
2D Action Recognition Serves 3D Human Pose
Estimation

Juergen Gall1, Angela Yao1, and Luc Van Gool1,2

1 Computer Vision Laboratory, ETH Zurich, Switzerland
{gall,yaoa,vangool}@vision.ee.ethz.ch

2 KU Leuven, Belgium

Abstract. 3D human pose estimation in multi-view settings benefits
from embeddings of human actions in low-dimensional manifolds, but
the complexity of the embeddings increases with the number of actions.
Creating separate, action-specific manifolds seems to be a more prac-
tical solution. Using multiple manifolds for pose estimation, however,
requires a joint optimization over the set of manifolds and the human
pose embedded in the manifolds. In order to solve this problem, we pro-
pose a particle-based optimization algorithm that can efficiently estimate
human pose even in challenging in-house scenarios. In addition, the algo-
rithm can directly integrate the results of a 2D action recognition system
as prior distribution for optimization. In our experiments, we demon-
strate that the optimization handles an 84D search space and provides
already competitive results on HumanEva with as few as 25 particles.

1 Introduction

3D human pose estimation in multi-view scenarios is an active field of research [14].
While recent approaches [3, 6, 11, 12] report impressive results on benchmarks
like HumanEva [23], real-world applications such as in-house monitoring still
pose many challenges. For example, background clutter, occlusions, and interac-
tions with objects are all difficulties not encountered in studio recordings.

To maintain robustness in more unconstrained scenarios, the use of priors
on human actions and dynamics have become very popular. For instance, the
poses of a certain group of actions can be embedded into a low-dimensional man-
ifold [12, 15, 29]. While ‘full-body’ motions like walking, jogging, and golf swings
can be nicely embedded, learning embeddings for more ambiguous actions like
‘carrying an object’, particularly from sparse and noisy data, is a much more
difficult task. Furthermore, the complexity increases with the number of actions
and many dimensionality reduction techniques struggle to establish useful em-
beddings for a high number of actions. Instead of embedding all actions into a
single manifold, creating separate, action-specific manifolds is an easier task to
solve. Moreover, this allows for the incremental addition of new actions, which
is an important property to have in practice. Using multiple manifolds, however,
leads to an unsolved problem: how can we estimate the pose from a set of man-
ifolds? An approach would be to learn the transitions between each manifold,
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using techniques like motion graphs [10] or switching models [4], but this does
not scale with the number of actions.

Here, we propose a new algorithm for optimizing over a set of manifolds that
can efficiently estimate human pose even in challenging scenarios like the TUM
kitchen dataset [27]. We have adapted a particle-based annealing optimization
scheme [7] to jointly optimize over the action-specific manifolds and the human
poses embedded in the manifolds. The approach scales in the worst case linearly
with the number of manifolds, under the assumption that each manifold can be
optimized with the same amount of time, i.e. they have the same dimensionality,
which is more efficient than modeling transitions between the manifolds. Since a
linear scaling is not optimal for a high number of action classes, we also propose
a prior on the distribution of the actions obtained by a 2D action recognition
system. In our experiments, we demonstrate that the action prior improves the
tracking performance and that the optimization provides already competitive re-
sults with as few as 25 particles. The action recognition and tracking performance
are evaluated on two state-of-the-art benchmarks, the HumanEva dataset [23]
and the TUM Kitchen dataset [27].

2 Related Work

Using priors learned from motion capture databases is now very popular for
robust tracking in difficult scenarios [22, 30]. By learning a mapping between
the image space and the pose space, the pose can be recovered directly from
silhouettes and image features [1, 3, 8, 11, 24]. In [15, 28, 29], Gaussian process
dynamical models were used for embedding motion in a low-dimensional latent
space, while in [12] locally linear coordination is proposed for dimensionality
reduction. Retrieved motions from databases have also been used [2] to refine
tracked poses.

