

Towards Understanding Action Recognition Hueihan Jhuang¹, Juergen Gall², Silvia Zuffi^{1,3}, Cordelia Schmid⁴ and Michael J. Black¹

1			\$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
, #	Ż	*	K	*	7

Problem

∽¹⁰⁰ KTH Recognizing actions in movies is hard. Why?

- We don't have enough annotations.
- We don't know what are important algorithm properties.
- We don't know what are important features.

ကြ

(%) ₆₀

IXMAS

Olympics

UCF sports

HollyWood2

UCF11

- [1] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A large video database for hu recognition. In ICCV, 2011.
- [2] S. Zuffi, O. Freifeld, and M. J. Black. From pictorial structures to deformable structures. In CVPR,
- [3] H. Wang, A. Klaser, C. Schmid, and C. Liu. Action recognition by dense trajectories. IJCV, 2013. [4] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of current practices in optical flow estim
- principles behind them. IJCV, to appear, 2013. [5] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. ECCV, 2010.
- [6] Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of parts. PAMI, 2013.

Previous / next frame: <> Human Viewpoint: N N N N N N N N N N N N N N N N N N		Input	
	Ν	Method	
SW SE SSW SSE	Traje	ectories	
	full set (21 classes, 928 clips)	80 70 60 50 50 40 30	[3]
ints	subset: full body visible (12 classes, 316 clips) Take home m	80 60 40 20 IESS	aces
uman motion	If you use optical flow for		
, 2012. nation and the	If you do action recogni		

Acknowledgements

ion: 1. GT flow leads to $\sim 11\%$ gain. GT masks lead to $\sim 9\%$ gain. 2. Better flow on standard benchmarks doesn't mean better flow for action recognition. 1. GT pose-based features lead to ~20% gain. 2. Estimated pose-based already outperforms flow-based features for visible full body.

JG was supported in part by the DFG Emmy Noether program (GA 1927/1-1) and CS by the ERC advanced grant Allegro.