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Abstract. We present a system for estimating location and orientation
of a person’s head, from depth data acquired by a low quality device. Our
approach is based on discriminative random regression forests: ensembles
of random trees trained by splitting each node so as to simultaneously
reduce the entropy of the class labels distribution and the variance of the
head position and orientation. We evaluate three different approaches
to jointly take classification and regression performance into account
during training. For evaluation, we acquired a new dataset and propose
a method for its automatic annotation.

1 Introduction

Head pose estimation is a key element of human behavior analysis. For this
reason, many applications would benefit from automatic and robust head pose
estimation systems. While 2D video presents ambiguities hard to resolve in real
time, systems relying on 3D data have shown very good results [5, 10]. Such
approaches, however, use bulky 3D scanners like [22] and are not useful for con-
sumer products or mobile applications like robots. Today, cheap depth cameras
exist, even though they provide much lower quality data.

We present an approach for real time 3D head pose estimation robust to
the poor signal-to-noise ratio of current consumer depth cameras. The method
is inspired by the recent work of [10] that uses random regression forests [9] to
estimate the 3D head pose in real time from high quality depth data. It basically
learns a mapping between simple depth features and real-valued parameters
such as 3D head position and rotation angles. The system achieves very good
performance and is robust to occlusions but it assumes that the face is the
sole object in the field of view. We extend the regression forests such that they
discriminate depth patches that belong to a head (classification) and use only
those patches to predict the pose (regression), jointly solving the classification
and regression problems. In our experiments, we evaluate several schemes that
can be used to optimize both the discriminative power as well as the regression
accuracy of such a random forest. In order to deal with the characteristic noise
level of the sensor, we cannot rely on synthetic data as in [10], but we have
to acquire real training examples, i.e., faces captured with a similar sensor. We
therefore recorded several subjects and their head movements, annotating the
data by tracking each sequence using a personalized template.
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Our system works on a frame-by-frame basis, needs no initialization, and
runs in real time. In our experiments, we show that it can handle large pose
changes and variations such as facial hair and partial occlusions.

2 Related Work

The literature contains several works on head pose estimation, which can be
conveniently divided depending on whether they use 2D images or depth data.

Among the algorithms based on 2D images, we can further distinguish be-
tween appearance-based methods, which analyze the whole face region, and
feature-based methods, which rely on the localization of specific facial features,
e.g., the eyes. Examples of appearance-based methods are [13] and [17], where
the head pose space is discretized and separate detectors are learned for each
segment. Statistical generative models, e.g., active appearance models [8] and
their variations [7, 19, 2], are very popular in the face analysis field, but are
rarely employed for head pose estimation. Feature-based methods are limited by
their need to either have the same facial features visible across different poses, or
define pose-dependent features [24, 16]. In general, all 2D image-based methods
suffer from several problems, in particular changes in illumination and identity,
and rather textureless regions of the face.

With the recent increasing availability of depth-sensing technologies, a few
notable works have shown the usefulness of the depth for solving the problem
of head pose estimation, either as unique cue [5, 10], or in combination with
2D image data [6, 20]. Breitenstein et al. [5] developed a real time system capa-
ble of handling large head pose variations. Using high quality depth data, the
method relies on the assumption that the nose is visible. Real time performance
is achieved by using the parallel processing power of a GPU. The approach pro-
posed in [10] also relies on high quality depth data, but uses random regression
forests [9] to estimate the head pose, reaching real time performance without the
aid of parallel computations on the GPU and without assuming any particular
facial feature to be visible. While both [10] and [5] consider the case where the
head is the only object present in the field of view, we deal with depth images
where other parts of the body might be visible and therefore need to discriminate
which image patches belong to the head and which don’t.

Random forests [4] and their variants are very popular in computer vision [18,
11, 9, 14, 12] for their capability of handling large training sets, fast execution
time, and high generalization power. In [18, 11], random forests have been com-
bined with the concept of Hough transform for object detection and action recog-
nition. These methods use two objective functions for optimizing the classifica-
tion and the Hough voting properties of the random forests. While Gall et al. [11]
randomly select which measure to optimize at each node of the trees, Okada [18]
proposes a joint objective function defined as a weighted sum of the classification
and regression measures. In this work, we evaluate several schemes for integrat-
ing two different objective functions including linear weighting [18] and random
selection [11].
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Fig. 1. Simple example of Discriminative Regression Forest a): A patch is sent down
to two trees, ending up in a non-head leaf in the first case, thus not producing a vote,
and in a head leaf in the second case, extracting the multivariate Gaussian distribution
stored at the leaf. In b), one training depth image is shown. The blue bounding box
enclosing the head specifies where to sample positive (green - inside) and negative
patches (red - outside).

