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Abstract

Scalability of object detectors with respect to the number
of classes is a very important issue for applications where
many object classes need to be detected. While combining
single-class detectors yields a linear complexity for testing,
multi-class detectors that localize all objects at once come
often at the cost of a reduced detection accuracy. In this
work, we present a scalable multi-class detection algorithm
which scales sublinearly with the number of classes without
compromising accuracy. To this end, a shared discrimina-
tive codebook of feature appearances is jointly trained for
all classes and detection is also performed for all classes
jointly. Based on the learned sharing distributions of fea-
tures among classes, we build a taxonomy of object classes.
The taxonomy is then exploited to further reduce the cost of
multi-class object detection. Our method has linear training
and sublinear detection complexity in the number of classes.
We have evaluated our method on the challenging PASCAL
VOC’06 and PASCAL VOC’07 datasets and show that scal-
ing the system does not lead to a loss in accuracy.

1. Introduction

Performance of object detection methods has improved
substantially in the recent years [7]. As the number of de-
tectable object classes increases, so does the need for scal-
able methods for detection. However, scaling multi-class
object detection remains a challenging task. Object cate-
gories can have a very large intra-class variability in appear-
ance and shape. In a multi-class setup, this poses a chal-
lenge since the detection method should be discriminant to
inter-class and clutter variations and invariant to intra-class
variations.

In order to deal with these issues, several successful
methods model the object class by a set of parts1 and com-
bine them using a shape model [18, 11]. In this scenario,
every part has an appearance and a location. The location
is generally defined as the relative position and scale of a

1In this paper, the words part and feature are used interchangeably.

Figure 1. Features of different object classes can share appearance
although they do not necessarily also share their location. For in-
stance, the legs of a person and a horse share both appearance
(bounding boxes) and location (arrows) whereas the wheels of a
bus and car are similar in appearance but not in location (red/blue
arrows). In this paper, we are building a multi-class detection al-
gorithm by using discriminative features.

feature with respect to a reference point of the object, e.g.,
center of mass. When extending the part-based approaches
to multi-class problems, the parts (or the combination of
them) need to be discriminant between the classes.

State-of-the-art approaches [28, 13] have focused on
the appearance of the features for discrimination between
classes. In [28], a set of features at fixed locations are se-
lected using a boosting procedure to discriminate objects
from clutter and classes from each other. Without enforcing
sharing, this procedure ends up at very specific discrimina-
tive features which are not generalizing well. Hence, the
authors have proposed a solution to this problem by enforc-
ing sharing of features across classes. The selected features,
however, become very generic since the location is fixed.
These generic features are generalizing well but they are
very weakly discriminating between classes and therefore
detection with them requires evaluating a model for every
class which scales linearly in the number of classes [27].
Similarly in [13], a set of shape features are learned by com-
bining generic simple edge features. However, since the lo-
cation is fixed in the constellation model, the model of every
class needs to be evaluated [12].

In this paper, we propose a method for learning discrim-
inative parts in appearance without fixing their locations.
This is achieved by treating location and appearance differ-
ently. Our approach is also motivated by psychological ev-
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idence suggesting that the localization and classification of
objects follow different pathways in the human visual sys-
tem [21, 30]. Such separation implicates also possible com-
putational advantages as discussed in [25]. In our approach,
we focus on the features of intermediate complexity which
are optimal for classification [29]. In particular, the appear-
ance of our features is shared across categories providing
good generalization, yet remaining discriminative for a sub-
set of classes. However, when the appearance is combined
with location, the features become discriminative for the in-
dividual classes. For instance in Fig. 1, the wheel discrim-
inates the bus from the horse and the person, but not from
the car. However, the wheel of the bus gives another de-
tection of the object than the wheel of the car. Hence, we
first classify features and obtain a set of likely categories
and then do localization to gather evidence for the position
of the most likely object class.

