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Abstract. Detection of new or rapidly evolving melanocytic lesions is
crucial for early diagnosis and treatment of melanoma. We propose a fully
automated pre-screening system for detecting new lesions or changes in
existing ones, on the order of 2 − 3mm, over almost the entire body
surface. Our solution is based on a multi-camera 3D stereo system. The
system captures 3D textured scans of a subject at different times and
then brings these scans into correspondence by aligning them with a
learned, parametric, non-rigid 3D body model. This means that cap-
tured skin textures are in accurate alignment across scans, facilitating
the detection of new or changing lesions. The integration of lesion seg-
mentation with a deformable 3D body model is a key contribution that
makes our approach robust to changes in illumination and subject pose.

1 Introduction

Malignant melanoma is an aggressive form of skin cancer, the incidence of which
is rapidly increasing worldwide. Early detection promptly followed by excision
is the key to a favorable prognosis [2]. Unfortunately, in its early phases, a
melanoma is often indistinguishable from a benign melanocytic lesion (a com-
mon mole). A sensitive sign of a malignant melanocytic lesion is its evolution; the
appearance of a new lesion or changes in an existing one suggest an increased
probability of a melanoma [2]. Digital imaging systems allow a dermatologist
to compare pictures of a patient’s body taken at different times [4]. However,
manual comparison remains challenging (due to changes in the pose or illumina-
tion between scanning sessions) and time-consuming when applied to the whole
body (many patients have hundreds of lesions). To improve early detection and
comprehensive skin surface analysis, we develop an automated image acquisition
and analysis system that provides a first level of surveillance; putative changes
can then be evaluated by a dermatologist. The system can also find use in the
acquisition and analysis of data for epidemiological studies.

Specifically, relying on the framework introduced in [1], we propose a fully
automated pre-screening system to detect new or changing melanocytic lesions
using a learned, deformable, parametric 3D body shape model. The approach
is summarized in Fig. 1. First, we capture a 3D triangulated mesh, or “scan”,
using 22 pairs of high-resolution stereo cameras that capture body shape and 22
color cameras that capture skin texture. Acquisition is rapid (a few milliseconds
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per scan) and the system does not require patients to accurately hold a specific
pose. Given scans of a patient taken on different days there will be changes in
pose, shape, lighting, hair and skin texture. Our novelty lies in using a 3D body
model to accurately register (align) such scans across time, correct for lighting,
and to build a “map” of the skin surface that can be used for analysis. This
involves several key technologies. First, we use a learned statistical model of body
shape variation, constructed from thousands of detailed 3D scans of different
people. This model accounts for variations in body shape and pose between
scans. Second, we define a method that uses the 3D shape information together
with image texture information to accurately align scans with the model. This
brings every scan of the patient into correspondence. Once scans are aligned, we
compare them across time to identify changes. To that end, we define a basic
segmentation algorithm that detects putative lesions in the scan images; such
lesions are then compared across scans using the registration.

In a pilot study using synthetic lesions, the method detects new lesions or
changes in existing ones on the order of 2–3mm. The system is robust to changes
in body pose, illumination, presence or absence of sparse body hair etc. Our
segmentation scheme takes advantage of multiple camera views to robustly detect
lesions by using consistency across views; artifacts tend not to be consistent. This
goes beyond previous work to use many cameras to see most of the body at once
and to integrate all this information into a coherent 3D model of body shape
and appearance that enables lesion detection over time.

Related work. Most previous work on lesion change detection addresses the prob-
lem in high-magnification images of small regions surrounding a lesion obtained
with a dermatoscope (see [4] for a survey). Tracking multiple lesions, however,
is a challenging problem that has received surprisingly little attention [4].

The task can be subdivided into two parts: segmentation/detection and reg-
istration/matching. Segmentation/detection approaches usually identify a set of
lesion candidates using simple image processing methods [7, 9–11] and then filter
the results using unsupervised [7, 9] or supervised [10] classification. Matching le-
sions in images taken at different times is challenging and approaches take many
forms. The diameter of a lesion is generally small compared to its displacement
between different images, making matching hard. One approach solves for a rigid
2D transformation between images given user-provided matches [8]. In [5], back
torso images are mapped to a common 2D template. Pose variation and non-
rigid changes in body shape cause non-linear, anisotropic deformations of the
skin, further complicating matching. Other approaches focus on the topological
relations between lesions and use graph-matching methods to find the relation-
ship between images [3, 5, 6]. While able to produce robust matchings, these
approaches have difficulty with large numbers of lesions.

