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Abstract. Segmentation is a fundamental problem in medical image
analysis. The use of prior knowledge is often considered to address the
ill-posedness of the process. Such a process consists in bringing all train-
ing examples in the same reference pose, and then building statistics.
During inference, pose parameters are usually estimated first, and then
one seeks a compromise between data-attraction and model-fitness with
the prior model. In this paper, we propose a novel higher-order Markov
Random Field (MRF) model to encode pose-invariant priors and perform
3D segmentation of challenging data. The approach encodes data sup-
port in the singleton terms that are obtained using machine learning, and
prior constraints in the higher-order terms. A dual-decomposition-based
inference method is used to recover the optimal solution. Promising re-
sults on challenging data involving segmentation of tissue classes of the
human skeletal muscle demonstrate the potentials of the method.

1 Introduction

Knowledge-based segmentation consists in recovering a region of anatomical in-
terest in a new image. The process often combines data support with manifold
learning on the space of adequate solutions. The data term is usually either edge-
based or region driven. In the first case, one seeks to position the solution onto
pixels exhibiting important intensity discontinuities, which is achieved through
a weighted surface integral. Region-based methods assume that the object and
the background have distinct statistical properties and seek to create a partition
that maximizes the posterior probability density with respect to them. Both
methods fail to address the case of anatomical regions of interest being part of
the same tissue class, where either edges are not present or statistical separation
is not feasible. The case of calf muscle segmentation is a typical example.

Prior knowledge is often encoded through constraining the solution space.
This is achieved either through linear models describing the variation of the
training set (ASMs) [1], or through projection and minimization of the distance
to the learned manifold. The use of simple statistical means (atlas-based meth-
ods) [2], parametric or non-parametric priors considered in an explicit [3] or
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implicit level set formulation [4] were considered. Such techniques exhibit two
important limitations, the first is related to pose invariance and the second is
related to their ability to capture statistics on high-dimensional spaces from a
small number of training examples. The pose estimation problem arises both in
the training and in the inference steps and introduces certain bias on the seg-
mentation process since data are often to be registered in the reference space.
The ratio samples versus dimensionality of representations is also a well-known
problem in medical imaging.

In this paper, we propose a novel approach that is able to address segmenta-
tion for challenging data sets while being pose invariant and being able to capture
local variations from small training sets. To this end, we employ a higher-order
Markov Random Field (MRF) formulation. The representation of the shape
is a point distribution model (PDM) that is used to provide the entire sur-
face through conventional interpolation algorithms. Prior knowledge is modeled
through the use of higher-order relative statistics of the PDM. These are in-
variant to rotation and scale while they can be learned from a small number of
training examples. The entire manifold is described through the accumulation
of such local constraints. This representation is associated with the randomized
forest [5] learning approach that provides an efficient detection algorithm for
points of interest exhibiting some statistical properties. These properties can
be derived from Gabor-filter-based scale/rotation invariant features. In order to
optimize the higher-order MRF’s energy, we propose to decompose the original
problem, which is difficult to solve directly, into a series of sub-problems each
of which corresponds to a factor tree [6,7]. The inference in a factor tree can
be done exactly and very efficiently using max-product belief propagation algo-
rithm [7]. In order to evaluate the performance of the method, we have considered
the challenging application of segmentation of the calf muscle. The closest work
refers to the segmentation algorithms in [8,9,10]. Opposite to these algorithms,
our approach explores the 3D space and higher-order interactions between the
model variables, inherits natural invariance with respect to the global pose (op-
posite to [9]), exploits invariant features with respect to this pose (opposite to
[9,10]), builds pose invariant statistics (opposite to [8,9,10]) and provides an one-
shot optimization result that does not depend on the initial conditions or the
reference pose parameters.

The reminder of this paper is organized as follows: we present the higher-
order shape prior, the MRF segmentation formulation and the MRF optimization
method in section 2. The experimental validation composes section 3, while
section 4 concludes the paper.

