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Abstract

In recent years, the rise of digital image and video data
available has led to an increasing demand for image an-
notation. In this paper, we propose an interactive object
annotation method that incrementally trains an object de-
tector while the user provides annotations. In the design of
the system, we have focused on minimizing human annota-
tion time rather than pure algorithm learning performance.
To this end, we optimize the detector based on a realistic
annotation cost model based on a user study. Since our
system gives live feedback to the user by detecting objects
on the fly and predicts the potential annotation costs of un-
seen images, data can be efficiently annotated by a single
user without excessive waiting time. In contrast to popular
tracking-based methods for video annotation, our method
is suitable for both still images and video. We have evalu-
ated our interactive annotation approach on three datasets,
ranging from surveillance, television, to cell microscopy.

1. Introduction
The demand for annotated image and video data is

rapidly growing. Within the computer vision community,
successful object detection algorithms continue to be heav-
ily reliant on large amounts of annotated data for training
and evaluation. Outside of the community, statistical analy-
sis from either images or video occur in a variety of fields.
Biologists routinely count cells from microscopy images,
while urban planners may sit through hours of video footage
tabulating the number of pedestrians using a crosswalk.

Object annotation in image and video can be laborious,
tedious, and expensive. One option is to outsource, typi-
cally through a crowdsourcing platform such as Mechanical
Turk [2, 9, 13, 16, 21, 22]. Crowdsourcing can be attractive,
with its low costs, but does require careful planning for an
effectively designed task [19], as well as a strategy for qual-
ity control of the gathered annotations [24]. Unfortunately,
it cannot be used for annotating confidential data, e.g., from
an industrial environment, or data requiring expert knowl-
edge, e.g., medical images.
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Figure 1. Examples from our interactive object detection framework for
annotation. Green, red, and blue bounding boxes denote true positives,
false positives, and false negatives respectively according to the annotation
task. The numbers denote the predicted annotation cost, i.e., the cost to
correct all detection errors in an image. The predicted annotation cost
allows the user to select images for correcting detections and updating the
object detector. Images best viewed in colour.

Another alternative for simplifying annotation is active
learning. Active learning aims to minimize human effort
in annotation by requesting labels for only a portion of the
training data, e.g., data with high label uncertainty [12])
or data which can minimize some expected error mea-
sure [15]. The usual objective is, given a fixed (human)
annotation budget, to train a classifier with maximum ac-
curacy [8, 9, 21]. This paradigm is well-suited for learn-
ing from unlabelled data that is readily available, e.g., from
Flickr or YouTube, but not for annotation tasks that require
a complete set of labels for some fixed data collection, e.g.,
in medical imaging. Another major limiting factor which
prevents active learning algorithms from being used in prac-
tice is that the majority of algorithms are still “learning”-
centered [18]. For example, the queried data is determined
only by potential gain for the algorithm, assuming that all
queries are equally expensive, even though this has been
shown not to be the case [20]. In addition, iterations be-
tween queries may be expensive or time consuming, making
it unrealistic or impractical for interaction with a user.

Our goal is to provide all the labels of some fixed data
collection with as little human effort as possible. In partic-
ular, we focus on a bounding box level of annotation, i.e.,
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the drawing of bounding boxes around all instances of some
object class. We present here an interactive object detection
framework for annotation that minimizes annotation costs
for humans. At the heart of the framework is an incremen-
tal learning approach which continually updates an object
detector and detection thresholds as a user interactively cor-
rects annotations proposed by the system. The learning ap-
proach is paired with an active learning element which pre-
dicts the most “difficult” images, i.e., those with the highest
annotation cost. These examples are then corrected by the
user for subsequent updates. The framework is illustrated
in Fig. 1. Our contributions include:
• an efficient incremental learning approach for interac-

tively annotating objects in images or video
• a user study measuring the real human annotation costs

for correcting object hypotheses
• a model that estimates the optimal object detection

threshold for minimizing annotation cost
• a model that predicts images with the highest annota-

tion cost for active learning
Finally, we were strongly motivated to design an

“annotator”-centered algorithm, in contrast to the many ex-
isting “learning”-centered active learning algorithms. All
optimizations and evaluations were made in terms of hu-
man annotation cost. Using datasets drawn from real-world
annotation tasks such as surveillance, television, and cell
microscopy, we show in our experiments that incremental
learning with actively selected examples results in a lower
overall annotation cost than standard incremental learning.

