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number of classes

Puppet tool (extended from [2])
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Annotations
» action labels [1]
- meta labels [1]
* puppet flow
* puppet mask
» scale, viewpoint
* 15 joint positions

layer anno.

joint annotations
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puppet flow
Inputs to action recognition algorithms

puppet mask puppet joints
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Results (on Dense Trajectories [3])
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21 classes

one main actor

928 clips

15* frames / clip
31,838 frames
240 x 320 pixels

- full set
(21 classes, 928 clips)

S5 subset:
full body visible

(12 classes, 316 clips)
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Dataset J-HMDB (videos from [1])

Human in actions

Tracking set

HumankEva |
MoCap

Joint
annotations

Pose set

Buffy

- Action set

HollyWood?2 [6]
HMDB51 [5]

Real world

J-HMDB
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see the corrected

paper and

annotations at http.//
Jjhmdb.is.tue.mpg.de
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Systematically replace stages of [3] with ground truth data.
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gradient

histogram
clustering

coding

puppet flow

I

puppet mask
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High
tgg%‘g’rgg t classifier
puppet joints
Feature
complexity
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If you use optical flow for action recognition: 1. GT flow leads to ~11% gain. GT masks lead to ~9 % gain.
2. Better flow on standard benchmarks doesn’t mean better flow for action recognition.
1. GT pose-based features lead to ~20% gain.

If you do action recognition at all:

2. Estimated pose-based already outperforms flow-based features for visible full body.
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