Action recognition is a rich sub-field of computer vision research in itself;
we refer the reader to the recent review [18] and limit our discussion to multi-
camera methods. Most work in multi-view action recognition has been focused
on achieving view-invariant recognition. One line of approach has been to model
the changes with respect to view, either of the location of feature points, using
linear basis functions [21] or of the action’s appearance, using low-dimensional
manifolds [25]. A second line of approach has been to construct templates in
either 3D [13, 31, 32] (2D space and time) or 4D [17] (3D space and time) and
then projecting them back to a lower dimension from an arbitrary view, for
matching either silhouettes or visual hulls.

Little work, however, has been done in coupling action recognition with pose
estimation, as much of the previous work in pose estimation has been focused on
sequences of single action classes rather than multi-actioned longer sequences.
An exception is the switching Gaussian process dynamic model [4], in which the
action is modelled as a hidden switching state. We follow a different approach
since we do not model pose estimation as a filtering problem over time but as
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Fig. 1. System Overview. (a) Silhouettes are extracted by background subtraction.
(b) Tracks are built over the entire sequence and classified by a 2D action recognition
system. (c) Confidences of each action are used to distribute the particles over the
action-specific manifolds. (d) Final pose is obtained by optimizing over the manifolds.

an optimization problem over the manifolds for each frame. Hence, we do not
need to observe transitions between actions for training.

3 Framework

The multi-view system can be decomposed into action recognition on the 2D
images and 3D pose estimation, with the action-specific manifolds acting as
a link between the two. First, silhouettes are used to establish a track of the
person over the sequence; the action recognition system then assigns labels for
the track over time (Section 4). The confidence measure of the action labels are
then used to distribute the particles in the particle-based optimization scheme
over the action-specific manifolds (Section 5.1). Finally, the pose is estimated by
an optimization over the entire set of manifolds (Section 5.3).

4 2D Action Recognition

For 2D action recognition, a separate classifier is trained for each of the cameras
in the multi-view setup; results from the individual classifiers are then combined
with standard classifier ensemble methods. Motivation for fusing the single views
is based on the assumption that actions which are ambiguous in one view, e.g.
due to self-occlusion, is more distinguishable from another view.

2D action recognition is performed according to the Hough-transform voting
method presented in [33]. It breaks down the action recognition problem into
an initial localization stage, which generates tracks of the individual performing
the action, and a subsequent classification stage, which assigns action labels to
the tracks. In scenarios where the cameras are fixed, it is not necessary to build
the tracks with a tracking-by-detection technique as presented in [33]. Instead,
background subtraction is used to generate silhouettes of the person performing
the action (Fig. 1). Bounding boxes are then extrapolated around the silhouette
and the trajectory of the bounding boxes is smoothed to build the track.

The output of the classification stage is a confidence score of each action
class over time, normalized such that the confidences over all classes at any time
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point sum up to 1. A classifier combination strategy such as the max-rule is then
used to combine the outputs from the multiple cameras [9].

5 Optimizing Over a Set of Manifolds

Having a skeleton and a surface model of the human, the human pose is repre-
sented by a vector in a bounded, high-dimensional state space E ⊂ RD+6. While
Θ = θ1, · · · , θD ∈ EΘ denotes the joint angles, the global orientation and posi-
tion are encoded by the 6D vector (r, t). An element of the search space is given
by x = (r, t, Θ). We formulate pose estimation as an optimization problem over
E for a given positive energy function V , i.e. minx∈E V (x). The energy function
measures the consistency between the images of all camera views and the projec-
tions of the model’s surface for a given pose x. As consistency measure, we use
edges and silhouettes [20]. Although these features are not optimal for human
pose estimation, since edges are sensitive to background clutter and silhouettes
are sensitive to occlusions and background changes, the associated energy func-
tion is fast to compute and fixed for all our experiments. As a baseline, we imple-
mented the particle-based annealing optimization scheme ISA over E, which has
been used in the multi-layer framework [6]. The optimization scheme, based on
the theory of Feynman-Kac models [16], iterates over a selection and mutation
step, and is also the underlying principle of the annealed particle filter [5].