2. Related Work
Given the expense of human annotation, much research

effort has been dedicated towards leveraging the use of
unlabelled data, for instance, using semi-supervised learn-
ing [4, 11], or weakly-labelled data, which is faster to an-
notate [3]. Additionally, there has been extensive research
in learning methods that are able to share knowledge, e.g.,
transfer learning [10, 14], or active learning, by querying
for labels intelligently [9, 20, 21, 22].

These learning paradigms all have a common goal of re-
ducing the number of annotations needed. On the other end
of the spectrum, crowdsourcing has become the method of
choice for increasing the number of annotations, particu-
larly for building large corpora [2, 13, 16]. Reliable usage
of crowdsourced labels has prompted several studies on best
practices [19, 23, 24] and is an active field of research.

A few works have focused on making the annotation pro-
cess itself more efficient for the human annotator. In [9],
the authors propose a method for categorizing images us-
ing binary queries rather than asking annotators to select
the category from some predefined list. In [20], the authors
predict a tradeoff between the effort required for manually

segmenting an image versus the information gain from us-
ing the segmented image for training, thereby introducing
some human weighted considerations in the query order.
Finally, [21] trains object detectors from Flickr images and
uses hash-based queries to efficiently select query images.
As noted previously, however, this paradigm is not suitable
for annotating complete sets of images.

The video annotation system of [22] is conceptually the
most similar work to ours. Annotations are derived from
tracking results and active learning is used to intelligently
query the human annotator for corrections on the tracks.
The cost of annotation, i.e., the number of “clicks”, has
been minimized, though the system requires a full pass
over a track before each correction query. Depending on
the tracker’s speed, interaction with a human annotator can
become cumbersome. Our proposed system, however, is
based purely on detections, making it more versatile. In
contrast to [22], it is possible to (i) annotate both video and
non-continuous image collections; (ii) control the pool size
of the active learning component. The user thus does not
need to wait for a completed track before getting feedback.

3. Interactive Annotation
The goal of interactive annotation is to label a fixed set of

images with minimal annotation cost (Sec. 4) for the user.
In our setup shown in Fig. 5, the user corrects object hy-
potheses that are generated on the fly. Corrected hypotheses
are then used to update the detector (Sec. 3.1) and to de-
termine an optimal detection threshold (Sec. 3.2.1). Since
the order of processing the images can impact the detector
performance, we introduce an active learning approach to
reduce the overall annotation cost (Sec. 3.2.2).

3.1. Incremental Learning

Offline Hough Forests Our object detector of choice is
the Hough forest [7], which detects objects using the gener-
alized Hough transform and randomized decision trees [1].
In theory, any incrementally learned object detector is appli-
cable in our framework. We have chosen Hough forests be-
cause they are extremely fast and efficient for both training
and detection, making them particularly suitable for inter-
active applications. We first review the offline Hough forest
but refer the reader to [7] for a more thorough treatment.

During training, a set of patches P is randomly sampled
from the bounding-box annotated training data. Each patch
Pi is affiliated with a class label ci and a displacement vec-
tor di of the patch’s center to the training example’s center
(if the patch is sampled from within a bounding box). Each
tree T in the forest T is constructed recursively from the
root node downwards. For each node, a set of binary tests
{t} are randomly generated which could split the training
data P into two subsets PL(t) and PR(t). Each binary test
selects an image feature and compares the feature values at



two pixel locations in a patch. Based on a threshold asso-
ciated with the test, the patch is added either to the left or
right split. The optimal binary test t? maximizes the gain

∆H(t) = H(P)−
∑

S∈{L,R}

|PS(t)|
|P|

·H(PS(t)). (1)

Depending on the measure H used, a node can either be a
classification or regression node. For classification, entropy

H(P) = −
∑

c∈{neg,pos}

p(c|P) log p(c|P) (2)

is used, where p(c|P) is given by the percentage of samples
with class label c in the set P . For regression, the sum-of-
squared-differences is used as an objective function:

H(P) =
1

|{di : ci = pos}|
∑

di:ci=pos

‖di − d‖22, (3)

where d is the mean of the displacement vectors di of the
positive examples (ci = pos) in the set P . After a good split
has been found, the binary test t? is stored at the node and
the sets PL(t?) and PR(t?) are passed to the left and right
child node, respectively. Trees grow until some stopping
criterion is met. We use three criteria: maximum tree depth,
a strictly positive gain, i.e., ∆H(t?) > 0, and a minimum
number of samples for the sets PL(t?) and PR(t?). At the
leaf nodes, the patches P arriving at leaf L are removed and
only p(c|L) = p(c|P) and the positive offsets DL = {di :
ci = pos} are stored.