For building a shared codebook, we extend the single-
class approach of [14] and introduce a novel optimality cri-
teria to achieve the right balance between feature sharing
and discrimination in the context of multi-class detection.
The proposed multi-class detector scales better than a com-
bination of single-class detectors and, most importantly, is
similar in detection accuracy. The detection is based on the
implicit shape model [18] where codebook entries vote for
the object position and class. Due to the sharing of fea-
tures, the number of votes that need to be cast for detection
also increases only sublinearly with respect to the number
of classes. Furthermore, we build a taxonomy of object
classes from the sharing distribution among classes. We
show that the derived taxonomies have a semantic interpre-
tation and that the taxonomies increase scalability by reduc-
ing the number of votes. Since the detection might result
in overlapping bounding boxes that are ambiguous in class
label, we perform an additional classification after detec-
tion. The detection reduces not only the number of poten-
tial bounding boxes to a very small number, it also provides
a class label such that each bounding box is only classified
with respect to a single object class and not all classes.

2. Related Work
Several approaches have addressed the problem of fea-

ture sharing in the context of multi-view or multi-class ob-
ject detection [28, 13, 24, 26]. Following a sliding window
approach for detection, [28] proposes a boosting procedure
to explicitly enforce sharing and shows that the number of
features grows sublinearly with the number of classes. The
classification in [28] is done in a one-vs-the-rest approach
and scales linearly with the number of classes though. [27]
has reduced joint-boost recognition at classification time to
nearest neighbor search in a vector space to scale the joint
boosting for large multi-class problems. However, this work
is limited to the joint-boosting and requires many similar

classes. For shape-based object detection, [13] introduces a
method for learning a scalable hierarchy of parts by using
the statistical co-occurrence of generic features and inde-
pendently evaluates a constellation model of each class for
detection. This work has been recently extended [12] for
speeding up multi-class detection by introducing a coarse-
to-fine representation of contour features and constellation
models. In [28, 12], it is assumed that constellations of simi-
lar classes are similar and can therefore be grouped together.
However, this assumption is too restrictive as it forces the
features in the constellation to simultaneously share appear-
ance and location. As a result, this method yields shallow
hierarchies with many disjoint groups of classes and re-
quires again coarsening of features which are once joined
in training to increase discriminativity.

Hierarchical taxonomies of object categories have been
used previously for scalable image classification [16, 20,
10]. In [16], a taxonomy is built by clustering the confusion
matrix of one-vs-the-rest detectors. At each node of the hi-
erarchy, a classifier is trained and combined to a multi-class
classifier. The approach has been extended in [20] by allow-
ing overlapping labels in disjoint branches of the hierarchy.
The degree of overlap gives a trade-off between accuracy
and efficiency. Object hiearchies have been used in [10] to
transfer the label into an unseen class by sharing labels be-
tween semantically similar classes. Although these works
are using hierarchies and are therefore related, they are not
applicable to object detection.

Building a codebook of parts and learning appropri-
ate weights for them is also addressed in the literature.
[18, 13] follow a generative approach for clustering the
patches whereas [26, 19, 31, 14] pursue a discriminative
one. [19, 31] build the codebook in a generative way but
learn appropriate weights for them discriminatively using
a max-margin framework. [26, 14] learn a direct mapping
from the patch appearances to weights in a random decision
forests framework. In [26], only class labels are used for
discriminative training where both class labels and spatial
location of features are used in [14]. In [22], scale-invariant
features of training data are stored as the codebook without
any quantization [2] and used to cast voting lines for detec-
tion. Since our features are not scale-invariant, [22] does
not directly apply to our approach.

Recently, several approaches have considered generic
object detection [1, 6, 3]. These approaches are related to
this work as they also separate the localization and classi-
fication. In contrast to our work, they do not make use of
class information during detection. This implies that de-
tected bounding boxes need to be evaluated for all classes
yielding a linear complexity in the number of classes. In
this work, we use the label information encoded in the de-
tection for scalable multi-class detection where we do not
need to run the final expensive classifier for all classes.
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3. Analysis of a Multi-class Hough Transform
Let us first introduce some notations. We denote an im-

age by I and the number of pixels in it by |I|. Each image
is described by a set of features F I = {fi}. Each feature
fi = (ai, li, ci) has an appearance ai, location li (which
fully describes the spatial extent of the feature and is not
limited to position necessarily), and belongs to an object
from a certain class ci. The set of all classes is denoted
by C = {c1, . . . , cn, cbg}, where c1, . . . , cn are the posi-
tive classes, and cbg is the background class, which needs
special treatment as we show later. This way, we can repre-
sent an object O by a set of features FO = {ao

i , l
o
i , c

o} with
identical class labels. The locations are represented relative
to a reference point, e.g., arithmetic mean of locations. The
co are known only for training features F train.