3 Discriminative Random Regression Forests for Head
Pose Estimation

Decision trees [3] are powerful tools capable of splitting a hard problem into
simpler ones, solvable with trivial predictors, and thus achieving highly non-
linear mappings. Each node in a tree performs a test, the result of which directs
a data sample towards one of the children nodes. The tests at the nodes are
chosen in order to cluster the training data as to allow good predictions using
simple models. Such models are computed and stored at the leaves, based on the
clusters of annotated data which reach them during training.

Forests of randomly trained trees generalize much better and are less sensitive
to overfitting than decision trees taken separately [4]. Randomness is introduced
in the training process, either in the set of training examples provided to each
tree, in the set of tests available for optimization at each node, or in both.

When the task at hand involves both classification and regression, we call
Discriminative Random Regression Forests (DRRF) an ensemble of trees which
allows to simultaneously separate test data into whether they represent part of
the object of interest and, only in the positive cases, vote for the desired real
valued variables. A simple DRRF is shown in Figure 1(a): The tests at the nodes
lead a sample to a leaf, where it is classified. Only if classified positively, the
sample retrieves a Gaussian distribution computed at training time and stored
at the leaf, which is used to cast a vote in a multidimensional continuous space.

Our goal is to estimate the 3D position of a head and its orientation from
low-quality depth images acquired using a commercial, low-cost sensor. Unlike
in [10], the head is not the only part of the person visible in the image, therefore
the need to classify image patches before letting them vote for the head pose.
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3.1 Training

Assuming a set of depth images is available, together with labels indicating head
locations and orientations, we randomly select patches of fixed size from the
region of the image containing the head as positives samples, and from outside
the head region as negatives. Figure 1(b) shows one of the training images we
used (acquisition and annotation is explained in Section 4), with the head region
marked in blue, and examples of a positive and negative patch drawn in green,
respectively red.

A tree T in the forest T = {Tt} is constructed from the set of patches
{Pi = (Ii, ci,θi)} sampled from the training images. Ii are the depth patches and
ci ∈ {0, 1} are the class labels. The vector θi = {θx, θy, θz, θya, θpi, θro} contains

the offset between the 3D point falling on the patch’s center and the head center
location, and the Euler rotation angles describing the head orientation.

As in [10], we define the binary test at a non-leaf node as tF1,F2,τ (I):

|F1|−1
∑
q∈F1

I (q)− |F2|−1
∑
q∈F2

I (q) > τ, (1)

where F1 and F2 are rectangular, asymmetric regions defined within the patch
and τ is a threshold. Such tests can be efficiently evaluated using integral images.

During training, for each non-leaf node starting from the root, we generate
a large pool of binary tests

{
tk
}

by randomly choosing F1, F2, and τ . The test
which maximizes a specific optimization function is picked; the data is then split
using the selected test and the process iterates until a leaf is created when either
the maximum tree depth is reached, or less than a certain number of patches
are left. Leaves store two kinds of information: The ratio of positive patches
that reached them during training p

(
c = 1| P

)
and the multivariate Gaussian

distribution computed from the pose parameters of the positive patches.
For the problem at hand, we need trees able to both classify a patch as be-

longing to a head or not and cast precise votes into the spaces spanned by 3D
head locations and orientations. This is the main difference with [10], where the
face is assumed to cover most of the image and thus only a regression measure
is used. We thus evaluate the goodness of a split using a classification measure
UC
( {
P
∣∣tk } ) and a regression measure UR

( {
P
∣∣tk } ): The former tends to sep-

arate the patches at each node seeking to maximize the discriminative power of
the tree, the latter favors regression accuracy.

Similar to [11], we employ a classification measure which, when maximized,
tends to separate the patches so that class uncertainty for a split is minimized:

UC
( {
P
∣∣tk } ) =

|PL| ·
∑
c p
(
c| PL

)
ln
(
p
(
c| PL

))
+ |PR| ·

∑
c p
(
c| PR

)
ln
(
p
(
c| PR

))
|PL|+ |PR|

,

(2)
where p

(
c| P

)
is the ratio of patches belonging to class c ∈ {0, 1} in the set P.

For what concerns regression, we use the information gain defined by [9]:

UR
( {
P
∣∣tk } ) = H(P)− (wLH(PL) + wRH(PR)), (3)
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where H(P) is the differential entropy of the set P and wi=L,R is the ratio of
patches sent to each child node.

Our labels (the vectors θ) are modeled as realizations of a multivariate Gaus-
sian, i.e., p(θ|L) = N (θ;θ,Σ). Moreover, as in [10], we assume the covariance
matrix to be block-diagonal, i.e., we allow covariance only among offset vectors
and among head rotation angles, but not between the two. For these reasons, we
can rewrite eq. (3) as:

UR
( {
P
∣∣tk } ) = log (|Σv|+ |Σa|)−

∑
i={L,R}

wi log (|Σv
i |+ |Σ

a
i |), (4)

where Σv and Σa are the covariance matrices of the offsets and rotation angles
(the two diagonal blocks in Σ). Maximizing Eq. (4) minimizes the determinants
of these covariance matrices, thus decreasing regression uncertainty.