2 Knowledge-based Segmentation

2.1 Shape Modeling

The shape model consists of a set V of control points/landmarks that are lo-
cated on the boundary of the object (Fig. 1(a)). Let xi (i ∈ V), a 3-dim vector,
denote the 3d position of landmark i and x = (xi)i∈V denote the position of
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Fig. 1. Shape Model. (a) Distribution of the landmarks on the muscle boundary. (b)
Two perpendicular slices with a triplet of landmarks (the blue asterisks). (c) The
learned Gaussian distribution on rc for the triplet shown in (b).

all the landmarks. Given a training set T composed of M aligned shapes, i.e.,
T = {x(m)}m∈{1,2,...,M} [11], we aim to learn a prior probability distribution on
the different configuration of the shape model from the training set. Instead of
learning the statistics on the pair of landmarks (e.g., [8]), which is not appro-
priate to get a scale-invariant modeling, we propose to learn the statistics of the
measurements that are scale-invariant. To this end, let us consider a triplet of
points, c ∈ C = {(i, j, k)|i, j, k ∈ V and i 6= j, j 6= k, k 6= i} and learn statistics
on the relative lengths (ricjc

, rjckc
, rkcic

) of the sides [12], which are defined as
(take ricjc

for example): ricjc
= licjc

/(licjc
+ ljckc

+ lkcic
), where licjc

denotes
the Euclidean distance between points ic and jc. An important advantage to use
the relative lengths is that they can be computed much faster than the angle
measurements which are also scale-invariant. For a triplet, it is sufficient to only
consider the relative lengths of two sides since the third one is a linear combina-
tion of them (i.e., rkcic

= 1 − ricjc
− rjckc

). Thus, without loss of generality, we
use a Multivate Gaussian Distribution (Fig. 1(c)) to model the distribution of
rc = (ricjc

, rjckc
)T , i.e., pc(rc) = N (rc|µc,Σc), where the mean µc and the co-

variance matrix Σc can be learned from the training set by maximum likelihood:

µc =
1

M

M∑

m=1

r(m)
c (1)

Σc =
1

M

M∑

m=1

(r(m)
c − µc)(r

(m)
c − µc)

T (2)

Finally, we get the higher-order shape model P = (V, C, {N (·|µc,Σc)}c∈C),
where V and C determine the topology of the model while {N (·|µc,Σc)}c∈C

characterizes the statistic geometry constraints between the triplets.

2.2 Landmark Candidate Detection

Given such a prior model, segmentation can be viewed as finding a mapping
between the model points and a new volume. This can be expressed as a corre-
spondence problem that requires detection for the model points in the image or
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finding a set of correspondences for each point i (i ∈ V). To this end, we first
learn a classifier for each landmark, and then compute a score for each possible
localization, and finally select the L positions that have the best scores. In the
experiments, we adopt Randomized Forest [5] to perform the classification.

A randomized forest is composed of a set of T random decision trees. In the
decision trees, an internal node consists of a random test on an input feature
vector, the result (true or false) of which decides which (left or right) child node
the feature vector goes to. And a leaf consists in a histogram h = (h1, . . . , hW )
(W is the number of classes), which is obtained during the training phase by
counting the number of labeled feature vectors that arrive at this leaf. During
the testing phase, an unlabeled feature vector is dropped in each decision tree τ
and reaches the leaf lτ , and the normalized histogram of lτ provides a probability
estimation for the feature vector belonging to each class w:

P (w|lτ ) =
hw∑
i hi

(3)

Finally, we average the probabilities of all the trees to obtain the probability
over the forest:

P (w|(l1, . . . , lT )) =
1

T

∑

τ

P (w|lτ ) (4)

We consider all the voxels in a volume as the possible localization of the land-
marks. Each voxel is associated with a feature vector which is used as the input
for the classifiers. Different features can be considered towards achieving a high
quality detection. In order to well capture the local image structure information,
we can use a series of 3d Gabor filters [13] with different scale, rotation param-
eters. We adopt the method proposed in [14] to sample these parameters such
that scaling/rotation of the image becomes a translation of these parameters
and then estimate the Fourier Transform Modulus (FTM) of the filter output to
eliminate variations due to these translations (because the FTM is translation
invariant). Due to the symmetry of FTM, it is enough to consider only half of
the FTM domain by removing the redundant coefficients. In such a way, we get
a feature vector for each voxel that is scale and rotation invariant.

