
Backprojection Revisited:
Scalable Multi-view Object Detection
and Similarity Metrics for Detections

Nima Razavi1, Juergen Gall1, and Luc Van Gool1,2

1 Computer Vision Laboratory, ETH Zurich
2 ESAT-PSI/IBBT, KU Leuven

nrazavi|gall|vangool@vision.ee.ethz.ch

Abstract. Hough transform based object detectors learn a mapping
from the image domain to a Hough voting space. Within this space, ob-
ject hypotheses are formed by local maxima. The votes contributing to a
hypothesis are called support. In this work, we investigate the use of the
support and its backprojection to the image domain for multi-view object
detection. To this end, we create a shared codebook with training and
matching complexities independent of the number of quantized views.
We show that since backprojection encodes enough information about
the viewpoint all views can be handled together. In our experiments,
we demonstrate that superior accuracy and efficiency can be achieved
in comparison to the popular one-vs-the-rest detectors by treating views
jointly especially with few training examples and no view annotations.
Furthermore, we go beyond the detection case and based on the support
we introduce a part-based similarity measure between two arbitrary de-
tections which naturally takes spatial relationships of parts into account
and is insensitive to partial occlusions. We also show that backprojec-
tion can be used to efficiently measure the similarity of a detection to
all training examples. Finally, we demonstrate how these metrics can
be used to estimate continuous object parameters like human pose and
object’s viewpoint. In our experiment, we achieve state-of-the-art per-
formance for view-classification on the PASCAL VOC’06 dataset.

1 Introduction

As an important extension of the Generalized Hough Transform (GHT) [2], the
Implicit Shape Model (ISM) [3] trains a codebook of local appearance by clus-
tering a training set of sparse image features and storing their relative location
and scale with respect to the object center. For detection, sparse image features
are extracted from a test image and are matched against the codebook casting
probabilistic votes in the 3D Hough accumulator as illustrated in Fig. 1(a,b). The
support is composed of all the votes that contribute to a detection. The back-
projection of the support gives direct evidence of the object’s presence and can
be used as hypothesis verification, Fig. 1(c,d). For instance, by providing pixel-
accurate segmentation of the training data and storing this information in the
codebook, the backprojection can be augmented by top-down segmentation [3].

2

Fig. 1. Object detection using Implicit Shape Models: (a) Features are matched against
the codebook C casting votes to the voting space V. (b) The local maxima of the voting
space is localized and the votes contributing to it are identified (inside the red circle).
(c) The votes are backprojected to the image domain creating the backprojection mask.
(d-e) Visualization of the backprojection mask. Note that the mask does not include
the area occluded by a pedestrian. The image is taken from UIUC cars dataset [1].

Although the support and its backprojection have been used for verification
and meta-data transfer [3,4], it has not yet been fully explored. In this work, we
address a broader question: what does the support tell us about the detection?
We show that additional properties of an object can be retrieved from the sup-
port without changing the training or the detection procedure. To this end, we
augment the codebook by some additional information to establish a link be-
tween the detection and the parts of different training examples. In particular,
we demonstrate two important properties of the support:

Firstly, the different views of an object can be handled by a single code-
book and even a single view-independent voting space since the support and its
backprojection encode enough information to deal with the viewpoint variations.
This is very relevant in practice since state-of-the-art GHT-based multi-view de-
tectors like [5,6] treat different viewpoints as different classes and train a battery
of one-vs-the-rest codebooks for each view. The training and detection time of
these approaches scale thus linearly with the number of quantized views. Un-
like these approaches, we train a single shared codebook for all views, i.e. the
complexity of training and matching a feature against it is independent of the
number of quantized views. The proposed training procedure also allows us to
make better use of training data by sharing features of different views. Having
the shared codebook and depending on the availability of view annotations and
amount of training data, two voting schemes are proposed which outperform the
battery of one-vs-the rest detectors both in terms of accuracy and computational
complexity, in particular, when only few training examples are available.

