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Abstract

In this paper, we propose a unified graphical-model

framework to interpret a scene composed of multiple ob-

jects in monocular video sequences. Using a single pair-

wise Markov random field (MRF), all the observed and hid-

den variables of interest such as image intensities, pixels’

states (associated object’s index and relative depth), ob-

jects’ states (model motion parameters and relative depth)

are jointly considered. Particular attention is given to oc-

clusion handling by introducing a rigorous visibility mod-

eling within the MRF formulation. Through minimizing

the MRF’s energy, we simultaneously segment, track and

sort by depth the objects. Promising experimental results

demonstrate the potential of this framework and its robust-

ness to image noise, cluttered background, moving camera

and background, and even complete occlusions.

1. Introduction

Segmentation and tracking in video sequences are

among the most active research topics in Computer Vision

and often serve as low and mid-level cues in numerous ap-

plications. One can cite for example, video surveillance,

action recognition, robot navigation, medical imaging and

human-machine interaction.

Segmentation aims at delineating object contours and is

either edge-based or region-based. In the first case, one

seeks the object boundaries based on visual discontinuities,

while in the second case pixels are grouped together accord-

ing to their visual properties and spatial relationships. Ac-

tive contours [11] are the most popular methods in the first

case, while recent MRF-based techniques are the current

state of the art in the second case [1], with the advantage

over active contours that they are less susceptible to local

minima.

Tracking aims at locating moving objects in time and is

either patch/appearance based over pair of images or per-

formed using dynamical systems which also provide some

information on the object trajectory properties. In both

cases, similarities of the object appearance in time are used

as metric. The mean-shift algorithm [3] and the condensa-

tion [9] are the most popular methods.

Segmentation and tracking are two complementary tasks

and several previous methods aim at combining MRF seg-

mentation with object tracking/pose estimation [2, 17].

These approaches relate to other methods that aim at in-

troducing object shape priors within MRF segmentation

[5, 7, 16]. In comparison with methods that first perform

segmentation without any use of the available knowledge

about the tracked object shape and then estimate the object

pose from segmented regions [8, 25], these combined meth-

ods are able to cope with more challenging conditions such

as image noise and cluttered background.

In [2], articulated object tracking and MRF segmentation

are combined. A gradient-free local search is performed on

an objective function which is defined as a function of the

object articulation parameter vector. For each tested pose, a

shape prior is defined using a stickman model and the image

is segmented using binary graph-cuts. While being effec-

tive for single object tracking, this approach is not suited to

multiple-object tracking, as it does not provide treatment of

occlusions between objects. In [17], the poses of the tracked

objects are predicted from previous frames, template shapes

of the objects at the predicted locations are used as shape

priors to perform multi-label MRF image segmentation with

graph-cuts, and then the object locations are re-estimated

using the segmented regions. The use of multi-label seg-

mentation helps in avoiding evidence over-counting (i.e.,

associating a pixel to more than one object) but is still insuf-

ficient to ensure robustness to sever occlusions that would

require some occlusion reasoning.

Better performance can be expected by: (i) integrating

occlusion reasoning using depth ordering between objects;

(ii) coupling and simultaneously estimating all variables of

interest (depth, object motion parameters and pixel segmen-

tation labels), furthermore, if such an integration can be

done within a single MRF, then one can also take advan-

tage of existing/generic MRF inference techniques which

are less prone to be trapped in local minima than local



search or expectation-maximization techniques, and thus

can deal with more challenging cases. While depth no-

tion and layered models were widely used in the literature

[4, 10, 15, 18, 20, 23, 24], our method extends them to a uni-

fied MRF framework which performs scene understanding

through the simultaneous estimation of the corresponding

parameters.

However, taking into account the occlusion process be-

tween objects in a graphical-model formulation without

introducing high order cliques is not straightforward. In

[19, 22], for example, occlusions are partially considered

towards avoiding over-counting image support, but the for-

mulations do not intrinsically guarantee that at least one ob-

ject or the background has to be associated to a given pixel.

In this paper, we propose a unified pairwise MRF to ad-

dress the challenge of combining the segmentation, multi-

object tracking with a rigorous visibility modeling (i.e.,

depth ordering). The unknown pixels’ states (associated ob-

ject’s index, relative depth) and objects’ states (model mo-

tion parameters, relative depth) are integrated along with a

principled way in the MRF. By minimizing the MRF’s en-

ergy, we simultaneously segment the image, track and esti-

mate the objects’ motion parameters, and sort by depth the

objects.