A hypothesis h for an object can be represented by a set
of features, i.e., h = {fh

i (ah
i , l

h
i , ch)}, and the scoring func-

tion for a hypothesis is denoted byM : H 7→ R. The objec-
tive of training is to learn a scoring function such that ob-
jects get a higher score than non-object hypotheses. Several
models have been proposed for this purpose [11, 18, 28],
just to name a few. These methods can be classified into
two categories, feature-based and window-based methods.
However, when fh

i are scored independently, these ap-
proaches are equal [17], i.e., M(h) =

∑
M(hi) where

hi = fh
i . This independence assumption is clearly a sim-

plification, but it is essential for efficient detection. In this
work, we use the feature-based representation under this as-
sumption.

3.1. Multi-class Hough Transform

Let us consider a natural multi-class extension of the
Hough transform with a shared codebook for all classes in
which class label is an additional dimension (similar to sep-
arate voting in [24]). Training in this scheme is composed
of two stages. Firstly, F train is clustered into a codebook
K. In the second stage, a score function sk(l, c) is learned
for each codebook entry using the location and class labels
of the training data. For detection, appearance of every fea-
ture fh

i in a hypothesis is assigned to a codebook entry k
and a weight is assigned to it using the scoring function. In
the Hough transform, instead of creating all the possible hy-
pothesis and obtaining their scores, a set of weighted votes
with inverse locations are casted in a voting space. Every
element of this voting space is a hypothesis and its extent is
obtained by backprojection.

Note that representing appearances with a codebook is
not limiting us and we can cast other detection schemes un-
der independent assumption into a Hough transform. For
instance, consider the detection with a sliding window ap-
proach and using HoG [4] features (e.g., [9]). In this case,
the codebook is simply composed of the quantized gradient
orientations. The score function learns the weight of each

orientation occurring at a certain discrete location (HoG
cell). If the detection proceeds using Hough-transform, it
would result in the same solution as the sliding window.

3.2. Computational Complexity

For discussing the complexity in terms of number of
classes |C|, we assume that the number of features per test
image is O(|I|) and the cost of extracting a single feature
is constant. Furthermore, we assume that the number of
training images per class, N , is equal for all classes and
the number of features per training example is constant.
The total number of features |F train| stored in K is then
O(|C| × |N |). If the cost of matching a feature to a code-
book entry is O(|K|), as it is in [18, 28], then the cost of
detection is

L = O

(
|I|× |K|

|K|
× |F train|

)
= O(|I|× |C|× |N |). (1)

assuming that the features are evenly distributed among
codebook entries. As can be seen, the complexity of detec-
tion does not depend on |K|. Note that this does not imply
the equality of different codebooks, however. Another im-
portant factor when assessing the performance is the accu-
racy which indeed depends on how the codebook is trained
and its size. For example, when sharing features among cat-
egories, [28, 13] have shown that the number of codebook
entries is growing only sublinearly in |C| and since sharing
makes better use of the training data, it increases the accu-
racy. Another advantage of sharing is that usually the cost
of matching a feature is much higher than the cost of voting
and in that respect sharing reduces the computational time
although L still grows with O(|C|). In order to scale the
detection, one can either decrease the complexity of match-
ing, use less training images, or reduce the number of voting
elements which currently is O(|C| × |N |).