Secondly, not only we can detect objects under large view variations with a
single shared codebook, bu also we can use the support for defining similarity
measures to retrieve nearest examples. One can then estimate continuous param-
eters (like object’s pose or view) of detections by the parameters of the nearest
examples. To this end, we introduce two similarity measures based on the sup-
port. The first one efficiently measures the similarity of a detection to all training
examples. We show that this measure is applicable to retrieve various continuous
parameters like the pose of a detected pedestrian. The second metric finds dense

3

feature correspondences and can be used as a similarity measure between any
two detections. This measure is particularly interesting as it is part-based and
naturally takes the spatial relationships of the parts into account. It also inher-
its nice properties like good generalization and insensitivity to partial occlusions
from the ISM model. The power of the latter similarity metric is demonstrated
in the task of view-retrieval in presence of partial occlusions.

2 Related Work

Several approaches have been proposed for the creation of codebooks and to
learn the mapping of image features into the Hough space. While [3] clusters the
sparse image features only based on appearance, the spatial distribution of the
image features is also used as a cue for the clustering in [7,8]. [9] proposes to
store training features without clustering and use them as a codebook. Hough
forests [10] use a random forest framework instead of clustering for codebook
creation.

In order to vote with a codebook, matched codewords cast weighted votes.
While the work of [3] uses a non-parametric Parzen estimate for the spatial
distribution and thus for the determination of the weights, [11] re-weights the
votes using a max-margin framework for better detection. The voting structure
has been addressed in [12], where voting lines are proposed to better cope with
scale-location ambiguities.

In [3], the backprojection has been used for verification. To this end, the
training data is segmented and the local foreground-background masks are stored
with the codebook. When a maximum is detected in the voting space, the local
segmentation masks are used to infer a global segmentation for the detection
in the image. The global segmentation is then in turn used to improve recog-
nition by discarding votes from background and reweighting the hypothesis. In
[4], the individual parts of an object (e.g. front wheel of a motorbike) are also
annotated in the training and used to infer part-labels for a test instance. In this
work, we neither focus on hypothesis verification nor require time consuming
segmentations and part annotations of the training data.

The handling of multiple object views has also been addressed in the litera-
ture, see e.g. [13]. Based on the ISM and a silhouette-based verification step [3],
the model can be extended by handling the viewpoint as additional dimension.
Thomas et al. [5] train a codebook for each annotated view and link the views to-
gether by appearance. [14] extends the voting scheme of ISM by a 4th dimension,
namely shape represented by silhouettes, to improve the segmentation based ver-
fication step. Although this approach uses a shared codebook for multi-aspect
detection of pedestrians, it is limited as it only considers pedestrians which are
already handled by the ISM. Other approaches use the statistical or geometric
relationships between views in the training data to reason about the 3D structure
of the object [15,16,17,18]. Since these approaches need many viewpoints of an
object, they are very expensive in data. Although some of the missing data can
be synthesized from existing data by interpolation [16,19], the interpolation still

4

requires a certain number of views in the training data. In [20], a discriminative
approach is proposed to handle aspects more general than for a specific class.
To this end, latent variables that model the aspect are inferred and the latent
discriminative aspect parameters are then used for detection.

3 Multi-view Localization with ISMs

The object detection in our approach is based on the Implicit Shape Model
(ISM) [3]. In this framework, training consists of clustering a set of training
patches P train to form a codebook of visual appearance C and storing patch oc-
currences for each codebook entry. At runtime, for each test image Itest, all test
patches P test are extracted and matched against C. Each patch casts weighted
votes for the possible location of the object center. These votes are based on
the spatial distribution of the matching codebook entry to a Hough accumu-
lator V. This encodes the parameters of the object center, e.g. position and
scale in the image domain; see Fig. 1(a). This way all the votes are cast in V
(Fig. 1(b)). The probability of the presence of the object center at every location
of V is estimated by a Parzen-window density estimator with a Gaussian kernel.
Consistent configurations are searched as local maxima in V forming a set of
candidates vh ∈ V. For each candidate vh, its support Sh is formed by collecting
all the votes contributing to its detection.