We modify the baseline algorithm to optimize over a set of manifolds instead
of a single state space. To this end, we consider a set of action classes A =
{a1, · · · , a|A|}, where we learn for each class an action-specific low-dimensional

manifold Ma ⊂ Rda with da � D. We assume that the following mappings are
available:

fa : EΘ 7→Ma, ga : Ma 7→ EΘ, ha : Ma 7→Ma, (1)

where fa denotes the mapping from the state space to the low-dimensional
manifolds, ga the projection back to the state space, and ha the prediction
within an action-specific manifold. Since the manifolds encode only the space
of joint angles, a low-dimensional representation of the full pose is denoted by
ya = (r, t, Θa) with Θa = fa(Θ). A particle si = (yia, a

i) stores the correspond-
ing manifold label ai in addition to the vector yia = (ri, ti, Θia) and the set of
particles is denoted by S. Our algorithm operates both in the state space as well
as in the manifolds. An overview of the algorithm is given in Fig. 2.

5.1 Action-Specific Manifolds

Each of the action-specific low-dimensional manifolds, Ma, are learned from the
joint angles Θ in motion capture data using Isomap [26], a non-linear dimen-
sionality reduction technique. As Isomap does not provide mappings between the
high- and low-dimensional pose spaces, we learn two separate Gaussian Process
(GP) regressions [19], fa and ga (2), to map from the high-dimensional space to
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the low-dimensional space and back, respectively, where m (·) and k (·) denote
the mean and covariance functions.

y = fa (x) ∼ GP (m (x) , k (x, x′)) ; x = ga (y) ∼ GP (m (y) , k (y, y′)) . (2)

In addition, a third GP regression, ha, is learned to model temporal transitions
between successive poses within each action-specific manifold:

yt = ha (yt−1) ∼ GP (m (yt−1)) , k (yt−1, y′t−1)) . (3)

5.2 Theoretical Discussion

As mentioned in Section 5, one seeks the solution of the minimization problem
minx∈E V (x). When optimizing over a set of manifolds the problem becomes

min
a∈A

(
min
y∈Ma

V (ga(y))

)
. (4)

Minimizing the problem this way, i.e. searching the global minimum in all mani-
folds Ma and then taking the best solution mapped back to the state space, does
not scale well with the number of manifolds. Hence, we propose to optimize over
all manifolds jointly. Before outlining the optimization procedure in Section 5.3,
we briefly discuss the existence and the uniqueness of the solution. Since ga and
fa are not direct inverses of each other, i.e. (ga ◦ fa) does not equal the identity
function, the optimization over the manifolds (4) does not provide the same so-
lution as the original optimization problem over the state space. Indeed, this is
the case only if the following is satisfied:

∃a ∈ A,∃y ∈Ma : min
x∈E

V (x) = V (ga(y)). (5)

The uniqueness of the solution for the manifold and thus of the action a is
interesting from the point of action recognition. It is given if and only if

∀a1, a2 ∈ A with a1 6= a2 : min
y∈Ma1

V (ga1(y)) 6= min
y′∈Ma2

V (ga2(y′)). (6)

In most cases, optimization of the pose propagates the particles into the “right”
manifold, i.e. the correct action, as plotted in Fig. 3. However, there is usually
an overlap of poses between the manifolds such that Eq. (6) is not satisfied. Note
that in comparison to the action recognition, which takes a sequence of frames
into account (Section 4), the pose is optimized only for the current frame.

To cope with the problem defined in (5), we introduce two optimization steps

(ŷ, â) = argmin
a∈A,y∈Ma

V (ga(y)) and (7)

x̂ = argmin
x∈E

V (x), with x0 = gâ(ŷ) (8)

as the initialization. In other words, we first search for the nearest approxima-
tion by optimizing over the manifolds and then use this result to initialize the
optimization over the state space. With this procedure, we can design an opti-
mization that converges to the global minimum in the state space, see Fig. 2.
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Fig. 2. For each action class a, we learn an embedding in a low-dimensional manifold
Ma. The manifolds are indicated by the small circles and the high-dimensional state
space E is indicated by the large circle. Having estimated the pose xt−1, a set of parti-
cles is selected from the previous particle sets (Select p1). To this end, the particles in E
are mapped by fa to Ma where each particle is associated to one of the manifolds. This
process is steered by a prior distribution on the actions obtained by a 2D action recog-
nition system. Since the manifolds are action-specific, the pose for the next frame can
be predicted by the function ha. The first optimization step, Optimization A, optimizes
jointly over the manifolds and the human poses embedded in the manifolds. Since our
manifolds do not cover transitions between actions, we run a second optimization step,
Optimization B, over the particles mapped back to the state space E by ga. Before the
optimization, the particle set is augmented by making use of the embedding error of
the previous pose xt−1 (Select p2).