Voigt and Classen [11] perform both segmentation and registration. Images
of the patient’s front and back torso are acquired with a single camera and a
positioning framework for adjusting the patient’s pose. Lesion borders are de-
tected by thresholding the output of a Sobel operation; due to the large number
of skin features easily mistaken for lesions, such as hair, this can lead to poor
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Fig. 1. Overview of our approach. After scan capture, we preprocess camera images in
order to eliminate shadows and obtain a preliminary lesion segmentation. We bring scans
into alignment with a 3D body model, that normalizes for pose and shape variations.
Once scans are registered, we compare them and identify changes in the parameterized
space defined by the model.

performance. The precise positioning of the patient attempts to remove the reg-
istration problem but, in practice, humans are deformable and there will always
be non-rigid changes in pose and shape.

Virtually all previous segmentation and registration techniques are evaluated
only on a small part of the body, commonly the back or front torso. These
methods do not provide a solution to the full-body analysis/screening problem.
In contrast, we consider the entire body surface (or most of it) at once, simpli-
fying the acquisition process for both the patient and doctor.

2 Method

Our method proceeds in four steps (see Fig. 1): 1) acquisition of a textured
3D scan of the subject; 2) albedo extraction and preliminary lesion segmenta-
tion; 3) scan registration to a 3D body model (with coherent topology across
scans and subjects); 4) segmentation refinement and skin surface tracking in the
parameterized space defined by the model.

1. Scan acquisition. Our acquisition system is a full-body 3D stereo capture
system (3dMD, Atlanta, GA) with 22 modular, medical standard scanning units.
Each unit contains a pair of grayscale stereo cameras and one or two speckle
projectors, plus a single RGB camera for texture extraction. A set of 20 flash
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units illuminate the body during capture. Each scan results in a triangulated,
high-resolution, non-watertightmesh. We process images at a resolution of 1224×
1024 pixels.

2. Albedo extraction and preliminary lesion segmentation. Automated lesion seg-
mentation on the whole body may suffer from the presence of shadows and
shading. To reduce these effects, we preprocess the camera images in order to
discriminate between albedo and shading. As in [1], we model scene lighting as
a combination of 9 Spherical Harmonic basis functions under the assumption of
Lambertian skin reflectance. We assume light is constant across scan sessions,
and simply precompute it (see [1] for details). The estimated light model is used
for computing shadows, which are then removed from each original image Ij to
produce the corresponding albedo image Aj (see Fig. 1).

In each image, we isolate skin from background and clothing by means of a
simple thresholding of the hue. We choose a conservative threshold, since subse-
quent steps can deal with skin false positives.

We obtain an initial estimation of lesion borders using Laplacian-of-Gaussian
(LoG) filtering [9, 10]. Since lesion radii can vary depending on the subject and
camera viewpoint, the LoG filter is applied at five different scales. Linear Dis-
criminant Analysis (LDA) is used to classify each pixel in Aj into a lesion binary
mask Mj based on the output of the multi-scale LoG filter. LDA classification
produces, for each albedo image Aj , a binary mask Mj, marking each pixel as
lesional or non-lesional.

Facial features and occlusion boundaries, due to their high second-derivative
response, may be erroneously identified as lesional (red pixels in preliminary
masks, Fig. 1). However, these artifacts tend to be elongated, while lesions are
spatially compact. We postprocess Mj in order to keep only compact connected
components. For each connected component in Mj, we consider its minimum
bounding box; if the ratio between its major and minor side is too high, or fewer
than half of the pixels inside it are lesional, the component is discarded.