For detection, patches extracted from the test image are
passed through all trees in the forest. Depending on the
reached leaf L, votes are cast for objects centers according
to the stored displacements DL with a probability propor-
tional to p(c|L). Detections are determined by local max-
ima in the Hough space.

Incremental Hough Forests Hough forests are com-
monly trained offline, using all training samples at the out-
set. Offline training, however, is not suitable for an anno-
tation task where training and annotation iterates. There-
fore, we train the Hough forest incrementally, similar to the
on-line learning of [17], with the exception that we addi-
tionally store the patches at the leaves after training. Hav-
ing an image (referred to as a training example from here
onwards) initially annotated by the user, positive patches
are sampled from the bounding boxes and negative patches
from the background. Initial trees Tinit are trained with
patches Pinit as in the offline case. Before the user an-
notates the next image, Tinit are applied to the image to
generate object hypotheses. The user then only needs to
correct wrong hypotheses, i.e., missed detections (FN) and
false positives (FP). Positive patches are then sampled from
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Figure 2. Incremental learning reduces annotation cost since only wrong
detections (missed detections (FN) or false positives (FP)) need to be an-
notated. After 4 training examples, most objects (GT) are already detected.

the true positives and corrected false negatives while neg-
ative patches are sampled from corrected false positives.
These newly sampled patches Pincr are used to continue
training the trees. Pincr are first passed through Tinit and
arrive at leaves {L}init. As new patches arrive at a leaf L,
an optimal binary test t? that satisfies the splitting criteria is
determined. Finally, the class probability p(c|L) and the list
of displacement vectors DL are updated. Since the number
of stored patches would grow to infinity in this setup, we
limit the maximum number of patches stored at each node.
When this is exceeded, a subset of the patches is randomly
selected and the others are removed.

The difference in annotation cost between offline and
incremental learning is shown in Fig. 2. Assume that the
number of training examples is fixed to 16. Offline training
would require the annotation of all existing objects (ground
truth (GT)). Incremental learning requires only the annota-
tion of the objects that are not similar to previously anno-
tated objects, which reduces the annotation cost for the user.

3.2. Annotation Cost

Object detectors like Hough forests provide a score for
each object hypothesis which can then be thresholded when
deciding to accept or reject hypotheses. By defining an an-
notation cost model when annotating images, one can find
the best threshold τ? that minimizes annotation cost.

In this work, we model the annotation cost by

f(τ) = K + fFP (nFP (τ)) + fFN (nFN (τ)), (4)

where nFP (τ) and nFN (τ) are the number of false posi-
tives and false negatives for a given threshold τ , and K is
a constant cost factor. The differential functions fFP and
fFN measure the cost for correcting a FP or a FN. Usually,
an equal cost is assigned to FPs and FNs, corresponding to
fFP (x)=fFN (x)=x. Since Eq. (4) can be evaluated only
when ground truth is available, we propose a method that
aims to minimize f(τ) during incremental learning.
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Figure 3. (a) Detection scores of positive (blue) and negative (red) exam-
ples can be modelled by Gamma distributions. Distribution parameters are
updated after each incremental training step (1, . . . , 16). (b) Based on the
distributions, the threshold for the detection scores can be estimated.

3.2.1 Threshold Estimation

As incremental learning iterates between training and test-
ing, one obtains positive and negative hypotheses with the
corresponding detection scores, denoted by Spos and Sneg .
Therefore, we can estimate an optimal threshold τ? for
Eq. (4) based on Spos and Sneg . To this end, we model
the distributions of the scores conditional to a positive or
negative hypothesis, denoted by p(s|pos) and p(s|neg). In
our experiments, we have discovered that the conditional
probabilities are well modelled by Gamma distributions:

p(s|pos) = Γ(kpos, θpos), (5)
p(s|neg) = Γ(kneg, θneg). (6)

The parameters k and θ are estimated by moment estimates
from the sets Spos and Sneg . The estimated probabilities
over several training iterations are shown in Fig. 3(a).