In the following, we discuss the training of the shared codebook for all the
views in detail and explain the necessary augmentation of the codebook entries.
Then multi-view detection with this codebook is discussed. Afterwards, we look
into the support, Sh, and its backprojection to the image domain for bounding
box estimation and retrieving nearest training examples. Finally, we introduce a
similarity metric based on the support for comparing two arbitrary detections.

3.1 Training a Shared Codebook

To train the codebook C with entries c1 . . . c|C|, a set of training patches are
collected P train. Training patches are sampled from a set of bounding box an-
notated positive images and a set of background images. Each training patch,
P train

k = (Ik, lk,dk, θk), has an appearance Ik, class label lk, a relative position
to the object center and an occurrence scale dk = (xd, yd, sd), and additional
training data information θk, e.g. the identity of the training image it is sampled
from.

For building the codebook, we use the recently developed method of Hough
Forests [10] as it allows us to use dense features and also due to its superior
performance compared to other methods, e.g. the average-link clustering used
in [3]. Hough Forests are random forests [21] which are trained discriminatively
to boost the voting performance. During training, a binary test is assigned re-
cursively to each node of the trees that splits the training patches into two sets.
Splitting is continued until the maximum depth is reached or the number of
remaining patches in a node is lower than a predefined threshold (both fixed to

5

20 in the current implementation). The codebook consists of the leaves which
store the arrived training patches P train

k .
The binary tests are selected using the same two optimization functionals

as [10], to reduce the uncertainty of class-labels and offset. The view annotations
are completely discarded. In our implementation, the label of each patch, lk, is
a binary value assigned to one if the patch was drawn from inside the bounding
box of a positive image and otherwise it is set to zero. However, all training data
information, including the label, can be recovered from θk.

3.2 Multi-view Detection

For detection of objects in a test instance, every patch of the test instance P test
i

is matched against the codebook C and its probabilistic votes are cast to the
voting space V. In particular, by matching the patch P test

i = (Ii, xi, yi, si) to
the codebook, the list of all occurrences Oi = {o = (I, l,d, θ)} stored in the
matching entries is obtained. In this paper, we propose two schemes for casting
these votes to V: joint voting and separate voting .

Joint Voting: Votes are cast to a 3D voting space V(x, y, s). Let us denote the
proportion of positive (same label) to negative (different label) patches of each
codebook entry by rpos

c and the number of positive occurrences by npos
c . Then

for each occurrence o = (I, l,d, θ) ∈ Oi, a vote with weight wo is cast to the
position v = (v1, v2, v3):

v1 = xi − xd(si/sd) (1)
v2 = yi − yd(si/sd) (2)
v3 = si/sd (3)
wo = rpos

c /npos
c (4)

After all votes are cast, the local maxima of V are found, forming a set of can-
didate hypotheses. In this voting scheme, votes from different training examples
and from different views can contribute to a hypothesis and detection is per-
formed without using the viewpoint annotations.

Separate Voting: Voting in separate voting is performed in a 4D voting
space V(x, y, s, view). For each view view, let us denote the number and the
proportion of positive occurrences in c with label view by nview

c and rview
c , respec-

tively. Then for each occurrence o, a vote is cast to the position v = (v1, v2, v3, v4)
with weight wo:

v1 = xi − xd(si/sd) (5)
v2 = yi − yd(si/sd) (6)
v3 = si/sd (7)
v4 = view (8)
wo = rview

c /nview
c (9)

6

The local maxima of V are found after all votes are collected to form a set of
candidate hypotheses. In this voting scheme, only votes from training examples
of a particular viewpoint can contribute to a hypothesis of that view.