3. Scan registration. We register scans of the same subject captured in different
sessions by aligning each scan S with a common, triangulated template mesh T ∗.
In this process, T ∗ is aligned (i.e. deformed) to S, giving a registered scan T .
Our registration technique exploits both 3D shape and appearance information,
and relies on a learned, statistical 3D human body model. It is similar, in many
respects, to that described in [1]; we briefly review it here for completeness.

Our model factorizes body deformations into a set of pose-dependent transfor-
mations (parameterized by pose θ) and a set of identity-dependent transforma-
tions, D. The appearance of each subject is modeled through a high-resolution
UV map, U . We learn the pose-dependent transformations from a corpus of reg-
istered scans of different people [1]. D and U are learned by registering an initial
set of scans of the subject [1]; these scans need to be captured only once, during
the first session (see Sec. 3 for details about the initialization).

The quality of the correspondence between T and S is measured in terms of
an error with three components: ES , EU and EC . ES expresses how close the
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mesh surfaces are in 3D space, while EU enforces similarity between their color
appearance; EC encourages deformations that are consistent with the learned
body model. Mathematically, we minimize the following energy function:

E(T, θ;S,U,D) = λSES(T ;S) + λUEU (T ;U, {Aj} , {Mj}) + λCEC(T, θ;S,D)
(1)

where λS , λU and λC represent weights assigned to the different terms.
With respect to the formulation provided in [1], we slightly modify the ap-

pearance term EU to give more importance to appearance consistency around
lesions. More precisely, given U , T and the calibration parameters of camera j,
we render a synthetic image Āj (Fig. 2(b)). EU encourages consistency between
each albedo image Aj and the corresponding synthetic image Āj :

EU (T ;U, {Aj} , {Mj}) =
∑

cams j

∑

pixelsy

wMj (y)(Γσ1,σ2(Aj)[y]− Γσ1,σ2(Āj)[y])
2

(2)
where wMj (y) is a weighting function assigning higher weight to pixel y if y
is marked as lesional in Mj , and Γσ1,σ2 defines a Ratio of Gaussians (RoG) of
parameters σ1 and σ2.

4. Lesion segmentation refinement and change detection. The presence of sparse
hair, small skin artifacts or generic image noise may affect the performance of the
pre-segmentation described above, producing a high number of false positives.
Using more restrictive classification thresholds or artifact removal algorithms
(as in [10]) may produce false negatives, i.e. discard actual lesions. Crucially,
these artifacts tend to be mistaken as lesions only from specific viewpoints.
We exploit our multi-camera capture framework to filter out lesions that are
not consistently detected by a number of relevant (i.e. with a good viewpoint)
cameras. More formally, for any template surface point x, denote by uv(x) its
mapping from 3D to UV space, and by πj(x) its projection onto the image plane
defined by camera j. Mj [πj(x)] equals 1 if x is classified as lesional according to
camera j, 0 otherwise. For each camera j, denote by ωx,j the cosine of the angle
between the surface normal at x and the ray from x to the camera’s center. We
denote the set of cameras for which x is visible by J(x). Pixel uv(x) is classified
as lesional if and only if

∑
cams j∈J(x) Mj [πj(x)]max (ωx,j, 0)∑

cams j∈J(x) max (ωx,j , 0)
> δ (3)

where δ is a system parameter. This corresponds to computing a weighted aver-
age of the classifications provided by different cameras – where the contribution
of each camera is weighted according to the quality of its viewpoint. Figure 2
shows how the final segmentation varies depending on δ: artifacts like sparse hair
tend not to be consistently detected across different cameras, and are therefore
filtered out; lesions exhibit more consistency (see e.g. the bottom of the back
and the right shoulder). We quantitatively evaluate the sensitivity of the system
to the value of δ in Sec. 3.
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(a) (b) (c) (d) (e)

Fig. 2. A real (a) and a synthetic albedo (b) image of a subject’s back. Figures (c)-(e)
show the final segmentation obtained by setting δ in Eq. 3 to 0, 0.2 and 0.5, respectively.

(a) (b)

Fig. 3. (a) Skin patch exhibiting a synthetic lesion (large lesion towards upper left).
(b) Scans of subjects, showing varied skin phenotype and pose.