The two measures (2) and (4) can be combined in different ways, and we in-
vestigate three different approaches. While the method [11] randomly chooses be-
tween classification and regression at each node, the method [18] uses a weighted
sum of the two measures, defined as:

arg max
k

(
UC + αmax

(
p
(
c = 1| P

)
− tp, 0

)
UR

)
. (5)

In the above equation, p
(
c = 1| P

)
represents the ratio of positive samples

contained in the set, or purity, tp is an activation threshold, and α a constant
weight. When maximizing (5), the optimization is steered by the classification
term alone until the purity of positive patches reaches the threshold tp. From
that point on, the regression term starts to play an ever important role.

We propose a third way to combine the two measures by removing the acti-
vation threshold from (5) and using as weight an exponential function:

arg max
k

(
UC + (1.0− e− dλ )UR

)
, (6)

where d is the depth of the node. In this way, the regression measure is given
increasingly higher weight as we descend towards the leaves, with the parameter
λ specifying the steepness of the change.

3.2 Head pose estimation

For estimating the head pose from a depth image, we densely extract patches
from the image and pass them through the forest. The tests at the nodes guide
each patch all the way to a leaf L, but not all leaves are to be considered for
regression; only if p

(
c = 1| P

)
= 1 and trace (Σ) < maxv, with maxv an em-

pirical value for the maximum allowed variance, the Gaussian p(θ) is taken into
account. As in [10], a stride in the sampling of the patches can be introducted
in order to find the desired compromise between speed and accuracy of the es-
timate. To be able to handle multiple heads and remove outliers, we perform a
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Fig. 2. Some head pose estimation results. Starting from the left, two successfull esti-
mations, one failure, and one image with the camera placed on the side, showing the
single votes. In particular, the blue, smaller spheres are all votes returned by the forest,
while the larger, red spheres are the votes selected for the final estimation.

bottom-up clustering step: All votes within a certain distance to each other (the
average head diameter) are grouped, resulting in big clusters around the heads
present in the image. We subsequently run 10 mean shift iterations (using a
spherical kernel with a fraction of the average head diameter as radius), in order
to better localize the centroid of the clusters. Then, similarly to [9], we select
only a percentage of the remaining votes, starting from the ones with smallest
uncertainty: if more votes than a threshold are left, we declare a head detected.
The Gaussians left at this point are summed, giving us another multivariate
Gaussian distribution whose mean is the estimate of the head pose and whose
covariance represents its confidence.

Figure 2 shows some processed frames. The green cylinder encodes both the
estimated head center and direction of the face. The first two images show success
cases, the third one is a failure case, while the last one shows a scan from a side
view, revealing the colored votes clustering around the head center. The small
blue spheres are all the votes returned by the forest (the means of the Gaussians
stored at the leaves reached by the test patches), while the larger, red spheres
represent the votes which were selected to produce the final result.

4 Data Acquisition and Labeling

For training and testing our algorithms, we acquired a database of head poses
captured with a Kinect sensor. The dataset contains 24 sequences of 20 different
people (14 men and 6 women, 4 wearing glasses) recorded while sitting about
1 meter away from the sensor. The subjects were asked to rotate their heads
trying to span all possible ranges of angles their head is capable of. Because
the depth data needs to be labeled with the 3D head pose of the users for
training and evaluation, we processed the data off-line with a template-based
head tracker, as illustrated in Fig. 3. To build the template, each user was asked
to turn the head left and right starting from the frontal position. The face was
detected using [21] and the scans registered and integrated into one 3D point
cloud as described by [23]. A 3D morphable model [2] with subsequent graph-
based non-rigid ICP [15] was used to adapt a generic face template to the point
cloud. This resulted in a template representing the shape of the head. Thanks
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model
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Fig. 3. Automatic pose labeling: A user turns the head in front of the depth sensor,
the scans are integrated into a point cloud model and a generic template is fit to it.
The personalized template is used for accurate rigid tracking.

to such personalized template, each subject’s sequence of head rotations was
tracked using ICP [1], resulting in a pose estimate for each frame. Although this
method does not provide perfect estimates of the pose, we found that the mean
translation and rotation errors were around 1 mm and 1 degree respectively.
Note that the personalized face model is only needed for processing the training
data, our head pose estimation system does not assume any initialization phase.

The final database contains roughly 15K frames, annotated with head center
locations and rotation angles. The rotations of the heads range between around
±75 ◦ for yaw, ±60 ◦ for pitch, and ±50 ◦ for roll.