3.3 Detection Support and Backprojection

After the local maxima are localized in V, the candidate hypotheses are deter-
mined in terms of their center position and scale (and view in separate voting).
We then collect all votes in the support of a hypothesis (i.e. votes contributing
to its detection) and exploit it to get additional information about it. For a
hypothesis h in location vh ∈ V, we define its support Sh as (see Fig. 1(b)):

Sh = {v ∈ V|K(v − vh) > 0} . (10)

where K is a radially symmetric (in x and y) kernel with only local support
such that the set Sh contains only votes in the local neighborhood of vh. In the
current implementation, only votes from the same scale, and same view in the
case of separate voting, are considered as votes contributing in the support.

Additionally, we can define the backprojection as a mapping from V to the
image domain to form the backprojection mask M (see Fig. 1(c)):

B : {v ∈ V : condition} 7→ M . (11)

where condition are constraints on the votes. Having a constraint, e.g. v ∈ Sh,
the mask is constructed by projecting all the votes satisfying the constraint back
to the image domain. Since each feature point x = (x, y) in the test image is
mapped to the voting space for detection, the mask can be calculated by mapping
every vote v = (v1, v2, v3) back to x with weight wo (see Fig. 1(d) for an example
of such a mask). The total weight of a mask wM is then defined as the sum of
the weights of all the votes mapped to it.

Bounding box estimation from backprojection: Most approaches (e.g.
[3,6,10]) estimate the extent of the object’s presence by placing the average
bounding box of training images scaled and translated to the detection center.
Although this measure is sufficiently accurate for the rather generous standard
evaluation criteria like [22], this measure is not applicable to multi-view detec-
tion with joint voting where aspect ratios of different views widely vary. Inspired
by [3], we propose using the backprojection of the supporting features for this
purpose. In our work, the backprojection mask is simply thresholded by an adap-
tive threshold (set to half the value range) to form a binary mask. The tightest
bounding box encompasing this mask is used as our bounding box estimate. Of
course this is an oversimplification and there is still the possibility of more so-
phisticated bounding box estimations, e.g. [23], but simple thresholding suffices
to obtain reasonable bounding box estimates.

7

Retrieving nearest training images: By conditioning the back-projection
of a hypothesis support Sh to the votes coming from a single training example
with identity tr, one can measure how much tr contributes to the detection of
h. Formally, we can write

B : {v ∈ V : v ∈ Sh ∧ θv = tr} 7→ Mtr . (12)

The total weight of Mtr, wMtr
, can then be used as a holistic measure of sim-

ilarity between the hypothesis h and the training image tr. In principle, by
introducing additional constraints, one can enforce more specific similarity mea-
sures, e.g. similarity of the left side of h to the left side of tr. Since we sample
only a sparse set of patches from the training examples during training, this
measure establishes correspondences between sparse locations of the detection
and a training example. Fig. 7 shows some examples of Mtr.

Support intersection as a metric: Let I(o, Sh) be an indicator variable which
is one if there is any vote in Sh which comes from occurrence o ∈ O and zero
otherwise. We define the support intersection of two hypotheses h1 and h2 as:

Sh1 ∩ Sh2 =
∑

o∈O woI (o, Sh1) I (o, Sh2)∑
o∈O woI(o, Sh1)

. (13)

Note that the similarity measure is not symmetric due to the normalization fac-
tor. Yet, this factor is important as it makes the measure independent of the
detection weight and as it can also account for occluded regions. The support
intersection can be used as a similarity measure between two detections. This
similarity measure is a model-based similarity measure. There is a close link be-
tween the support intersection in (13) and the histogram intersection kernel used
in bag-of-words image classification [24]. This said, there are also substantial dif-
ferences between the two. Since the detection is done with ISM, the support of
the detection takes the spatial relationships of the features into account. There-
fore, there is no need for a fixed grid on top of the bag-of-words representation
as in the spatial pyramid kernel [24]. In addition, this metric is part-based and
benefits from the generalization capabilities of part-based methods and their
insensitivity to occlusions, as shown in the experiments.