Several approaches [14, 2] proposed matching schemes
with cost of O(log(|K|)). In this scenario, L is

L = O

(
|I| × log(|K|)

|K|
× |C| × |N |

)
. (2)

If |K| = k|C|, where k does not depend on |C|, L
scales with log(|C|) which is ideal. However, our experi-
ments confirm the observation of [28, 13, 29] that in order to
afford generalization and handle intra-class variability, the
features cannot be very specific to a certain class as implied
by |K| = k|C|. Hence, the size of the codebook scales
sublinearly in |C|. And if |K| = k log(|C|), we get

L = O

(
|I| × log log(|C|)

log(|C|)
× |C| × |N |

)
, (3)

and O(|C| × log log(|C|)
log(|C|) ) does not scale well in |C|.
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(a) (b)

Figure 2. Patches clustered in two sample leaves of our multi-class
detector trained for VOC’06 dataset. Although the appearance of
our middle complexity patches is shared among some classes, it
is yet discriminative to other classes. For instance, when a patch
is assigned to leaf (a), it is difficult to determine if it belongs to a
dog or a person but we can say that it is not coming from a car or
a motorbike. This property of middle-complexity features enable
building of part-based category hierarchies introduced in Sec. 4.3.

This means that one needs to find a good trade-off. To
this end, we propose an approach in which features are
shared only between similar classes (Sec. 4.1). Further-
more, the number of voting elements can be reduced using
a taxonomy of classes that is automatically obtained from
the trained codebook (Sec. 4.3).

4. Proposed Multi-Class Detector
4.1. Training the Shared Multi-class Codebook

For training the codebook, we use a multi-class exten-
sion of the class-specific Hough forests [14]. Although we
are not limited to this choice, this framework provides us
with the flexibility to analyze several issues regarding shar-
ing and multi-class detection.

Class-specific Hough forests discriminatively learn the
codebook K and the scoring functions sk(l, c) from the
training data F train. To this end, starting from the root
with all features, a binary test is assigned recursively to each
node n of the trees that optimally splits features of that node
Fn into two sets Fn

left and Fn
right according to certain cri-

teria. The optimal binary tests are selected as to minimize
either location or class uncertainties. We can define class
and location uncertainties for multi-class as a natural exten-
sion of the criteria introduced in [14] for single class as

U c(F ) = |F |
|C|∑
i=1

−pci
· log(pci

) (4)

U l(F ) =
|F |∑

j,cj 6=cbg

‖lj − l̄‖22 (5)

where pci
is the probability of class ci and l̄ = 1

|F |
∑

j lj is
the mean vector of locations.

While (4) enforces the features to be discriminative be-
tween objects and background, (5) favors features sharing

their location. Optimizing the class and location uncertain-
ties indeed prefers features at each leaf to satisfy both prop-
erties. It is important to note, however, that the second cri-
terion (5) is not forcing similar locations as in [28] and it
only tries to minimize location uncertainty as much as pos-
sible. Nevertheless, this requirement can be restrictive as
mentioned earlier (see Fig. 3). Hence, we relax the second
criteria to be class dependent letting features to have differ-
ent locations for different classes:

U l(F ) =
|F |∑

j,cj 6=cbg

‖lj − l̄cj
‖22 (6)

where l̄c =
∑

j,cj=c lj .
The class uncertainty measure in (4) treats the back-

ground class like any other class and does not ensure
well separation of the background from other classes (see
Fig. 3(b)). We thus propose a special treatment of the back-
ground class by having a cost function measuring the infor-
mation gain for separating background from any other class
given by

U bg(F ) = |F |(−po · log(po)− pbg · log(pbg)) (7)

and another cost function measuring the information gain
for separating object classes from each other

Uo(F ) = |F |
|C|∑

i=1,ci 6=cbg

−pci · log(pci). (8)

These two cost functions are then mixed to form the final
cost function

U c(F ) = Uo(F ) + λU bg(F ) (9)

and the mixing coefficient λ in our experiments is set to |C|.
Figure 3 shows sharing matrices of codebooks trained with
different criteria.

4.2. Measuring Sharing

For each entry k of the codebook of local appearances
K, let us assume that we have pre-calculated a look-up ta-
ble Zk = {zk

c,l} storing the non-zero weights obtained from
the scoring function for every pair of (l, c). Hence, we can
redefine the codebook K = {ak, Zk}. For every codebook,
we can obtain a sharing matrix S : |C| × |C|, which indi-
cates the degree of sharing between different classes. The
sharing matrix can be calculated by considering only ap-
pearance, or appearance and location. An element S(ci, cj)
of a sharing matrix for appearance is calculated by