Detected lesions are integrated into a full-body UV map (see Fig. 1). This
greatly simplifies the tracking of changes in lesions compared to using multiple
single images. Each UV map pixel is associated with the same template surface
point, independently of subject pose and shape. UV maps from different times
are therefore directly comparable. A detection that does not overlap with one in
a previous map reveals a new lesion; a detection that does overlap, but comprises
a higher number of pixels, is likely to reveal a lesion that has grown.

3 Experimental Evaluation

We evaluated our system on a set of 6 male and 6 female subjects of ages 23 to
44 years, height 160 to 186 cm, and weight 55 to 82 kg. There was considerable
variation in terms of skin tone, number of melanocytic lesions, and presence of
sparse body hair (Fig. 3(b)). We trained the LDA classifier (Sec. 2) on a set of
50 images of 10 different subjects, captured from different viewpoints; there is
no overlap between the subjects used for evaluation and those used for training.

For this pilot study, we artificially created and altered lesions by drawing with
a marker on the subjects’ skin. Note that these synthetic lesions look realistic
at the resolution of our images, as seen in Fig. 3(a).

Each subject was scanned in 2 poses, respectively with arms held horizontally,
and pointing downwards at an angle (Fig. 3(b)). For each subject, we captured
two initial scans in order to learn D and U (Sec. 2). After the initial scans, for
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Fig. 4. Precision/recall curves for detecting new lesions (left) and increased lesion sizes
(right), for 100 values of the parameter δ evenly spaced between 0 and 1. Precision and
recall values are computed by aggregating the values obtained for all the subjects.

each subject we created 10 synthetic lesions with a diameter of 3mm, and re-
scanned them in the 2 poses. We then expanded each synthetic lesion first to a
diameter of 5mm, and then to a diameter of 7mm, re-scanning the subjects in the
2 poses each time. This yielded 4 timepoints with increasing lesion diameter (0, 3,
5 and 7mm): 3 pairs of timepoints (0 → 3mm, 0 → 5mm, 0 → 7mm) correspond
to the appearance of new lesions of different diameters, while the other 3 pairs
(3 → 5mm, 3 → 7mm, 5 → 7mm) correspond to changes in existing lesions. For
each pose, and pair of timepoints, our system identifies a set of “suspect” lesions
– lesions deemed either new or modified. For different values of δ (Sec. 2), our
system yields different values of precision (the fraction of suspect lesions that
were actually new or modified lesions) and recall (the fraction of new or modified
lesions that were reported as suspect lesions).

Figure 4 reports the results for the “arms downward” pose, since it was the
most comfortable for all subjects. The results for the other pose are almost iden-
tical. On average, a high recall (> 90%) was achieved for all pairs of timepoints,
with a precision > 50% in the case of small (3mm) new lesions, > 80% in the case
of larger new lesions (5mm and 7mm), and 60 − 80% in the case of changes in
existing lesions. Note that, while high precision is desirable, high recall is more
important since the consequences of missing a potential melanoma are much
direr than those of a false alarm.

The acquisition of each scan requires a few milliseconds. Further processing
(scan generation, alignment, UV map analysis) can be performed off-line; in our
experiments, it required a few minutes per scan on a common desktop machine.

4 Conclusions

We have proposed a novel solution for “full-body” screening of melanocytic le-
sions. A multi-camera stereo system captures the 3D shape and skin texture of
a subject. Given two such scans of the same subject, taken at different times,
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we bring them into registration by aligning each scan with a learned, paramet-
ric 3D body model. Once scans are registered, we compare them across time
and identify changes in skin lesions. In a pilot study, we show that our method
automatically detects changes on the order of a few millimeters.

Based on our results, a longitudinal study of dermatological patients should
be pursued. Future work should explore higher-resolution RGB imagery and the
effect of varying number/resolution of cameras on detection. Another research
line would explore less expensive scanning devices (e.g. the Kinect) for the ac-
quisition of the 3D data and texture. Here the 3D body model could be exploited
to integrate information from multiple poses (cf. [12]) and, given accurate align-
ment, image super-resolution could be used to obtain high-quality texture.
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