It is worthwhile to note an important difference between the similarity mea-
sures (12) and (13). The similarity measure in (12) can only be used to find
the similarity between sparse patches of a detection and a training example, i.e.
only matching to the same patches sampled during training. But support inter-
section establishes a dense feature correspondence between any two detections.
Due to the dense correspondences in (13), for comparing two detections, this
similarity measure has a computational cost in the order of the number of votes
in its support. However, this is about the same cost it takes to consider sparse
correspondences to all training examples in (12).

8

(a) (b)

Fig. 2. (a) Detection performance for the Leuven-cars dataset and comparison to Leibe
et al. [6]. Separate voting with bounding boxes estimated from backprojection (bp)
achieves the best performance despite much lower training and detection complexity
than baseline (one-vs-the-rest). Joint voting with even lower detection complexity and
without using view annotations gives competitive results. (b) Performance comparison
of joint-voting with state-of-the-art approaches on PASCAL VOC 2006 cars dataset.

4 Experiments

In order to assess the performance of the multi-view detectors described in
Sect. 3.2, we use three datasets. The multi-view Leuven-cars dataset [6] con-
tains 1471 training cars annotated with seven different views and a sequence of
1175 images for testing. The multi-view Leuven-motorbikes dataset [5] contains
217 training images annotated with 16 quantized views and 179 test images. And
the PASCAL VOC’06 cars datset [22]. Further experiments for nearest neighbor
retrieval are carried out on the TUD-pedestrians dataset introduced in [25] and
the cars datasets. The TUD-pedestrians dataset provides 400 training images
and 250 images for testing. Throughout the experiments, only bounding box
annotations of the training images are used. The segmentation masks that are
provided for some datasets are discarded.

4.1 Multi-view Detection

As a baseline comparison for the multi-view detection, we consider the popu-
lar one-vs-the-rest detector. For each view, the training is carried out with the
positive training images of a view versus random patches from the Caltech 256
clutter set plus all the positive training images of the other views. An edge de-
tector has been carried out both for training and testing and only features with
their center on an edge are considered.

In order to make fair comparisons, the training and detection parameters are
kept the same throughout the experiments. In particular, the number of trees
in each forest is set to 15. From each training image 100 patches are sampled
and the number of background patches is kept constant at 20000 patches. For
detection, the kernel used for the density estimation is a Gaussian with σ = 2.5
and the first 20 local maxima per image are considered. When the backprojection
is not used for bounding box estimation, non-maxima suppression is done by

9

(a) 350 images (b) 175 images (c) 70 images (d) 35 images

Fig. 3. The effect of training size on the performance of joint voting, separate voting,
and a battery of independent one-vs-the-background classifiers: With the abundance
of training data per view, the separate-voting works best. The advantage of sharing is
significant with lower number of training examples, especially compared to the separate
voting with an identical codebook although no view annotations are used. Joint and
separate voting outperform the independent detector in efficiency and/or accuracy.

removing all detections whose centers are within the bounding box (with 90% of
its size) of another detection with a higher weight. When using backprojection,
the hypothesis with the highest weight is included and its features are removed
from all other hypotheses, thereby decreasing their weights.

The results of this experiment are shown in Fig. 2. As can be seen, separate
voting with the help of backprojection performs best and estimating the bound-
ing box with backprojection slightly increases the performance of the system.
Joint voting also shows a competitive performance. It is worthwhile to note that
the superior performance of separate voting is mainly due to the abundance of
training images per view in this dataset and the presence of additional view
information not used by joint voting. By sharing features across views, as e.g.
shown in the work of Torralba et al. [26], one expects to benefit mainly when the
training data is limited. In order to verify this, we did the following experiment.

