correctly
segmenting the persons in the videos, and thus also in
tracking their motion.

We also evaluated the impact of the number of samples n
used for approximating the 3D shape prior (22). We tracked
both sequences with varying n and calculated the labeling
accuracies, as can be seen in Fig. 13. The segmentation
accuracy increases with the number of samples, but above
around 200 samples the benefit of additional samples be-
comes negligible. Therefore, we conservatively set n = 300
for all our tracking experiments.

While we show qualitatively the impact of the appearance
model and the shape prior in Fig. 4, we also quantitatively
evaluated the impact of the terms on the segmentation
accuracy. The results in Fig. 14 show that the appearance
itself is too weak to obtain accurate segmentations. While
the shape prior on its own generates reasonably accurate
segmentations, only the proposed model that combines
appearance and shape achieves very accurate results on both
sequences.

6.2.3 Accuracy of Shape and Pose Estimation
For a quantitative evaluation of the shape and pose es-
timation, 38 markers were attached to one of the per-
sons whose motion was captured with a commercial
PhaseSpaceTM marker-based motion capture system, as
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Fig. 13. Segmentation accuracy varies with the num-
ber of samples n. The red bars and blue bars show the
accuracies for the sequence Wrestle and Crossover,
respectively.
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Fig. 14. Segmentation accuracy using only an appear-
ance model, only the shape prior, or both. The red bars
and blue bars show the accuracies for the sequences
Wrestle and Crossover, respectively. The shape prior
has been approximated with 300 samples.
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(a) (b) (c)

Fig. 15. Illustration of tracking accuracy. (a) Associ-
ating the markers to the vertices in the first recon-
structed frame. (b,c) Position comparison of marker
points (green points) and the corresponding 3D ver-
tices (red points) on two of the temporal frames, with
surface point cloud overlay.

shown in Fig. 15. The marker-based system was synchro-
nized with the multi-view video setup. As in all other
sequences, the proposed markerless motion tracking and
segmentation method is applied to the raw video data with-
out exploiting any special knowledge about the markers in
the scene. The untextured black motion-capture suit and the
fast and complex motion make it challenging to track this
sequence. As error measure, we take the average distance
between the markers and their corresponding vertices across
all 500 frames of the evaluation sequence. This measure is
more precise than the skeleton-based evaluation used for
the HumanEva benchmark [1] since it captures all errors
on the surface including twists.

The average error with standard deviation is given in
Fig. 16. In contrast to Fig. 10, the particle-based global pose
estimation yields a slightly lower error than our more effi-
cient optimization scheme that combines local optimization
with global optimization. The plot also quantitatively eval-
uates the benefit of coupling pose and surface estimation
as it is quantitatively shown in Fig. 9. While mesh-based
surface estimation without skeleton pose estimation similar
to [15] performs poorly, the surface adaptation used in our
approach improves the skeleton-based pose estimation. We
also compare our approach to the recent work [60].

6.3 Impact of Template Models

We also thoroughly evaluated the impact of the template
models on the tracking performance. In our evaluation
sequence, the 3D mesh templates of the persons were
obtained using a laser scanner, which provides accurate and
detailed geometry for the mesh templates (Fig. 17(a,e)).
However, the mesh templates can also be obtained using
other 3D reconstruction techniques such as multi-view
stereo or statistical human body models, e.g., the SCAPE
model [31] or [61]. These methods capture less accurate
geometry and may contain reconstruction errors. To inves-
tigate the impact of the model accuracy on tracking, we
generated smoothed versions (Fig. 17(b,c,f)) and fitted a
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Fig. 16. Mean and standard deviation of the tracking
error for the sequence shown in Fig. 15. Our proposed
optimization achieves nearly the same performance as
the particle-based global optimization at much lower
computational cost and clearly outperforms local opti-
mization. Without surface estimation, the average error
is 5.5mm higher for our approach, whereas using only
surface estimation performs poorly. Our approach is
also more accurate than the method [60].

statistical human body model (Fig. 17(d)) to the scanned
template mesh.