Fig. 2 shows the detected candidate results for four landmarks at different
locations on a testing muscle data.

2.3 Higher-order MRF Segmentation Formulation

The shape model, together with the evidence from the image support, is formu-
lated within a higher-order MRF towards image segmentation.

Let G = (V, C) denote a hypergraph with a node set V and a clique set
C, UG = {Uq(·)}q∈V the singleton potentials defined on the node set V, and
HG = {Hc(·)}c∈C the clique potentials defined on the clique set C. And then
let MRFG(UG ,HG) denote a higher-order MRF with topology G as well as the
potentials UG and HG. In our problem, we associate a landmark to a node i
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(i ∈ V), a triplet to a third-order clique c (c ∈ C), with one-to-one mappings4.
The latent variable Xi corresponding to node i is a 3-dim vector denoting the
position of node/point i. xG represents the configurations of all the nodes, i.e.
xG = (xi)i∈V . The candidate set of each variable is denoted by Xi (i ∈ V). Thus
the candidate set X G of all the variable of the MRF is defined as: X G =

∏
i∈V Xi,

which composes all the possible configurations of the shape model. The candidate
set Xi for each node consists of the detected landmark candidates (section 2.2).

The segmentation problem is transformed into estimating the optimal posi-
tions of the landmarks, i.e., the optimal configuration xG

opt of MRFG , which is

formulated as a minimization of the MRF’s energy E(xG):

xG
opt = arg min

x
G∈XG

E(xG) (5)

where the energy of MRFG is defined as:

E(xG) =
∑

q∈V

Uq(xq) +
∑

c∈C

Hc(xc) (6)

where xc denotes the configuration (xq)q∈c of clique c. The singleton potentials
UG and third-order clique potentials HG are presented as follows:

The singleton potential Uq(xq) (q ∈ V) is the negative log-likelihood which
imposes penalty for the landmark q being located at position xq in image I:

Uq(xq) = − log p(I|xq) (7)

where we define p(I|xq) using the classifier’s output probability value for land-
mark q being located at xq (Eq. 4).

The higher-order clique potential Uc(xc) (c ∈ C) encodes the statistic geom-
etry constraints between the triplet c of points and is defined as:

Uc(xc) = −α · log pc(rc(xc)) (8)

where α > 0 is a weight coefficient, rc(xc) denotes the mapping from the position
of the triplet c to the 2-dim relative lengths of the sides, and the prior distribution
pc has been defined in section 2.1.

2.4 MRF Decomposition & Optimization

In order to perform inference in the proposed higher-order MRF, we adopt the
well-known dual-decomposition optimization framework [15,16]. The key idea of
such a framework is: instead of minimizing directly the energy of the original
problem, we maximize a lower bound on it by solving the dual to the linear
programming (LP) relaxation [15].

To this end, we first decompose the original problem (corresponding to MRFG)
into a set of sub-problems (corresponding to {MRFGs}s∈S , where S is the set

4 Due to such one-to-one mappings, in this section, we reuse the notation V and C to
denote the node set and the clique set, respectively.
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Fig. 2. Landmark detection results. The red hexagram represents the ground truth
while the blue plus signs represent 50 detected candidates. The reference segmentation
surface is provided to visually measure the distance between candidates and the ground
truth.

of sub-problems), each of which is smaller and solvable. More concretely, we
decompose the original hypergraph G = (V, C) into a set of sub-hypergraphs
{Gs = (Vs, Cs)}s∈S such that V = ∪s∈SVs and C = ∪s∈SCs. In order to form
{MRFGs}s∈S corresponding to the sub-problems, the original MRF potentials
are decomposed into the sub-hypergraphs such that U =

∑
s∈S UGs and H =

∑
s∈S HGs , which can be achieved simply by setting UGs

q =
UG

q

|{s|q∈Vs}|
and HGs

c =

HG
c

|{s|c∈Cs}|
. The dual-decomposition [15] states that the sum of the minimum en-

ergies of the sub-problems provides a lower bound to the minimum energy of
the original MRF. Furthermore, the problem of maximizing such a lower bound
over its feasible set is then convex. Like [16], we adopt a projected subgradi-
ent method to perform this maximization so as to combine the solution of the
sub-problems to get the solution of the original problem.