We compare the performance of joint voting, separate voting, and a battery
of independent one-vs-the-background classifiers for 50, 25, 10, and 5 training
images per view (7 views). In all the experiments, the full background set from
Caltech 256 clutter is used and the set of training images for all three detec-
tors is identical. Joint voting and separate voting use identical shared codebooks
whereas a separate codebook is trained per view for the independent detector
(see Fig. 3). With fewer training examples, as expected, the performance of all
three detectors degrades, but that of joint voting far more gently. In particular,
the comparison of separate voting and joint voting for few training images is
very interesting. Although an identical codebook is used, joint voting signifi-
cantly outperforms separate voting. This performance gap seems to narrow by
using several codebooks (number of views) and thus more codebook entries for
the independent detector but the performance of joint voting is still superior in
terms of accuracy as well as training and detection time. In order to assess per-
formances on a more challenging dataset, we evaluated joint voting and separate
voting for the Leuven-motorbikes dataset [5] where the test set is provided by
the PASCAL VOC Challenge [27]. The motorbikes have more variability in their
appearance and the views are quantified finer because of the larger variability in

10

(a) (b) (c)

Fig. 4. (a) Joint voting achieves better results than separate voting because of in-
sufficient training data per view and finely quantized views although it does not use
view annotations. Estimating the bounding box from backprojection even leads to a
small improvement. (b) Sharing of features across views of motorbikes. (c) Performance
comparison to state-of-the-art multi-view detectors for the motorbikes dataset.

aspect ratios. For the sake of a fair comparison the same training and test set-
tings as in [5] is used. The results of this experiment are shown in Fig. 4(a). Note
that the detection result with joint voting is obtained only using the bounding
box annotations for the training data and using no view annotations. It is impor-
tant to note that the aim of the experiments is to show improvements over our
baselines with the same parameters throughout experiments. The performance
of joint voting and other state-of-the-art approaches is shown in Fig. 4(c) to give
the reader an idea of the performance of other approaches compared to ours on
this dataset. Note that in Thomas et al. [5] and [17] pixel accurate segemented
training data is used. In contrast to our approach and [5], the sliding window
approach of Savarese et al. [17] explicitly uses the geometrical relationships of
different views. Although these relationships seem to be useful (better recall) for
detection it comes at high computational costs which makes this approach not
scalable to large datasets. In particular, testing with this approach has linear
complexity in the number of training examples compared to logarithmic in our
implementation. And training complexity is quadratic in the number of training
images (linear in our case). In addition, although this work does not use view an-
notations, unlike our approach it needs many views of several training examples
which are expensive to acquire.

Sharing features across views One of the main advantages of training multi-
ple views jointly is the sharing of features. In order to evaluate the capability of
our method in doing so, we are creating a sharing matrix of size nviews×nviews.
Each element of this matrix shows, on average, how many features of the column
view are used for detection of the row view. Since the test set of none of the
datasets is annotated for views, this experiment is done on the set of training
data with a leave-one-out strategy. When running the detector on a training
instance, we are removing all the occurrences that are originating from that
instance from the forest. The sharing matrices for the Leuven-cars and Leuven-
motorbikes datasets are shown in Figs. 4(b) and 5(a).

11

(a) (b) (c) (d)

Fig. 5. (a) Sharing codebook occurrences across views for Leuven-cars. (b) Viewpoint
retrieval with the nearest neighbor using (13). (c) View-point classification for detected
cars in the VOC’06 dataset. As can be seen, the confusion appears to be limited only
to similar views. (d) Comparison to state-of-the-art [16,18] for view classificaiton on
VOC’06 (for a fair comparison detections up to 43% recall are considered; average accu-
racy 82%). Note that our nearest neighboring approach leads to superior performance
and more balanced estimation. Comparing the sharing pattern and view confusions is
also interesting; e.g. front and back views share many features but their view have been
separated well. This shows the presence of additional information in the support.