The main contribution of our approach is a single-shot

optimization MRF framework for joint segmentation, depth

ordering and multi-object tracking, where all the variables

of interest do interact. To this end, we introduce a rigorous

visibility modeling, which is achieved by introducing visi-

bility constraints that involve only pairs of variables through

a pairwise MRF. The resulting formulation is modular with

respect to the data terms and independent from the inference

algorithm.

The remainder of this paper is organized as follows: we

present the generative scene modeling in section 2, and

then transport it into the MRF formulation of the integrated

multi-object tracking, ordering and image segmentation in

section 3. Experimental validation and some discussion

compose section 4. Finally, we conclude the paper with

some future directions in section 5.

2. Generative Scene Modeling

Let us consider a sequence of images with K objects to

be tracked and each image composed of N pixels. Further-

more, let Vo = {1, 2, . . . ,K} denote the index set of the

objects and Vp = {K + 1,K + 2, . . . ,K + N} the index

set of the pixels1. Let us assume that there is no mutual

occlusion (e.g., object 1 partially occludes object 2 and is

partially occluded by object 2) between the objects. Thus

each object can be considered to be flat, especially for the

1The pixels are indexed from K + 1 in order to be coherent with their

corresponding nodes’ indices in the MRF formulation (see section 3).
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Figure 1. Sketch Map of Scene Generative Modeling

purpose of visibility modeling. We consider “background”

as a special object which occupies all the pixels in the image

and which lies behind (is occluded by) all the objects to be

tracked2. We assign it an index “0” and use Vs to denote the

extended object set which contains the indices of the objects

and the background, i.e., Vs = Vo ∪ {0}.

In such a setting, the spatial property of each ob-

ject/background can be described by its 2d shape, i.e., the

projection in the image. Let us associate each object with a

geometric shape prior and an appearance prior (with respect

to the visual distribution of the intensities of the object). Let

Mk(θk) (k ∈ Vs) denote the index set of the pixels which

are occupied by the shape model of object/background k
with parametrization3 θk. And let Hk (k ∈ Vs) denote the

appearance prior of object/background k. Then we can gen-

erate the image, if we have a depth ordering between the ob-

jects and background. However, this ordering is unknown

when we estimate the motion of the objects in a video se-

quence. Therefore, an explicit modeling of the visibility

in the segmentation/motion estimation framework is to be

considered.

We first introduce a relative depth index4 dk (k ∈ Vs) to

each object/background, and only an object having smaller

depth can occlude another object having bigger depth. Let

us define the range of the depth. Assuming that in a video

sequence, at most D (D ≤ K) objects (not including the

background) may overlap at a point in time5, D + 1 depths

are sufficient to model the depth ordering between the ob-

jects and the background (Note that two objects may have

the same depth). Thus, we define D = {0, 1, 2, . . . ,D− 1}

2The floating background, i.e., those objects which are not tracked but

may occlude the objects to be tracked will be discussed in section 4.2.

However, it is not a limitation with regard to the proposed generative

framework.
3θ0 is an abuse of notation (this variable is not needed), since the back-

ground’s shape M0 always is the support of the image. It is considered

for clarity and consistency purposes.
4Towards simplifying the presentation of the framework, the term rela-

tive depth index will be replaced by depth.
5A precise definition of D: Let us describe depth ordering of the ob-

jects/background in an image using a Ordering Graph Gv [4], which is a

directed graph. Each object/background is represented by a node. The ob-

ject corresponding to node k1 occludes (partially or completely) the one

corresponding to the node k2 for an arc (k1, k2) of Gv . Thus, D is the

length of the longest (directed) path of Gv .



as the set of all the possible depths for the objects, and “D”

being the depth of the background, i.e., dk ∈ D (k ∈ Vo)
and d0 = D.

This depth is associated with the image through the Pixel

Label Consistency. It imposes that for a given pixel i,
we consider the objects whose shapes occupy this pixel

and then associate this pixel to the one having the small-

est depth. Let li (li ∈ Vs) denote the index of the ob-

ject/background to which the pixel i associates, the above

constraint can be formulated mathematically as follows:

li = arg min
{k|i∈Mk(θk),k∈Vs}

dk (∀i ∈ Vp) (1)

For Pixel Label Consistency being well defined, i.e.,

arg min{k|i∈Mk(θk),k∈Vs} dk being singleton, we introduce

a constraint on the assignment of dk (k ∈ Vs), namely, Ob-

ject Depth Consistency, which imposes the constraint that

for a given pixel i, there is one and only one object which

has the smallest depth among the objects whose shapes oc-

cupy it. We can formalize that as follows:

∀i ∈ Vp , ∃k̃ ∈ {k|i ∈ Mk(θk) , k ∈ Vs}

s.t. ∀k′ ∈ {k|i ∈ Mk(θk) , k ∈ Vs}\{k̃} , dk̃ < dk′

(2)

A depth assignment which verifies Object Depth Consis-

tency composes a depth ordering hypothesis between the

objects/background.