The most challenging component is how to define the sub-problems to decom-
pose the original problem5. For the purpose of solving the inference, we adopt
factor graph [6,7] to represent the MRFs. To this end, we introduce additional
nodes for the factors corresponding to the singleton potentials Uq(xq) (q ∈ V)
and the third-order clique potentials Hc(xc) (c ∈ C). Considering both the com-
plexity and the quality of the optimum, we propose to decompose the original
factor graph into a series of factor trees (i.e., factor graphs without loop) such
that a higher-order clique factor appears in one and only one factor tree. The
inference in a factor tree can be done exactly and very efficiently using max-
product belief propagation algorithm [7] with complexity O(NLK), where N , L
and K denote the number of nodes, the number of candidates for each node,
and the maximum order (K = 3) of the factors, respectively.

3 Experimental Results

We used the data set that was previously used in [17] to validate the proposed
method. This data set consists of 25 3D MRI subjects whose calf part was
imaged. The voxel spacing is of 0.7812×0.7812×4 mm and each volume consists

5 We cannot use the decomposition scheme proposed in [16], since the higher-order
clique potentials are not pattern-based.
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Fig. 3. Experimental Results. (a) Surface reconstruction results (green: reference seg-
mentation. red: reconstruction result). (b) Boxplots of the average landmark error
measure in voxel (1. our method. 2. method in [17]. 3. standard ASM method.). On
each box, the central mark in red is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points.

of 90 slices of 4mm thickness acquired with a 1.5 T Siemens scanner. Standard
of reference was available, consisting of annotations provided by experts for the
Medial Gastrocnemius (MG) muscle.

We performed a leave-one-out cross validation on the whole data set. For
comparison purpose, we considered as alternative segmentation methods6 the
ones presented in [17]. We present in Fig. 3(a) the surface reconstruction results
using the estimated position of the landmarks and thin plate spline (TPS), while
in Fig. 3(b) the average distance between the real landmark position and the one
estimated from our algorithm, and the ones reported in [17] including the one
obtained using standard active shape models. We reduce landmark localization
error by an average of factor 2 in terms of voxel error compared to [17] that is
considered to be the state of the art. The analysis of the results shows that the
proposed prior and the inference using higher-order graphs globally perform well
while the main limitation is introduced from the landmark candidate detection
process. Since the method establishes correspondences between the model and
the detected landmarks, in the absence of meaningful candidates the method fails
to recover optimally the global shape. Regarding computational complexity, the
method is linear with respect to the number of higher-order cliques and cubic
with respect to the number of landmarks candidates per point.

4 Conclusion

In this paper, we have proposed a novel approach for 3D segmentation using pose
invariant higher-order MRFs. Our method models the prior manifold through
accumulation of local densities involving pose invariant combinations of points.
Segmentation is expressed as a higher-order MRF optimization problem, where

6 Opposite to [17], we have considered a subset of 50 from the 895 model landmarks
uniformly distributed in the model-space (Fig. 1).
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machine learning techniques and pose invariant features are considered to de-
termine candidate positions for the model points. Promising results that clearly
outperform the prior art in very challenging data sets demonstrate the potentials
of the method.

Extending the framework to deal with missing correspondences is the most
promising direction to overcome the challenge of correctly estimating the position
of all the landmarks of the model. Redundancy is a natural property inherited
from the exhaustive construction of the higher-order model. The optimization
of the graph connectivity towards reducing the computational complexity of the
method is a straightforward direction as suggested in [8] through dimensionality
reduction on the graph space. Last, but not least the case of spatio-temporal
higher-order priors on anatomical structures with dynamic behavior is currently
under investigation.
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