4.2 Estimating View-point with Nearest Neighbors

As described in Sect. 3.3, support intersection can be used as metric to compare
two detections. In order to assess the quality of this metric, we use it to retrieve
the viewpoint of the detected cars in the Leuven and PASCAL VOC’06 cars
datasets. To this end, we have hand-annotated the viewpoint of the full Leuven-
cars test set. For the PASCAL VOC’06 cars set, the ground truth annotations
were used. For the Leuven-cars, we have run the detector on the positive set
of the training data and collected a set of detections. For the VOC’06 set, the
same procedure is carried out but on the validation set. All detections are done
with joint voting (see Sect. 3.2) and not using view annotations. By comparing
the support of a test detection to the support of all positive collected detections
using (13), the nearest neighbor is retrieved and the estimated view of it is
assigned to the test detection. This has been done for all the true positives in
the test set and their estimated viewpoint is stored. By comparing the estimated
viewpoint with the ground truth annotations, the confusion matrix in Fig. 5(b)
(with average diagonal of 43%) is created where the rows indicate the ground-
truth viewpoints and columns are the estimated viewpoints. In order to see if
retrieving more nearest neighbors would add robustness to this process, this
experiment is repeated by retrieving the 35 nearest training detections for each
test detection and assigning the viewpoint of the majority to it (with average
diagonal of 50%). The results for the VOC’06 are given in Fig. 5(c,d). As can
be seen, most confusion is happening between very similar views. Note that
the features used in our detection system are relatively invariant with respect
to small viewpoint changes and the training is done without using viewpoint
annotations and in a way to optimize detection performance. In addition, there
is a relatively large overlap in the annotation of nearby views due to the difficulty
of precise viewpoint estimation even for humans. A video showing the estimated

12

(a) (b) (c)

Fig. 6. (a-b) The view retrieval performance using (13) together with the proportion
of the cars detected depending on the amount of occluded regions for a subset of the
Leuven-car sequence. (the last two sets, 50% and > 50%, have very few instances).
The recall and view retrieval performances were calculated independently for each
occlusion set. Interestingly, although the detection performance deteriorates from large
occlusions (a), the viewpoint retrieval performance is affected very little (b) which
shows robustness of this similarity measure to occlusions. (c) Distance between the
ankles estimated by the median of the k nearest training images using (12) compared
to mean and median as baselines. The estimation is robust even at high recall rates.

views for the entire Leuven-cars dataset is available under http://www.vision.
ee.ethz.ch/~nrazavi.

The effect of occlusion: In order to assess the quality of the support inter-
section similarity metric in the presence of occlusions, we have annotated all the
cars in every tenth frame of the Leuven-cars sequence based on the amount of
occlusion: not occluded, 10%, 20%, 30%, 40%, and > 50% occluded regions. In
this experiment, first the detector, with the same settings as in the multi-view
experiment, Sect. 4.1, is applied to all the images and a number of detections
are retrieved for each image. Then for each correct detection, its viewpoint is
estimated as described above. For each occlusion set, we have evaluated how ac-
curately the viewpoint is estimated. The results in Fig. 6(b) show the robustness
of this nearest neighbor metric with respect to partial occlusions.

4.3 Retrieving Nearest Training Examples

In Sect. 3.3, we have explained how backprojection can be used as a similarity
measure between object hypothesis and the training examples. In the following
experiment, we are using such information to estimate the distance between the
ankles of pedestrians as an indicator of their pose; see Fig. 7. We carried out our
experiments on the TUD-pedestrians dataset. Training data of this dataset has
annotations of the joint positions and this information is exploited for estimating
the Euclidean distance (in pixels) between the ankles of a test instance. For the
sake of evaluation, we have produced the same annotations for the test set. The

http://www.vision.ee.ethz.ch/~nrazavi
http://www.vision.ee.ethz.ch/~nrazavi

13

Fig. 7. Two test detections from TUD-pedestrians dataset and their top ten nearest
training examples (top row; nearest examples ordered from left to right) and backpro-
jections of detection support to them (bottom row) using (12). The blue box shows the
estimated bounding box from the backprojection mask (blended). Note the similarity
of the poses between the test instances and retrieved nearest training images.

distance between the ankles of the test instance is then estimated as the median
of this distance in the k NNs. Figure 6(c) shows the deviation of the estimated
distance from the ground truth for different values of k. As a baseline, we also
show the deviation from the ground truth if the distance is estimated by the
mean or median distance of the whole training set.