S(ci, cj) =
1
ζ

|K|∑
k=1

|zk
ci
|
|zk

cj
|∑

h=1

zk
cj ,lh

. ζ =
|C|∑
t=1

S(ci, ct). (10)

1508



(a) (b) (c) (d)

Figure 3. In this figure, the effect of training with various optimization criteria is illustrated. (a) When training according to (4) and (5).
(b) By relaxing the location with (6), more distinction is appearing between dissimilar classes but the separation of background class is
problematic. (c) If we only separate the foreground and background using (7), the background gets well separated but the classes remain
mixed. (d) This is the sharing matrix obtained from (9) for which the classes and background are both well separated. As can be seen, the
classes are separated similar to (b) and the foreground and background similar to (c). (best viewed in color)

Similarly, we can calculate a sharing matrix of sharing
both appearance and location by

S(ci, cj) =
1
ζ

|K|∑
k=1

|zk
ci
|∑

g=1

|zk
cj
|∑

h=1

zk
cj ,lh

θ(lg, lh). (11)

where ζ is again a normalization factor and θ(lg, lh) is a
threshold function which is one if ‖lg− lh‖2 is smaller than
a threshold (set to 10 pixels in our implementation). Hence,
two features of different classes are considered shared only
when they are clustered into a same leaf and if their location
is similar.

4.3. Building the Taxonomy

We automatically build a taxonomy of classes by clus-
tering the appearance sharing matrix defined in (10). The
appearance sharing matrix is asymmetric and its elements
are affinities. For clustering, we transform it into a symmet-
ric dissimilarity matrix D by

D = 1− 1
2

(S + ST ). (12)

The taxonomy T is obtained by clustering D using the
complete-linkage agglomerative clustering. Sharing matri-
ces using (10) and (11) and their corresponding taxonomies
are shown in Fig. 4.

In contrast to [16], the hierarchy is derived from the shar-
ing matrix and not from the confusion matrix. This is more
efficient since the similarity can be directly computed from
the trained codebook without an additional expensive val-
idation procedure that is needed for the confusion matrix.
Furthermore, taking the confusion matrix means that the lo-
cation is also used whereas we would like to have sharing
only based on the appearance. Although it is our objective
to automatically obtain a taxonomy from the sharing matrix,
it is still possible to use WordNet [8]-style hand-crafted se-
mantic taxonomies. In principle, semantic taxonomies en-
able sharing labels of the learned categories to unseen cate-
gories [10]. This transfer is beyond the scope of this paper

and we leave it for future work. However, as we will see in
the experimental section, the hierarchies that we obtain by
clustering the sharing matrix are indeed semantically mean-
ingful; therefore, we do not expect to have a performance
drop by using semantic hierarchies.

4.4. Detection with the Taxonomy

Our multi-class detection scheme is a straightforward ex-
tension of separate voting introduced in [24] for multi-view.
In this scheme, dense features are sampled from the image.
Every feature is matched to a codebook entry k and a set of
weighted votes are cast to a 4D voting space according to
occurrences stored in Zk. As described in Sec. 3.2, the cost
of detection of this method scales with the number of cast
votes to the voting space.

In order to reduce this number, we use a taxonomy that
has been automatically obtained from the sharing matrix;
see Fig. 4(a) for an example taxonomy. The object classes
are the leafs of this taxonomy and every internal node t has
a subset of classes Ct. We use the taxonomy to efficiently
retain a small subset of similar categories for each feature
and only vote with those classes. For this purpose, we only
look at the appearance of the features. At training time, for
every node t and each codebook entry k, we pre-calculate a
weight wk

t =
∑

cj∈Ct
zk
cj

and normalize it by the weight at
the root and store it in the codebook. At the detection time,
a dense set of features are extracted from an image and are
assigned to a codebook entry. For every feature f , the tax-
onomy tree is traversed using breath first search and all the
leafs with weights greater than a threshold are retained and
the voting is done using those leafs only. Since the weight at
each node is the sum of the weights at its children, retaining
the leafs with weights bigger than the threshold can be done
efficiently. The threshold in our work is node specific and is
set to α × linkage

