MAX-PLANCK-GESELLSCHAFT

In-Hand Scanning

Commercial RGB-D cameras enable 3d reconstruction applications \bigcirc

- Kinect-Fusion-like approaches reconstruct spaces with a moving camera
- Reconstruction of smaller objects possible with a static camera and
- a turntable or
- in-hand scanning
- Existing in-hand scanning approaches [1,2,3] \bigcirc
 - capitalize on high temporal continuity
 - need stable & distinctive geometry/texture features
 - **fail** in the **absence** of such **features**
 - **reject** information from the *hands*

Problem Definition

- Highly symmetric, textureless objects are challenging
- an additional trackable shape carving tool [4]
- a robotic manipulator [5]
- additional objects/features [6] or markers [7]
- We aim towards a **non-intrusive** reconstruction approach of such objects

3

2

Proposed Idea

- **visual features** (geometry/texture)
- re-using the rejected hand information

Experimental Setup

- Hand MoCap similar to [8]:
- Capture RGB-D images D
- D_{α} for the object

tzionas@informatik.uni-bonn.de

3D Object Reconstruction from Hand-Object Interactions Dimitrios Tzionas^{1,2} and Juergen Gall¹ ¹Computer Vision Group, University of Bonn

²Perceiving Systems Department, Max Planck Institute for Intelligent Systems

Corresponding features @ source / target $CorrespondenceSet\mathbf{Set}\mathbf{M}\mathbf{M} = \sum_{\mathcal{C}_{feat}} (X, \mathbf{X'}) \in \mathcal{C}_{feat}()\mathbf{t} = \sum_{\mathcal{C}_{feat}} \mathbf{X'} - (\mathbf{R}\mathbf{X} + \mathbf{t}) ^2$	Bowling- Bowling- Small-boy
$(\mathbf{R}, \mathbf{t}) =$ $(\mathbf{R}, \mathbf{t}) +$ $(\mathbf{R}, \mathbf{t}) +$ (\mathbf{R}, \mathbf{t}) (\mathbf{R}, \mathbf{t}) $(\mathbf{r},$	Small-bo Sphere di Average Sphere vo
$= E_{visual}(D_o, \mathbf{R}, \mathbf{t}) + \gamma_t E_{contact}(\theta, D_h, \mathbf{R}, \mathbf{t})$	9
$(X_{icn}, X'_{icn}) \in \mathcal{C}_{icn}(D_o)$	

Dimensions Comparison	G.Truth	Ours γ_t	= 15	KinFu		Skanect		Detect.Baseline		Enriched Texture	
		Capture	Diff.	Capture	Diff.	Capture	Diff.	Capture	Diff.	Capture	Diff.
Water-bottle diameter	73	82.3	9.3	66.2	6.8	64.3	8.7	86.6	13.6		
Water-bottle height	218	225.4	7.4	195.7	22.3	222.1	4.1	237.4	19.4		
Bowling-pin head diameter	50	50.8	0.8	54.1	4.1	39.0	11.0	48.7	1.3	49.8	0.2
Bowling-pin body diameter	82	90.0	8.0	70.9	11.1	63.8	18.2	93.2	11.2	89.4	7.4
Bowling-pin height	268	275.2	7.2	239.3	28.7	270.9	2.9	272.4	4.4	267.7	0.3
Small-bottle diameter	52	57.7	5.7	45.6	6.4	39.5	12.5	61.6	9.6		
Small-bottle height	80	89.5	9.5	78.1	1.9	84.9	4.9	95.0	15.0		
Sphere diameter	70	71.4	1.4	46.9	23.1	43.8	26.2	72.2	2.2		á .
Average			6.1625		13.05		11.0625		9.5875		1. 2. 4
Sphere volume	179503	190490	10987	53988	125515	43974	135529	196965	17462		
		Average	e error	approxi	mately	6mm					

Is 3D Hand Pose the best way? 10

- Replace contact points with Hough-forest contact detector E_{detect} (top-down) VS $E_{contact}$ (bottom-up)
- O Correspondences based on inner-bounding-box coordinates
- Annotate 2 points per end-effector for frame-pairs (X_{gt}, X'_{at})
- Measure transformation error $||X'_{at} (\mathbf{R}X_{gt} + \mathbf{t})||$

Energy	mean	st.dev.	
$E_{contact} + E_{visual}$	1.67	0.95	
$E_{contact}$	1.64	0.88	Ш
$E_{detector} + E_{visual}$	1.73	1.08	Ш
$E_{detector}$	1.80	1.12	

Reterences

- [1] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. *Real-time 3d model acquisition*. TOG 2002

- [4] D. Michel, X. Zabulis, and A. A. Argyros. *Shape from interaction*. MVA 2014
- A. Fitzgibbon. *KinectFusion: Real-Time Dense Surface Mapping and Tracking*. ISMAR 2011
- optimization in 3d object model generation with rgbd data. IROS 2013
- a generative model with salient points. GCPR 2014

• Omit ICP stage E_{icp}

Results in registration artifacts

• **ICP** enforces **consistency** with the partial model during reconstruction

Pose-based contact points more accurate

Contact detector E_{detect} leads to registration artifacts

Datase Code

[2] T. Weise, B. Leibe, and L. Van Gool. Accurate and robust registration for in-hand modeling. CVPR 2008 [3] T. Weise, T. Wismer, B. Leibe, and L. Van Gool. Online loop closure for real-time interactive 3d scanning. CVIU 2011

[5] M. Krainin, P. Henry, X. Ren, and D. Fox. *Manipulator and object tracking for in-hand 3d object modeling*. IJRR 2011 [6] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and

[7] R.-G. Mihalyi, K. Pathak, N. Vaskevicius, and A. Birk. Uncertainty estimation of ar-marker poses for graph-slam

[8] D Tzionas, A Srikantha, P Aponte, and J Gall. *Capturing hand motion with an RGB-D sensor, fusing*