5 Experiments

For evaluation, we divided the database into a training and test set of respec-
tively 18 and 2 subjects. In order to compare the weighting schemes described
in Section 3.1, we trained each forest using exactly the same patches. We fixed
the following parameters: patch size (100x100 pixels), maximum size of the sub-
patches F1 and F2 (40x40), maximum tree depth (15), minimum number of
patches required for a split (20), number of tests generated at each node (20K),
and number of positive and negative patches to be extracted from each image
(10). Depending on the method used to combine the classification and regres-
sion measures, additional parameters might be needed. For the linear weighting
approach, we set the α and tp as suggested by [18], namely to 1.0 and 0.8. In
the interleaved setting [11], each measure is chosen with uniform probability,
except at the two lowest depth levels of the trees where the regression measure
is used. For the exponential weighting function based on the tree depth, we used
λ equal to 2, 5, and 10. For testing, we use the following settings: a 5 pixels
stride, maximum leaf variance maxv = 1500, radius of the spherical kernel for
clustering rc equal to the average head diameter, and mean shift kernel radius
rms = rc/6.

Results are plotted in Fig. 4 and Fig. 5. All experiments were conducted by
building 7 trees, each on 3000 sample images. In Fig. 4(a), the accuracy of all
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Fig. 4. Accuracy (a) of the tested methods as a function of the percentage of votes
selected for each cluster; success is defined when the head estimation error is below
10mm and the thresholds for the direction estimation error is set to 15 degrees. The
plots in (b) show the average angle errors again as a function of the percentage of
selected votes. It can be noted that the evaluated methods perform rather similarly
and the differences are small.
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Fig. 5. Accuracy of the head center estimation error (a), respectively of the angle error
(b) of the tested methods. The curves are plotted for different values of the threshold
defining success. All methods show similar performance.

methods changes as function of the percentage of leaves to be retained during
the last step of the regression, as explained in Section 3.2. Success means that
the detected head center was within 10mm from the ground truth location, and
the angle error (L2 norm of the Euler angles) below 10 ◦. All methods appear
to behave similarly, but we note a slightly higher accuracy for an exponential
weight and a 60% of the votes retained. Fig. 4(b) shows the average angular
error of the estimate, again plotted with respect to the percentage of retained
votes. Again, the differences between the weighting schemes are very small, as
can be seen also in the plots of Figs. 5 (a) and (b), showing the accuracy of the
head center estimation error, respectively of the angle error, for different values
of the threshold defining success.
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Stride Head error Yaw error Pitch error Roll error Missed detections Time

4 14.7± 22.5mm 9.2± 13.7 ◦ 8.5± 10.1 ◦ 8.0± 8.3 ◦ 1.0% 87.5ms

6 14.5± 22.1mm 9.1± 13.6 ◦ 8.5± 9.9 ◦ 8.0± 8.3 ◦ 1.5% 24.6ms

8 14.1± 20.2mm 9.0± 13.2 ◦ 8.4± 9.6 ◦ 8.0± 8.3 ◦ 2.1% 11.8ms

10 14.6± 22.3mm 8.9± 13.0 ◦ 8.5± 9.9 ◦ 7.9± 8.3 ◦ 2.3% 7.7ms

Table 1. Mean and standard deviation of the errors for the 3D head localization task
and the individual rotation angles as a function of the stride parameter, together with
missed detection rates and average processing time. The values are computed by 5-fold
cross validation on the entire dataset.

As a last experiment, we chose the exponentially decreasing weighting of
the measures, defined by Equation (6), with λ set to 5. We then ran a 5-fold
cross-validation on the full dataset. We trained 7 trees for each fold, each on
3000 depth images. The results are given in Table 1, where mean and standard
deviation of the head localization, yaw, pitch and roll errors are shown together
with the percentage of missed detections and the average time necessary to
process an image, depending on the stride parameter. It can be noted that the
system performs beyond real time already for a stride of 6 (needing only 25ms
to process a frame on a 2.67GHz Intel Core i7 CPU), still maintaining a small
number of wrong detections and low errors.

6 Conclusions

We presented a system for real time head detection and head pose estimation
from low quality depth data captured with a cheap device. We use a discrim-
inative random regression forest, which classifies depth image patches between
head and the rest of the body and which performs a regression in the continuous
spaces of head positions and orientations. The trees making up the forest are
trained in order to jointly optimize their classification and regression power by
maximizing two separate measures. Two existing methods were presented for
combining such measures and a third weighting scheme was introduced which
favors the regression measure as an exponential function of the node depth. In
our experiments, we compared the proposed methods and observed similar per-
formances in terms of accuracy. In order to train and test our algorithms, we
collected and labelled a new dataset using a Kinect sensor, containing several
subjects and large variations in head rotations.
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