5.3 Algorithm

Optimization A: Since ISA [7] is not directly applicable for optimizing over a set
of manifolds, we have to modify the algorithm. For the weighting, the particles
are mapped back to the full space in order to evaluate the energy function V :

wi = exp
(
−βk · V

(
ri, ti, gai(Θ

i
a)
))
, (9)

where k is the iteration parameter of the optimization. The weights of all particles
are normalized such that

∑
si w

i = 1. Note that the normalization does not take
the label of the manifold ai into account. As result, particles in a certain manifold
might have higher weights than particles in another manifold since their poses
fit the image data better. Since particles with higher weights are more likely to
be selected, the distribution of the particles among the manifolds Ma changes
after the selection step. This is desirable since the particles should migrate to
the most likely manifold to get a better estimate within this manifold. While the
selection is performed as in [7]3, the mutation step needs to be adapted since
the particles are spread in different spaces. To this end, we use |A| mutation
kernels Ka, one for each manifold, and an additional kernel K0 for the global
position and orientation. In our implementation, we use Gaussian kernels with
covariance matrices Σa proportional to the sample covariance within a manifold,

3 Using the selection kernel εk(η) = 1
inf{y : η({x∈E : exp(−βk V (x))>y})=0} .
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Fig. 3. HumanEva. Action recognition prior from camera C1 (a). The curves show the
action confidence per frame. Note the smooth transitions between the actions around
frame 800 for subject S4. After jogging, the subject walks a few steps before balancing.
At the end of the sequence, the person walks away, as recognized by the action recogni-
tion system. The distribution of the particles among the action-specific manifolds after
Optimization A is shown by the area plot. The particles move to the correct manifold
for nearly all frames. Pose estimate for jogging (b) and balancing (c).

i.e. Sa = {si ∈ S : ai = a}:

Σa =
αΣ

|Sa| − 1

ρ I +
∑
si∈Sa

(Θia − µa) (Θia − µa)T

 , µa =
1

|Sa|
∑
si∈Sa

Θia.

(10)
The scaling factor αΣ = 0.4 and the positive constant ρ = 0.0001, which ensures
that the covariance does not become singular, are fixed for all kernels. The kernel
K0 for rotation and translation is computed over the full set of particles S:

Σ0 =
αΣ
|S| − 1

(
ρ I +

∑
si∈S

(
(ri, ti)− µ

) (
(ri, ti)− µ

)T)
, µ =

1

|S|
∑
si∈S

(ri, ti).

(11)
Since we compute the extra kernel K0 instead of taking (r, t) as additional dimen-
sions for the kernels Ka, the correlation between (r, t) and Θa is not taken into
account. However, the number of particles per manifold can be very small, such
that K0 computed over all particles provides a better estimate of the correlation
between the global pose parameters (r, t).

Select p2: Before continuing with the optimization in the full state, the set of
particles S needs to be mapped from the manifolds Ma to E, where the particles
build the initial distribution for the next optimization step. However, it can
happen that the true pose is not well represented by any of the manifolds. This
is typical of transitions from one action to another, which are not modelled in
our setting. As we will show in our experiments, it is useful to use the previous
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estimate x̂t−1 to augment the initial particle set. To measure the discrepancy
between the last estimated pose and the poses modeled by the manifolds, we
compute Σâ based on the reconstruction error for x̂t−1:

â = argmin
a∈A

∥∥∥Θ̂t−1 − ga(fa(Θ̂t−1))
∥∥∥ , σâ,i =

|Θ̂t−1 − gâ(fâ(Θ̂t−1))|i
3

. (12)