The average tracking error and standard deviation for
four different combinations of the smoothed template mod-
els are given in Table 2. Geometric details are important
for body parts that are approximately axially symmetric like
the head and the arm. Therefore, the error slightly increases
by smoothing the template meshes. While the error is only
measured for subject A, it is interesting to note that the
quality of the model B has also some impact on the tracking
accuracy of subject A. Based on the fitted statistical body
model As (Fig. 17(d)), we also modified the weight and
height parameters of the model. The tracking errors are
given in Fig. 18. Although statistical body models do not
capture apparel, the error of As (31.8 mm) is only slightly
higher than using a smoothed model. The change on the
weight and height of the model, however, substantially de-
grades the tracking performance. This can be explained by
the mismatch of the skeleton of the model with the skeleton
of the subject. While smoothing or fitting a body model to
the scan mainly affects the surface mesh, changing height
and weight also affects the skeleton. Although our method
still produces accurate tracking results in comparison to
related work, it shows that the body model can have a big
impact on the tracking accuracy.

6.4 Computation Time

The local optimization for pose estimation takes about 3
seconds per frame for a single person in a 8-camera setup.
The global optimization takes about 12 seconds for each
dimension that is optimized and up to a maximum of
about 168 seconds per frame. The surface estimation takes
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Fig. 17. Tracking with different 3D template models. (a)
Scan of subject A. (b) Smoothed mesh A′. (c) Further
smoothed mesh A′′. (d) Fitted SCAPE model As. (e)
Scan of subject B. (f) Smoothed mesh B′. The tracking
results for the smoothed meshes are shown in Table 2.
The tracking results for the SCAPE model with different
parameters are given in Fig. 18.

TABLE 2
Comparison of tracking performances using differently

smoothed template models. The corresponding
models are shown in Fig. 17.

Models A+B A′ +B A′ +B′ A′′ +B′

Error(mm) 27.6±18.7 30.2±18.9 31.0±19.0 31.2±19.0

2 seconds. Depending on the difficulty of the performed
motion, the run time per frame for a single person without
segmentation thus varies from about 6 seconds to 2.5
minutes.

When tracking multiple subjects, the run time is mainly
limited by the calculation of the shape prior, which takes
about 1.5 minutes per person per frame. However, the
computation time of the global optimization and the shape
prior could be drastically reduced to a few seconds by using
a GPU [62]. The image segmentation takes 10 seconds for
a frame composed of 12 images. The whole system for
capturing the motion of 2 persons and 12 cameras takes 3
to 6.5 minutes per frame on a standard PC and 4.5 to 8
minutes for 3 persons and 12 cameras.

6.5 Limitations
Currently, our approach assumes that the clothes of the
captured actors are at least slightly different, which is
usually the case in everyday life; see the first row of Fig. 11.
When the clothes of the persons are exactly the same as
in Figs. 19 and 20, the color term Fig. 20(b) is not able
to discriminate between the persons and the shape prior
fails to resolve the ambiguities when the persons are in
contact. As result, some body parts are wrongly labeled as
shown in Fig. 19(b) and Fig. 20(e) and the pose and shape
estimation are erroneous. Our segmentation and tracking
method may also fail when the hands of two persons touch,
as neither appearance nor shape information are sufficient
to uniquely identify the person for each pixel. For instance,
the hands of the persons in the sequence Couple-dance are
not correctly tracked (Fig. 11). This issue may be resolved
at the cost of computation time by explicitly modeling body
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Fig. 18. Comparison of tracking performances using
different 3D template models. Each circle is a sample
of the shape parameter space of the fitted SCAPE
model As shown in Fig. 17(d). The mean and standard
deviation of the tracking errors are shown in the center
of each sample.

