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Figure 1: Reconstruction of a symmetric, textureless object (front and bot-
tom view). Left: Existing in-hand scanning approaches fail for such objects.
Middle and right: Successful reconstruction by the proposed in-hand scan-
ning system that incorporates 3d hand motion capture.

Recent advances have enabled a plethora of 3d object reconstruction ap-
proaches1 using a single off-the-shelf RGB-D camera. Although these ap-
proaches are successful for a wide range of object classes, they rely on stable
and distinctive geometric or texture features. Many objects like mechanical
parts, toys, household or decorative articles, however, are textureless and
characterized by minimalistic shapes that are simple and symmetric. Exist-
ing in-hand scanning systems and 3d reconstruction techniques fail for such
symmetric objects in the absence of highly distinctive features. In this work
we show that 3d reconstruction based on low-level features can be facilitated
by higher level ones. Although existing in-hand scanning systems like [1, 4]
simply ignore information originating from the hand, we show that 3D hand
motion capture can provide strong and reliable features, effectively facili-
tating the reconstruction of even featureless, highly symmetrical objects, as
the one shown in Figure 1.

To this end, we observe an RGB-D video where a hand is interacting
with an object as illustrated in Figure 2. We track the hand pose and use
the captured hand motion together with the object’s texture and geometric
features for object reconstruction as in Figure 3.

We first remove irrelevant parts of the RGB-D image D by threshold-
ing the depth values, keeping only points within a specified volume. Sub-
sequently we apply skin color segmentation on the RGB image using the
Gaussian-Mixtures-Model (GMM) and get the masked RGB-D images Do
for the object and Dh for the hand.

In order to capture the motion of a hand, we employ an approach sim-
ilar to [3]. The approach uses a hand template mesh and parameterizes the
hand pose by a skeleton and linear blend skinning. For pose estimation, we
minimize an objective function, which consists of three terms:

E(θ ,D) = Emodel→data(θ ,Dh)+

Edata→model(θ ,Dh)+ γcEcollision(θ)
(1)

where Dh is the current preprocessed depth image for the hand and θ are the
pose parameters of the hand. The first two terms of Equation (1) minimize
the alignment error between the input depth data and the hand pose. The
alignment error is measured by Emodel→data, which measures how well the
model fits the observed depth data, and Edata→model , which measures how
well the depth data is explained by the model. Ecollision penalizes finger
intersections and ensures realistic, physically plausible poses.

In order to use the captured hand motion for 3D reconstruction, we
have to infer the contact points with the object. For this we use the high-
resolution mesh of the hand that is used for hand motion capture. To this
end, we compute for each vertex associated to each end-effector the dis-
tance to the closest point of the object point cloud Do. We first count for

1e.g. Kinect-Fusion, Shapify, Fablitec, Skanect, iSense, KScan3d

Figure 2: The hand tracker used in the in-hand scanning pipeline. The left
image shows the depth input map, the middle image shows the hand pose
overlaid on the RGB-D data, while the right image shows just the hand pose.

Figure 3: Contact correspondences (Xhand ,X ′hand) ∈ Chand(θ ,Dh) between
the source frame (red) and the target frame (blue). The white point cloud is a
partial view of the object to be reconstructed during hand-object interaction.

each end-effector the number of vertices with a closest distance of less than
1mm. If an end-effector has more than 40 candidate contact vertices, it is
labeled as a contact bone and all vertices of the bone are labeled as con-
tact vertices. If there are not at least 2 end-effectors selected, we iteratively
relax the distance threshold until we have at least two end-effectors. As
a result, we obtain for each frame pair the set of contact correspondences
(Xhand ,X ′hand) ∈ Chand(θ ,Dh), where (Xhand ,X ′hand) is a pair of contact ver-
tices in the source and target frame, respectively. Figure 3 depicts the con-
tact correspondences for a frame pair.

For pairwise registration, we combine features extracted from Do and
the contact points, which have been extracted from Dh and the hand pose
θ . As a result, we minimize an energy function based on two weighted
energies:

E(θ ,Dh,Do,R, t) = Evisual(Do,R, t)+
γtEcontact(θ ,Dh,R, t)

(2)

where E is a measure of the discrepancy between the incoming and the
already processed data, that needs to be minimized. In that respect, we seek
the rigid transformation T =(R, t), where R∈ SO(3) is a rotation matrix and
t ∈ R3 is a translation vector, that minimizes the energy E by transforming
the source frame accordingly.