|C| where linkage is the linkage cost of the
parent node (set to one at the root) and α is set to 1.5 in our
implementation. In order to increase robustness, we obtain
the weights ŵ at each node by averaging weights of all the
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(a) (b) (c)
Figure 4. Sharing matrices for VOC’06 dataset using our proposed multi-class criteria in Eqs. (6) and (9) for training. (a) Sharing matrix
of feature appearances using (10) and its corresponding taxonomy which is automatically obtained by clustering the sharing matrix. When
calculating sharing of both appearance and location with (11), the sharing matrix in (b) is obtained. When discriminativity in appearance
is combined with location, our multi-class training leads to a very good separation of classes. (c) Speed-up achieved using the taxonomy
in (a). The more discriminative features lead to more speed-up. (best viewed in color)

features in the neighborhood of f . In our experiments, we
used a neighborhood of 8× 8 pixels. The rest of the detec-
tion is done in a standard way and the bounding box of each
hypothesis is obtained from the backprojection [24].

4.5. Verification

The above mentioned detection algorithm has a very
good recall, but this usually comes at the cost of low pre-
cision. The main underlying reason for this is the indepen-
dent assumption which is too crude for classification but vi-
tal for fast detection. In addition, the detection system looks
only at the features which are well localizable. For exam-
ple, seeing an elephant’s skin tells little about the elephant’s
center, however, it is useful for classification. To this end,
we re-score the hypothesis obtained from the previous step
using a more sophisticated classifier (we used [9] for which
the source code is kindly provided by the authors). Un-
like other methods, e.g., [19], which exhaustively searches
a set of bounding boxes in the neighborhood of a detection,
the re-scoring in our system is performed only for a single
bounding box and a single class, which makes it scalable.

5. Experiments

For our experiments, we use the popular PASCAL VOC
2006 and 2007 datasets [7]. We also consider two baselines
for the performance analysis. The first baseline is detection
with one-vs-the-rest multi-view Hough forests [24] using
joint-voting and then followed by the verification step us-
ing [9] as classifiers. The second baseline is the output of
the classifiers [9] using sliding window for detection.

The multi-class detector presented in Sec. 4 is single-
scale. In order to carry out detection on the multi-scale
VOC datasets, the detection is done at multiple scales by
rescaling images. We have used the scales:

√
2

i
where

i ∈ {−3,−2, . . . , 8}. The range of scales appearing in
VOC datasets are different for different classes. For effi-
ciency reasons, a range of scales from the a-forementioned

Figure 5. The sharing matrix of appearance and its automatically
built taxonomy for the VOC’07 dataset. (best viewed in color)

range is selected for each class using the validation set.

5.1. Training

Prior to training of the forest, the training objects are
cropped from the bounding box annotated images and
rescaled to have approximately the same size. A small re-
gion around the bounding boxes with 10% of the original
bounding box width is added to the cropped image. The
rescaling is carried out to have the maximum of width and
height not less than 100 pixels and the minimum of them
not smaller than 50 pixels. The coordinates at the center of
the bounding box of each object is considered as its center.
For training each tree, 200 objects per class are randomly
selected (when available) where 250 patches are extracted
from each. 250 patches are extracted from non-object re-
gions of 200 randomly selected images and used as back-
ground patches. The patch size is set to 16 × 16 pixels
which can be considered of intermediate complexity (see
Fig. 2). Same image features as [14] are used. A class label
is assigned to each feature and the additional view annota-
tions are ignored. Each tree is trained until the depth 20 for
VOC’06 and 25 for VOC’07 is reached, or until less than
10 patches for one class are left. The effect of different op-
timization functions for training is shown in Fig. 3.