We create a new set of particles by sampling from N (Θ̂t−1, Σâ), where Σâ is
the diagonal matrix with σâ,i as entries. According to the 3σ rule, this means
that nearly all samples are within the distance of the reconstruction error. The
selection process between the two particle sets is controlled by the parameter
p2 ∈ [0, 1]. For all si ∈ S, we draw u from the uniform distribution U [0, 1]. If
u < p2, si = (ri, ti, Θi) is added to the new set; otherwise the particle (ri, ti, Θ̂)
is added to the set, where Θ̂ is sampled from N (Θ̂t−1, Σâ).

Optimization B: The second optimization step eventually runs ISA [7] on the
full state space. However, we do not start from the beginning but continue with
the optimization, i.e. when ItA is the number of iterations used for Opt. A, we
continue with βItA+1 instead of β1.

Select p1: After Opt. A, all the particles may aggregate into one single manifold,
so we distribute the particles again amongst the manifolds Ma when moving to
the next frame It; otherwise, we get stuck in a single action class. Similar to
the previous selection, we make use of two particle sets; the particles SM in the
manifolds Ma after Opt. A and the particles in the state space SE after Opt.
B. The selection is controlled by the parameter p1 ∈ [0, 1]. For all si ∈ SM, we
draw u from the uniform distribution U [0, 1]. If u < p1, si is added to the new
set; otherwise the particle (ri, ti, Θi) ∈ SE is mapped to one of the manifolds
and added to the set. The manifold Mai is selected according to the proba-
bility p(A = a|T = t, I), yielding the mapped particle (ri, ti, fai(Θ

i), ai). In our
experiments, we use two choices for p(A|T = t, I):

p(A = a |T = t, I) = p(A = a) = 1
|A| (Uniform Prior)

p(A = a |T = t, I) = p(A = a | It−l · · · It+l) (Action Prior)

The uniform prior is independent of the current frame and results in a joint
optimization over the manifolds Ma∈A and poses y ∈ Ma. However, the prior
does not scale well with the number of manifolds since the total number of
particles is fixed and there must be a sufficient number of particles available
for each manifold. The action prior distributes the particles to manifolds that
are more likely a-priori, meaning that a manifold Ma cannot be explored when
p(A = a|T = t, I) = 0 and {si ∈ SM : ai = a} = ∅. This also motivates the
use of the particle set SM to increase the robustness to temporary errors in the
action prior as demonstrated in Fig. 4(a). Note that a zero-probability error for
the true manifold over many frames cannot be compensated. In our experiments,
p(A|It−l · · · It+l) is obtained by an action recognition system which takes a set
of frames in the neighborhood of t into account (Section 4).
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(a) p1 (b) p2 (c) ItA

Fig. 4. Evaluation of parameters. (a) Select p1: The best result is obtained by p1 = 0.5,
which shows the benefit of taking both particle sets SM and SE into account. For p1 = 1,
the particles SE from Opt. B are discarded. (b) Select p2: The best results are achieved
with p2 ∈ [0.25, 0.5]. It shows the benefit of taking the reconstruction error for x̂t−1 into
account. (c) Number of iterations for Opt. A (ItA) and Opt. B (15-ItA). The summed
number of iterations was fixed to 15. Without a second optimization step (ItA=15),
the error is significantly higher than for the optimal setting (ItA=5).

6 Experiments

HumanEva The HumanEva-II [23] dataset is the standard benchmark on 3D
human pose estimation. It comprises two sequences S2 and S4 with three actions,
see Fig. 3. The dataset provides a model for subject S4, which we also use for
subject S2 despite differences in body shape. The human pose is represented by
28 parameters. We perform two trials: testing on S2 and training on S4 and vice
versa. For learning the action-specific manifolds, we use the tracking results of
the multi-layer tracker [6] where we split the data into the three action classes
and discard the transitions between the actions. Note that training data from
marker-less tracking approaches is in general noisier and less accurate than data
from marker-based systems.