The visual energy Evisual consists of two terms that are computed on the
visual data of the object point cloud Do:

Evisual(Do,R, t) = E f eat2d(Do,R, t)+
E f eat3d(Do,R, t)

(3)

The term E f eat2d is based on a sparse set of correspondences C f eat2d(Do)
using 2d SIFT features that are back-projected in 3d by the function ϕ(x):
R2 → R3, given the intrinsic parameters of the camera. The 2d SIFT key-
point correspondences in the source and target image respectively are de-
noted as (x2d ,x′2d) ∈ C f eat2d(Do), while X2d = ϕ(x2d) and X ′2d = ϕ(x′2d)
are the corresponding back-projected 3d points. E f eat2d is then formulated



Figure 4: Qualitative comparison of different in-hand scanning systems for
our four objects. We visualize the meshes extracted from the TSDF volume.
From left to right, each row contains the result of: (a) KinFu, (b) Skanect, (c)
Our pipeline with a turntable and without hand motion data, (d) Our pipeline
with in-hand scanning but without hand motion data, (e) Our pipeline with
in-hand scanning that includes hand motion data (the proposed setup). Only
the last one succeeds in reconstructing all symmetric objects.

as E f eat2d(Do,R, t) =

∑
(X2d ,X ′2d)∈C f eat2d

‖X ′2d − (RX2d + t)‖2. (4)

In a similar manner, the term E f eat3d is based on a sparse set of corre-
spondences C f eat3d(Do). Instead of the image domain, we operate on the 3d
point cloud by choosing ISS3D keypoints and the CSHOT feature descrip-
tor. E f eat3d is then formulated as

E f eat3d(Do,R, t) =

∑
(X3d ,X ′3d)∈C f eat3d

‖X ′3d − (RX3d + t)‖2. (5)

Finally, the term Econtact depends on the current hand pose estimate θ

and the hand point cloud Dh. Based on which the contact correspondences
are computed as described above. Let (Xhand ,X ′hand) ∈ Chand(θ ,Dh) be the
corresponding contact points, i.e. vertices, in the source and target frame
respectively, then Econtact(θ ,Dh) is written as

Econtact(θ ,Dh,R, t) =

∑
(Xhand ,X ′hand)∈Chand

‖X ′hand − (RXhand + t)‖2. (6)

The two terms in the energy function (2) are weighted since they have
different characteristics. Although visual correspondences preserve local
geometric or textural details better, they tend to cause a slipping of one
frame upon another in case of textureless and symmetric objects. In this
case, the contact correspondences ensure that the movement of the hand is
taken into account.

The sparse correspondence sets C f eat2d , C f eat3d , and Chand provide usu-
ally an imperfect alignment of the source frame to the target frame either
due to noise or ambiguities in the visual features or the pose. For this rea-
son, we refine the aligned source frame by finding a locally optimal so-
lution based on dense ICP correspondences. During this refinement stage
we align the current frame to the accumulation of all previously aligned
frames, i.e. the current partial reconstructed model. After finding a dense
set (Xicp,X ′icp) ∈ Cicp(Do) of ICP correspondences with maximum distance
of 5mm, we minimize the discrepancy between them

Eicp(Do,R, t) =

∑
(Xicp,X ′icp)∈Cicp

‖X ′icp− (RXicp + t)‖2. (7)

Figure 5: Qualitative results of our pipeline for our four objects when a
hand rotates the object in front of the camera. The left images show the
reconstructed camera poses. The poses follow a circular path, whose shape
signifies the type of hand-object interaction during the rotation. The middle
images show the mesh that is acquired with marching cubes from the TSDF
volume, while the right ones show the final water-tight mesh that is acquired
with Poisson reconstruction.

After aligning all the frames, we need a mesh representation of the re-
constructed object. To this end we first employ a TSDF volume to get a vol-
umetric representation. Subsequently we apply the marching-cubes method
to extract a mesh and remove tiny disconnected components. The final mesh
is then obtained by Laplacian smoothing followed by Poisson reconstruction
to get a smooth, water-tight mesh with preserved details.

For evaluation in comparison to the state-of-the-art 3d reconstruction
methods KinFu2 and Skanect3 we perform with them 3d reconstruction of
our four objects. Figure 4 shows the results both with and without the use
of hands and hand motion data. The images show that the reconstruction
without hands is similar across different systems and results in a degenerate
3d representation of the object. The incorporation of hand motion capture
in the reconstruction plays clearly a vital role, leading to the effective recon-
struction of the full surface of the object.

Although Figure 4 compares the TSDF meshes, more detailed results
are shown in Figure 5. The camera poses are reconstructed effectively,
showing not only the rotational movement during the scanning process,
but also the type and intensity of hand-object interaction. The water-tight
meshes that are shown compose the final output of our system. The result-
ing reconstruction renders our approach the first in-hand scanning system
to cope with the reconstruction of symmetric objects, while also showing
prospects of future practical applications.

Further details and experiments can be found in [2]. The recorded se-
quences, calibration data, hand motion data, as well as video results, the re-
sulting meshes and the source code for reconstruction are publicly available
at http://files.is.tue.mpg.de/dtzionas/In-Hand-Scanning.
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