To find an optimal threshold for (4), we formulate the
problem as

argmin
τ

fFP (p (FP |τ)) + fFN (p (FN |τ)) , (7)

where p (FP |τ) and p (FN |τ) are the probabilities that a
hypothesis is a FP or a FN for a given threshold τ . Based
on (5) and (6), we obtain

p (FP |τ) = p(neg) ·
∫ ∞

τ

p(s|neg) ds, (8)

p (FN |τ) = p(pos) ·
∫ τ

0

p(s|pos) ds, (9)

where p(pos) =
|Spos|

|Sneg|+|Spos| and p(neg) = 1 − p(pos).
Since (7) is differentiable, we can estimate for τ? very effi-
ciently by local optimization using the average of the low-
est positive score and the highest negative score as initial
threshold. Although (7) can be non-convex, the local opti-
mization is sufficient in practice; see Fig. 3(b).

Once new training examples are gathered for training,
the parameters of the distributions (5) and (6) are updated.
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Figure 4. (a) The prediction model predicts images with a high annotation
cost. (b) Ranking the images by the predicted error shows that the cumula-
tive annotation cost is between random order (average) and optimal order,
indicating that the measure is useful for selecting images with high cost.

The evolution of the distributions with an increasing num-
ber of incremental training steps is shown in Fig. 3(a).
Fig. 3(b) shows that the threshold starts very high but sta-
bilizes after a few training iterations. Since the threshold
estimation requires at least two training images, the annota-
tion cost for the first two images is the same as in the offline
case as shown in Fig. 2. With more iterations, the trees de-
tect objects better and a stable threshold can be estimated.
In the example shown in Fig. 2, the detection already per-
forms well after 4 training examples.

3.2.2 Active Learning

Incremental learning processes the images according to a
fixed scheme, e.g., according to the order of the images or
every nth image. In active learning, one can reduce the an-
notation cost by selecting the most useful training images.
For our annotation task, we assume this to be equivalent
to selecting the most “difficult” images, i.e., those with the
highest annotation cost. Similar to Sec. 3.2.1, we can esti-
mate the annotation cost of a given set of hypotheses cost
with scores S using

fpred(S, τ) =
∑
s∈S

fFP (p (FP |s, τ))+fFN (p (FN |s, τ)) ,

(10)
where τ is the estimated threshold. The predicted annota-
tion cost fpred can be computed by

p (E|s, τ) =
p (s|E, τ) p (E|τ)

p (s|neg) p(neg) + p (s|pos) p(pos)
, (11)

where E ∈ {FP, FN} and

p(s|FN, τ) =

{
0 if s ≥ τ,

p(s|pos)∫ τ
0
p(s|pos) ds if s < τ,

(12)

p(s|FP, τ) =

{
p(s|neg)∫ ∞

τ
p(s|neg) ds if s ≥ τ,

0 if s < τ.
(13)
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Figure 5. Interface for user study.

Performance of the prediction model is shown in Fig. 4.
Having incrementally trained a Hough forest on 16 images
of a sequence from PETS [6], we applied the Hough forest
with the prediction model to the remaining images of the
sequence. Fig. 4(a) shows that the predicted annotation cost
is high at frames where the real annotation cost is high, e.g.,
around frame 150 or 500. Fig. 4(b) shows the accumulated
annotation cost when the images are sorted by the predicted
cost. In the active learning setup, the user receives the pre-
dicted annotation cost as feedback for images that have not
been annotated and can then select the images with a high
value, e.g., frame 500. In our quantitative experiments, we
randomly select a set of unannotated images (i.e., our ac-
tive learning pool) and rank them according to the predicted
annotation cost. Only the image with the highest value is
presented for correction of the hypotheses. In Sec. 5, we
show that the active learning approach tends to select im-
ages that contain positive and negative samples that are less
redundant to previously sampled training data, thereby re-
ducing the annotation cost when compared to incremental
learning with a fixed scheme.

4. User Study
Since fFP (x) = fFN (x) = x is an unrealistic annota-

tion cost, we conducted a user study to measure the annota-
tion cost for our interface shown in Fig. 5. We presented 24
frames from the PETS 2009 [6] sequence S2.L1, View001
with varying number of FPs (0-7) and FNs (0-9) on each
frame and asked 14 participants to correct the annotations
for a pedestrian class. FPs shown were real instances taken
from results of the offline system. To account for abso-
lute timing differences across participants (some were more
experienced annotators), we normalized each participant’s
time per frame with respect to the overall time used.

In our study, we investigated a linear cost model, i.e.,
fFP (x) = wFP · x and fFN (x) = wFN · x (4), and esti-
mated wFP and wFN by a linear regression. The regressed

wFP wFN

absolute time (s) 0.78± 0.21 1.69± 0.16

relative time 0.25± 0.06 0.54± 0.05

Table 1. Human annotation costs from user study.

parameters in both absolute and relative time are shown in
Table 1. The results reveal that it takes roughly twice as
long to correct a FN versus a FP. When integrating this
model into our threshold estimation, it implies that the es-
timated threshold should be lower than when FPs and FNs
have equal cost. For instance, using equal costs, we obtain a
threshold of 1.11 after 16 images as shown Fig. 3(b). Using
the model given in Table 1, the threshold estimate is 1.06.