1510



Method bic. bus car cat cow dog hrs. m.bi. pers. shp. avg
OvA .16 .13 .07 .04 .18 .03 .15 .16 .11 .12 .114
MC .37 .12 .11 .02 .14 .05 .08 .21 .05 .12 .127

MC+T. .38 .13 .12 .05 .15 .03 .11 .12 .05 .12 .132
[9] .64 .62 .634 .23 .46 .14 .45 .61 .38 .45 .459

OvA+vrf. .67 .62 .62 .23 .46 .14 .46 .62 .35 .43 .461
MC+vrf. .68 .64 .65 .20 .47 .14 .44 .64 .38 .43 .465

MC+T.+vrf. .66 .64 .66 .22 .47 .14 .44 .64 .36 .42 .463
Table 1. Performance comparison of our multi-class method (MC)
with the baselines in average-precision for VOC’06 dataset. The
first block shows the detection without verification and with-
out non-maxima suppression. MC outperforms one-vs-the-rest
(OvA). The taxonomy not only reduces the amount of voting
(Fig. 7), it also gives a slight improvement. In the second block,
verification is performed with [9]. By using a two-stage method,
we are not loosing accuracy compared to [9]. The number of per-
formed verifications is given in Table 2.

5.2. Scalability

Table 6 compares the complexity of our approach to our
baselines and the state-of-the-art. Since we are using ran-
dom decision forests for matching a patch to the codebook,
our matching cost is logarithmic in the number of codebook
entries. However, as discussed in Sec. 3.2, the complex-
ity of detection also depends on the size of the codebook
and the total number of cast votes. Figure 7 compares the
codebook size and the number of votes for one-vs-the-rest
detectors and our multi-class approach with and without us-
ing taxonomies. For this experiment, different number of
classes are chosen at random from the VOC’06 dataset and
a multi-class detector, with the same settings as above, is
trained for them. Although the number of votes scales sub-
linearly in the multi-class approach, using taxonomies adds
further reductions. Figure 4(c) shows the per class speed-
ups when using the taxonomy shown in Fig. 4(a).

5.3. Detection

For detection at every scale, a dense set of features is ex-
tracted and matched to the forest and their votes are cast to
a voting space similar to [14]. When using the taxonomy,
the votes are cast only for the categories with weights bigger
than the threshold as described in Sec. 4.4. The voting space
is implemented by having a separate accumulator for every
class, but since the number of cast votes to this accumulator
scales sublinearly, so does the detection. All hypotheses up
to a certain threshold for each class are detected and their
bounding boxes are estimated using backprojection similar
to [24] and no further non-max-suppression is performed
before verification. For verification, the final verification
classifier [9] is applied to every hypothesis. For fairness
in comparison with [9], the same bounding boxes and non-
maxima suppression are used after verification. Tables 1
and 3 summarize the accuracy of our two-stage multi-class
detector. Table 2 compares the number of windows passed
to the verification for both VOC’06 and VOC’07 datasets.

Method #windows #verifications
Our approach-VOC’06 (10 cat.) 1321 1321
Our approach-VOC’07 (20 cat.) 1778 1778

[9]-VOC’07(20 cat.) 42278 833141
Table 2. Our multi-class detection approach reduces the number of
windows for verification per image by three orders of magnitude.
Unlike sliding window approaches, our method assigns a class to
each returned window. This eases the verification as one classifier
should be evaluated per window, and this without compromising
accuracy; see Tables 1 and 3.

Since in our system the number of evaluated windows is
three orders of magnitude lower than a sliding window ap-
proach, there is the possibility of using more sophisticated
classifiers with many features [15]. The actual run time
(seconds per image) of our method for single class is 35sec,
but only 100sec when detection all 20 classes jointly with
the taxonomy. Comparing these numbers with the very fast
verification detector in [9], with 7sec per image for single
class and 134sec for 20 classes, there is already a benefit for
less than 20 classes. Unlike our method, the generic object
detector in [1] compromises accuracy for the sake of speed.

6. Conclusions
In this paper, we have presented a scalable multi-class

detector by treating location and appearance of features dif-
ferently. The detection complexity of our method is sub-
linear in the number of classes. Our approach also benefits
from sharing features and an automatically built category
taxonomy for robust scalability without compromising ac-
curacy. We have further shown how the detection scheme
can be combined in a scalable manner with a verification
classifier. Yet, in the current implementation only simple
intensity and HoG features have been used which are not
appropriate for textured classes like cats and dogs. In ad-
dition, although high resolution training data is provided,
the training completely discards this by rescaling all train-
ing images to relatively small sizes. In the future, we are
planning to overcome these shortcomings by using texture
features and building a multi-resolution representation of
patches similar to [23]. Further, we plan to run our method
on ImageNET [5] with many classes.
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