In Fig. 4, we plot the impact of the parameters on the tracking accuracy.
For evaluation, we use 200 particles, 5 iterations for Opt. A, and 10 iterations
for Opt. B unless otherwise specified. The optimization is run with a polyno-
mial annealing scheme with b = 0.7 [7]. The results clearly support our design
decisions for the algorithm (Section 5.3).

In Fig. 5, we plot the 3D estimation error of the joints with respect to the
number of particles. For comparison, we show the mean and standard deviation
for optimizing over the state space E (baseline) and the proposed algorithm
with a uniform prior and an action prior, with the action prior computed as
described in Section 4. For the baseline, we run Opt. B with 15 iterations and
without taking the manifolds Ma into account. Note that according to [6, 23],
pose estimation requires usually at least 200-250 particles to achieve good results
on this dataset. We perform the optimization of the 28 parameters with 200
down to 25 particles. Unsurprisingly, that the error for the baseline increases
significantly when the number of particles drops below 100. When optimizing
over the manifolds and the poses embedded in the manifolds, the error increases
gently with a decreasing number of particles. Since the dataset contains only



10 J. Gall, A. Yao, and L. Van Gool

(a) S2 (b) S4

Fig. 5. 3D Estimation error with respect to number of particles. The proposed ap-
proach performs significantly better than the direct optimization in the state space E
(baseline), particularly for a small number of particles. The discrepancy between uni-
form prior and the prior obtained from 2D action recognition is getting larger for very
few particles. In this case, the number of particles per manifold becomes very small for
a uniform distribution. Note that competitive results are still achieved with only 25
particles. Timings are given in Table 1.

Time (sec.) S2 Error (mm) S4 Error (mm)
n ap,up base ap up base ap up base
200 3.89 3.80 44.9± 9.5 49.4± 19.0 62.9± 24.4 45.2± 13.4 45.2± 11.8 73.1± 70.7
100 1.96 1.92 48.2± 12.7 55.4± 37.8 71.7± 25.7 51.9± 20.9 51.0± 21.3 54.7± 25.0
50 0.98 0.96 50.2± 13.4 78.7± 72.4 98.0± 61.1 56.4± 19.2 57.6± 19.2 98.3± 67.4
25 0.5 0.49 69.3± 51.1 72.3± 51.2 100.5± 40.4 61.3± 21.2 71.8± 29.3 114.3± 85.4

Table 1. Computation time per frame and 3D estimation error of the optimization
with respect to number of particles. The 2D action recognition takes additional 0.4
seconds for each frame consisting of 4 images, which is roughly the computation time
for 20 particles. ap: action prior; up: uniform prior; base: baseline.

3 action classes, the uniform prior performs very well. Differences between the
two priors become more prominent for very few particles per action class. This
indicates that the action prior scales better with a large number of classes since
this basically limits the number of particles per action class. In general, the
uniform prior describes the worst case scenario where the action recognition is
not better than a random guess. Timings and mean errors are given in Table 1.

Finally, we show the tracking performance with respect to number of camera
views in Fig. 6(a); using 200 particles. Again, the proposed approach significantly
outperforms the baseline. At first glance, the uniform prior and the action prior
seem to perform similarly, due to the scaling of the plot from the large error of
the baseline, though the action prior actually reduces the error on average by
4%. The benefit of the action prior is more evident for very few particles per
action class as shown in Fig. 5.

TUM Kitchen dataset A more challenging dataset than HumanEva is the newly
released TUM Kitchen dataset [27]. The dataset contains 20 episodes of record-
ings from 4 views of 4 subjects setting a table. In each episode, a subject moves
back and forth between the kitchen and a dining table, each time fetching ob-
jects such as cutlery, plates and cups and then transporting them to the table.
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Fig. 6. (a) 3D Estimation error with respect to number of views for HumanEva. For
the setting with two views, cameras C1 and C2 are taken. The reduced number of views
results in more ambiguities. The proposed approach handles these ambiguities better
than the direct optimization in the state space E (baseline). (b) Confusion matrix for
fused results according to the max-rule for TUM kitchen.