5. Experiments
Datasets and Evaluation. We test our annotation frame-

work on three datasets, covering a variety of data ranging
from surveillance, television to cell microscopy. The first
is the PETS 2009 S2.L1 video sequence (795 frames, con-
tinuous) for which we annotate pedestrians (∼4700). The
second is Buffy Stickmen V3.0 [5] (748 frames, disjoint),
for which we annotate the human upper body (∼1350). Fi-
nally, we test our system on a set of microscopy images
(60 frames, disjoint) to annotate cells (∼950)1. For all ex-
periments, we count a detection as a true positive if the
intersection-union ratio of the detection and ground truth
bounding box is greater than 0.5.

PETS. For incremental learning, we evaluate the im-
pact of several parameters on the annotation cost to find a
good balance between performance and computational effi-
ciency; see Fig. 6. In each experiment, 64 training examples
were used, taken at equal intervals from the sequence.

Patches stored per node. A smaller number of patches
per node limits the memory requirements and reduces the
training time for incremental learning. In Fig. 6(a), the er-
ror is slightly reduced for 400-600 patches per node but in-
creases with more than 800 patches. This shows that re-
stricting the memory capacity for incremental learning can
reduce the bias towards the first patches and overfitting.
For remaining experiments, we fix the maximum number
of patches per node to 600.

Votes cast per leaf. To reduce time, one can also reduce
the votes per leaf that are cast during detection. The impact
of this parameter (Fig. 6(b)) is very small since the number
of positive and negative samples are already limited.

Patches per child node before split. [17] showed that the
number of patches is a good criteria for accepting a split at a
node. Fig. 6(c) shows that the minimum number of patches
for each child that are required to accept a split has a strong
impact on the annotation error. A very small value gen-

1Our images are taken from differential interference contrast mi-
croscopy. We count the number of cells arrested in mitosis (see last row in
Fig. 1), which could be used for a mitotic index assay.
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Figure 6. (a) Maximum samples per node during training. (b) Maximum votes per leaf during testing. (c) Minimum number of samples for each children
that is required for accepting a split. (d) Generated tests per node during training. (e) Maximum depth of trees. (f) Number of trees. (g) Percentage of
patches sampled during testing. (h) Number of ranked images for active learning.

erates many splits without having enough information and
the trees grow too fast. A very large value slows down tree
growth and trees are not discriminative enough at the begin-
ning, which increases the annotation cost. For remaining
experiments, we fixed this parameter to 20.

Number of tests per node. The number of randomly gen-
erated tests at each node impacts performance. A small
number does not optimize the trees for the detection task but
many tests increase the risk of overfitting. Fig. 6(d) shows
that 8000 tests are a good trade-off.

Tree depth. The trees require a minimum depth for rea-
sonable performance. Performance gain for trees with depth
greater than 15 is small and saturates at 25 (Fig. 6(e)).

Number of trees in forest. A similar minimum value can
also be observed for the number of trees (Fig. 6(f)). At least
5 trees are required to achieve a good performance; after 5,
the error further decreases at increasing computational cost.

Detection patch subsampling. Computation time can be
reduced by sub-sampling the image patches during detec-
tion. Using only 10% of the densely sampled patches does
not result in performance loss and 5% is still acceptable
though lower values become problematic (Fig. 6(g)).

For active learning, we look at the size of the learn-
ing pool, i.e., the set of images randomly drawn from the
unannotated images and ranked according to the predic-
tion model. Fig. 6(h) shows that at least 10 images should
be drawn, whereas larger numbers result only in small
changes. Note that simple random selection corresponds to
having only 1 image. This experiment was performed with
only 16 training examples instead of 64 since the impact of
this parameter is stronger for fewer training examples.

For comparing the annotation cost of offline, incremen-
tal, and active learning, we selected a fixed number of N
training examples (referred to as training) and applied the

learned trees to the remaining images (referred to as test-
ing). Training examples were drawn at equal intervals from
the sequence for offline and incremental learning. Ac-
tive learning selects the training examples automatically ex-
cept for the first two, which are the same for all methods.
To evaluate our threshold estimation, we compared against
an “optimal” threshold, i.e., the threshold for which one
can achieve the lowest annotation cost determined post-hoc
based on ground truth data. Note that the offline learning
does not estimate a threshold, therefore we report only the
performance using the theoretical optimal threshold.