Fig. 19. Two persons wearing the same clothes. (a)
One of the input images. (b) The right arm of one
person is wrongly segmented. (c) Estimated surface
meshes. (d) Reconstructed models with skeletons.

parts and intersections. The detail of geometry that can be
captured is also limited by the image resolution and the
used image features, namely silhouettes and SIFT features.
We also assume that foreground silhouettes are available or
can be easily extracted. An extension of the segmentation
to general scene backgrounds, however, is feasible. Finally,
runtime performance can be improved by using a GPU or
lower resolution meshes for the shape prior.

7 CONCLUSION

We have proposed an approach that advances the state-
of-the-art in markerless human motion capturing since it
is the first approach that captures skeleton motion and
detailed surface geometry of two or more closely interacting
persons. In order to keep the complexity of the problem
tractable, we have divided the task into several subproblems
that are solved for a each frame one by one, but that depend
on each other over the entire sequence. For motion capture,
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Fig. 20. (a) Another example of two persons wearing
the same clothes. (b) Color term. (c) Shape term.
(d) Combined shape prior and body part appearance
model. (e) The right arm of the occluded person is
wrongly segmented. (f) Estimated surface meshes.

we first estimate the articulated motion by a skeleton-
based approach using a combination of local and global
optimization. The residual non-articulated motion is then
estimated by a mesh-based approach. To capture the motion
of multiple persons, we first solve the feature-to-model
assignment problem by segmentation and then estimate the
pose and shape of each person independently. We further
have shown that the proposed 3D shape prior is a better
model for segmentation than commonly used 2D shape
priors.
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neous shape and pose adaption of articulated models using linear
optimization,” in ECCV, 2012, pp. 724–737.

[37] G. Ye, Y. Liu, N. Hasler, X. Ji, Q. Dai, and C. Theobalt, “Perfor-
mance capture of interacting characters with handheld kinects,” in
ECCV, 2012, pp. 828–841.

[38] J.-Y. Guillemaut, J. Kilner, and A. Hilton, “Robust graph-cut scene
segmentation and reconstruction for free-viewpoint video of com-
plext dynamic scenes,” in ICCV, 2009, pp. 809–816.

[39] A. M. Elgammal and L. S. Davis, “Probabilistic framework for
segmenting people under occlusion,” in ICCV, 2001, pp. 145–152.

[40] S. M. Khan and M. Shah, “Tracking multiple occluding people by
localizing on multiple scene planes,” TPAMI, vol. 31, no. 3, pp.
505–519, 2009.

[41] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multicamera people
tracking with a probabilistic occupancy map,” TPAMI, vol. 30, no. 2,
pp. 267–282, 2008.



SUBMIT TO IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2012 16

[42] K. Kim and L. S. Davis, “Multi-camera tracking and segmentation
of occluded people on ground plane using search-guided particle
filtering,” in ECCV, 2006, pp. 98–109.

[43] M. Andriluka, S. Roth, and B. Schiele, “Monocular 3d pose estima-
tion and tracking by detection,” in CVPR, 2010.

[44] S. Gammeter, A. Ess, T. Jaeggli, K. Schindler, B. Leibe, and L. van
Gool, “Articulated multibody tracking under egomotion,” in ECCV,
2008.

[45] Q. Zhang and K. N. Ngan, “Segmentation and tracking multiple
objects under occlusion from multiview video,” IEEE Tran. on Image
Processing, vol. 20, no. 11, pp. 3308–3313, 2011.

[46] P. Kohli, J. Rihan, M. Bray, and P. Torr, “Simultaneous segmentation
and pose estimation of humans usingdynamic graph cuts,” IJCV,
vol. 79, pp. 285–298, 2008.

[47] T. Brox, B. Rosenhahn, J. Gall, and D. Cremers, “Combined region-
and motion-based 3d tracking of rigid and articulated objects,”
TPAMI, vol. 32, no. 3, pp. 402–415, 2010.

[48] J. Gall, B. Rosenhahn, and H.-P. Seidel, “Drift-free tracking of rigid
and articulated objects,” in CVPR, 2008.

[49] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical
Introduction to Robotic Manipulation. Boca Raton, FL, USA: CRC
Press, Inc., 1994.
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