Camera 1 Camera 2 Camera 3 Camera 4 Fused
Subject 1 0.542 0.493 0.569 0.564 0.574
Subject 2 0.532 0.501 0.456 0.560 0.585
Subject 3 0.690 0.718 0.652 0.666 0.740
Subject 4 0.619 0.529 0.610 0.610 0.706
Average 0.596 0.560 0.572 0.600 0.651

Table 2. Individual camera and fused action recognition performance for subjects 1-4;
fused performance is higher than any individual camera view for each subject.

The dataset is particularly challenging for both action recognition as well as
pose estimation, as the actions are more subtle than those of standard action
recognition datasets and parts of the body are often occluded by objects such as
drawers, cupboard doors and tables (see Fig. 1). Training was done on episodes
1-0 to 1-5, all of which are recorded from subject 1 and testing was done on
episodes 0-2, 0-4, 0-6, 0-8, 0-10, 0-11, and 1-6, which are recorded from all 4
subjects. For the action recognition, we use the 9 labels that are annotated for
the ‘left hand’ [27]. Since the labels are determined by the activity of the arms
and we would like the manifolds to be representative of the entire body, we
further split the idle/carry class according to whether the subject is walking or
standing; see Fig. 6(b).

Results of the action recognition for cameras 0 and 2, as well as the fused
results are shown in Table 2. For classifier fusion, we use the max-rule that gave
the best performance compared to other standard ensemble methods [9], though
results were similar for all the methods. Fused results and the confusion matrix
are shown in Fig. 7 and Fig. 6(b).

Based on the fused results of the action recognition, we also evaluate the
tracking performance. For the dataset, we use the provided models with 84
parameters. The large errors for the baseline in Fig. 8 show that 200 particles are
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Fig. 7. Normalized action confidences for two camera views as well as fused confidences
for frames 500-900 of episode 0-11.

not enough to optimize over a 84 dimensional search space. Note that we do not
make use of any joint limits or geometric information about the kitchen and use
only the images as input. The proposed approach estimates the sequences with a
comparable accuracy as HumanEva, although the dimensions of the state space
increased from 28 to 84, the number of action classes from 3 to 8 (the ‘open’
and ‘close’ actions are embedded in one manifold), and the silhouette quality is
much worse due to truncations and occlusions. Compared to the uniform prior,
the action prior reduces the error on average by 12%.

7 Conclusion

We have presented an algorithm4 that efficiently solves the problem of optimizing
over a set of manifolds. In the context of 3D pose estimation, we demonstrated
that the algorithm handles high-dimensional spaces with very few particles. Since
transitions between actions are not explicitly modeled, as in previous work, it
is an important step towards pose estimation with many action classes. Fur-
thermore, we have shown that a prior distribution based on action recognition
improves the performance. This is interesting since it is expected that the algo-
rithm scales very well with the number of classes when the action recognition
system does as well. In this way, 3D human pose estimation can be linked to
the progress in the field of action recognition. As there are very few datasets for
pose estimation and action recognition available and none contains many action
classes, new datasets are required to investigate scalability more in detail.
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Fig. 8. 3D Error for TUM kitchen dataset (a). The proposed approach performs sig-
nificantly better than the direct optimization in the state space E (baseline). The error
for the sequences 0-2 and 0-8 are the lowest since the action-specific manifolds were
trained on the same subject. Mean and standard deviation are provided in Table 3.
Pose estimates for opening drawer (b) and lowering object (c).

(mm) 0-2 0-4 0-6 0-8 0-10 0-11 1-6
ap 48.4± 17.1 58.2± 20.5 64.7± 24.9 49.0± 22.5 63.7± 25.2 70.5± 31.5 79.8± 35.9
up 51.6± 23.6 61.4± 23.9 82.9± 60.5 50.5± 21.5 64.0± 22.0 131.1± 78.8 82.5± 35.8
base 116.5± 45.1 181.9± 70.6 174.8± 61.2 183.0± 61.4 229.4± 85.0 190.6± 65.0 155.4± 70.4

Table 3. 3D Error for TUM kitchen dataset in mm. ap: action prior; up: uniform
prior; base: baseline.
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