5 Conclusions

We have introduced an extension of the Hough-based object detection to handle
multiple viewpoints. It builds a shared codebook by considering different view-
points jointly. Sharing features across views allows for a better use of training
data and increases the efficiency of training and detection. The performance im-
provement of sharing is more substantial with few training data. Moreover, we
have shown that the support of a detection and its backprojection can be ex-
ploited to estimate the extent of a detection, retrieve nearest training examples,
and establish an occlusion-insensitive similarity measure between two detections.

Although the verification of object hypotheses is not the focus of this work,
the detection performance is likely to improve by an additional verification step
like MDL [3]. Moreover, the backprojection masks could be used in combination
with a CRF to obtain object segmentations similar to [28]. The similarity metrics
could be used in the context of SVM-KNN [29] for verification.

Acknowledgments: We wish to thank the Swiss National Fund (SNF) for
support through the CASTOR project (200021-118106).

References

1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse,
part-based representation. TPAMI 26 (2004) 1475–1490

2. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pat-
tern Recognition 13 (1981) 111–122

3. Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved
categorization and segmentation. IJCV 77 (2008) 259–289

4. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Van Gool, L.: Using multi-view
recognition and meta-data annotation to guide a robot’s attention. Int. J. Rob.
Res. 28 (2009) 976–998

14

5. Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., , Gool, L.V.: Towards
multi-view object class detection. In: CVPR. (2006)

6. Leibe, B., Cornelis, N., Cornelis, K., Gool, L.V.: Dynamic 3d scene analysis from
a moving vehicle. In: CVPR. (2007)

7. Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance
for multi-class object detection. IJCV (2008)

8. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using
contour fragments. TPAMI 30 (2008) 1270–1281

9. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image
classification. In: CVPR. (2008)

10. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR.
(2009)

11. Maji, S., Malik, J.: Object detection using a max-margin hough transform. In:
CVPR. (2009)

12. Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: ICCV.
(2009)

13. Selinger, A., Nelson, R.C.: Appearance-based object recognition using multiple
views. CVPR (2001)

14. Seemann, E., Leibe, B., , Schiele, B.: Multi-aspect detection of articulated objects.
In: CVPR. (2006)

15. Kushal, A., Schmid, C., Ponce, J.: Flexible object models for category-level 3d
object recognition. In: CVPR. (2007)

16. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representa-
tion for detection, viewpoint classification and synthesis of object categories. In:
ICCV. (2009)

17. Savarese, S., Fei-Fei, L.: 3d generic object categorization, localization and pose
estimation. In: ICCV. (2007)

18. Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3d
object classes. In: CVPR. (2009)

19. Chiu, H.P., Kaelbling, L., Lozano-Perez, T.: Virtual training for multi-view object
class recognition. In: CVPR. (2007)

20. Farhadi, A., Tabrizi, M., Endres, I., Forsyth, D.: A latent model of discriminative
aspect. In: ICCV. (2009)

21. Breiman, L.: Random forests. Machine Learning 45 (2001) 5–32
22. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The

2006 pascal visual object classes challenge (2006)
23. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output

regression. In: ECCV. (2008)
24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In: CVPR. (2006)
25. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-

detection-by-tracking. In: CVPR. (2008)
26. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass

and multiview object detection. TPAMI 29 (2007) 854–869
27. Everingham, M., et al.: The 2005 pascal visual object classes challenge. (2005)
28. Winn, J.M., Shotton, J.: The layout consistent random field for recognizing and

segmenting partially occluded objects. In: CVPR (1). (2006) 37–44
29. Zhang, H., Berg, A.C., Maire, M., Malik, J.: Svm-knn: Discriminative nearest

neighbor classification for visual category recognition. In: CVPR. (2006)

	Backprojection Revisited: Scalable Multi-view Object Detection and Similarity Metrics for Detections
	Introduction
	Related Work
	Multi-view Localization with ISMs
	Training a Shared Codebook
	Multi-view Detection
	Detection Support and Backprojection

	Experiments
	Multi-view Detection
	Estimating View-point with Nearest Neighbors
	Retrieving Nearest Training Examples

	Conclusions