Annotation costs are plotted in Fig. 7. The active and in-
cremental learning approaches have lower annotation costs
than the offline approach once a minimum number of train-
ing examples have been presented (∼10 frames). Since the
frames in a video sequence are often similar, incremen-
tal and active learning already detect many objects in the
training examples and require less annotations for training
(Fig 7(b)). The active learning has a lower test annotation
cost (Fig 7(c)) than the incremental, despite having a higher
training cost, indicating that training with higher costing
“difficult” examples pays off with a better detector.

Similar trends are observed in the study-based cost
model as the equal FP/FN cost model, though the dif-
ferences between the active and incremental learning are
more pronounced, especially with fewer training examples.
Threshold estimates are generally accurate for both the in-
cremental and the active learning, as annotation cost are
only marginally higher than when using the optimal thresh-
old (Figs. 7(a),7(d)). Example annotations of the active
learning, along with the predicted errors according to the
study cost model are shown in the top row of Fig. 1.

Finally, we compare the use of our framework
against linear interpolation and a tracking approach [17]
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Figure 7. Annotation cost for PETS using (a-c) the equal FP/FN cost model (wFP = wFN = 1.0) and (d-f) the user-based model from Table 1
(wFP = 0.25; wFN = 0.54). (a,d) show the overall cost for annotation, (b,e) show the cost only for training and (c,f) the cost only for testing. The dashed
lines are theoretical values where the threshold is optimized based on ground truth data. The solid lines show the real performance of incremental and active
learning. Active learning selects images with higher costs for training but performs better on the test images, yielding an overall lower annotation cost.

(Figs. 7(a),7(d)). As expected, tracking and interpolation
both have very high annotation costs when the number of
training examples are low (<30 frames). The annotation
costs become comparable only at higher number of training
examples, lending strong support for using our framework
for annotating video.

For 10 scales, our implementation requires 13sec for fea-
ture computation, 1.5sec for detection, and 2sec for training
5 trees incrementally. The median time for users to correct
an image in the user study is about 12sec, indicating that
the system operates in a reasonable time-frame though im-
provements for speedup can still be made. In particular, the
features can be precomputed. The active learning in our set-
ting requires that 10 images are processed in advance. This
means that the system needs to be 15sec ahead of the user.

Buffy. We apply only the study-based cost model to the
Buffy dataset (Fig. 8). This dataset is more challenging than
PETS as the appearance variations are much greater. With
an optimal threshold, the incremental approach performs
comparably to the optimal offline, while the active learning
has much lower annotation costs (Fig. 8(a)). The threshold
estimation does not work as well as on PETS but the differ-
ences become smaller with an increasing number of training
examples in the case of active learning. Since Buffy con-
tains only few frames taken from various episodes, it is very
difficult to learn the distributions of Eq. (5) and (6) of the
full dataset from very few training examples. Nevertheless,
active learning still performs comparable to offline learning

with optimal threshold. Example annotations of the active
learning are shown in the middle row of Fig. 1.

Cell. Detecting the mitotic cells in the microscopy im-
ages is a relatively easy task, as the cells have a very regular,
round-ish shape (see examples in bottom row of Fig. 1). As
such, there is little difference in annotation cost between
the three learning approaches as well as between the opti-
mal and estimated threshold for the incremental and active
learning (Fig. 8(d)). It takes only a few training examples
to achieve reasonable performance (∼5 images) and using
more examples is not beneficial. However, using more ex-
amples also does not have a negative impact, though the
cost increases for offline learning. Since it is in practice not
a priori clear how many training examples are needed for
minimal annotation cost, it is very important that the anno-
tation cost does not increase with an increasing number of
training examples. This behaviour is shown by incremental
and active learning for all three datasets.

6. Conclusion
We have presented an annotator-centric approach for in-

teractive object annotation in still images and video se-
quences. To this end, we modelled the annotation cost by
the amount of time users need to correct object hypotheses.
Using the model, we can successfully estimate the optimal
detection threshold that minimizes the annotation cost and
predict the expected annotation cost for active learning. Fi-
nally, the active learning approach has been shown to out-
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Figure 8. Annotation cost for Buffy (a-c) and Cells (d-f) with cost model (wFP = 0.25; wFN = 0.54).

perform incremental and offline learning.
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