In order to model the visibility in a distributed way, we

also assign a depth zi (zi ∈ D∪{D}) to each pixel i. It rep-

resents the depth of the object to which the pixel associates,

i.e., zi = dli . Thus, we define Pixel Depth Consistency as:

zi = min
{k|i∈Mk(θk),k∈Vs}

dk (∀i ∈ Vp) (3)

Pixel Label Consistency, Object Depth Consistency and

Pixel Depth Consistency (Formulas 1, 2 and 3) compose

the constraints that ensure the values zi and li of each pixel

i to be those produced from the generative process of image

with occlusions between the objects (Fig. 1).

While for a pixel i, its depth zi can be retrieved using the

pixel label li and the depth information of the associated

object (i.e., zi = dli), there is a necessity of modeling depth

also at the pixel level. In our framework, we model the

visibility in a distributed manner in the MRF and thus the

depth ordering can be automatically estimated with other

latent variables of interest during the inference process. To

this end, introducing the depth zi to each pixel is crucial

because it allows to model the visibility using constraints

that involve only pairs of variables through a pairwise MRF.

Therefore, we reformulate the above mentioned constraints

in a distributed manner as follows (see proof in Appendix):

∀i ∈ Vp, A1 ∧ A2 ∧ A3 ⇔
∧

k∈Vs

(C1k ∧ C2k ∧ C3k) (4)

with:







A1 : li = arg min{k|i∈Mk(θk),k∈Vs} dk

A2 : zi = min{k|i∈Mk(θk),k∈Vs} dk

A3 : ∃k̃ ∈ {k|i ∈ Mk(θk) , k ∈ Vs} s.t.

∀k′ ∈ {k|i ∈ Mk(θk) , k ∈ Vs}\{k̃} , dk̃ < dk′

C1k : ¬((li = k) ∧ (zi 6= dk))
C2k : ¬((li = k) ∧ (i /∈ Mk(θk)))
C3k : ¬((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈ Mk(θk)))

(5)

1. Keeping C1k true imposes that: the depth of pixel i
should be equal to the depth of object/background k if

it is associated to the object k.

2. Keeping C2k true imposes that: a pixel i can be associ-

ated to object/background k only when it is occupied

by the shape of object/background k.

3. Keeping C3k true imposes that: if a pixel i is occu-

pied by the shape of object/background k, it can be

associated to an object other than k only when the

depth of pixel i is strictly smaller than the depth of

object/background k.

With such an equivalence, the satisfaction of the above

mentioned conditions on the right-side in formula (4) for

each pixel ensures that a pixel i will be explained once and

only once by the object which is supposed to be visible at

pixel i. One can now integrate these constraints/conditions

with support coming from the images towards segmenta-

tion, ordering and multi-object tracking. We adopt the use

of a pairwise MRF, since conditions of the visibility satis-

faction can be mapped to pairwise interactions, while image

support can be encoded through singleton potentials.

3. Markov Random Field Formulation

The proposed MRF is composed of two types of nodes

(Fig. 2). The first is object nodes corresponding to the

objects to be tracked, and the second is pixel nodes corre-

sponding to the image pixels. The index set of the nodes is

denoted by V = Vo∪Vp (Vo and Vp correspond respectively

to the two types of nodes, see section 2 for detail).

The MRF comprises a discrete latent random variable

vector X = (Xi)i∈V such that each variable Xi takes a

value xi from its label set Xi containing all possible labels.

We use x = (xi)i∈V to denote the MRF’s configuration

and X = X1 × X2 × · · · × X|V| the MRF’s configuration

space, i.e., x ∈ X . The latent variable Xi for the two types

of nodes will be defined with their singleton potentials in

section 3.1.

In order to introduce the geometric prior and the visi-

bility satisfaction constraints, all the object nodes are con-

nected with all the pixel nodes. These edges compose the
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Figure 2. MRF Model (Example for Two Tracked Objects)

edge set E of the MRF, i.e., E = {(k, i)|k ∈ Vo, i ∈ Vp}.

We can also introduce interactions/constraints on the la-

bels of the pixel nodes (in particular with respect to the

segmentation) through conventional 4-neighborhood or 8-

neighborhood systems [1], which will be discussed in sec-

tion 4.3.

The total energy of the MRF with a configuration x is

defined as:

E(x) =
∑

i∈V

φi(xi) +
∑

(k,i)∈E

ψk,i(xk, xi) (6)

3.1. Singleton Potential

There are two types of singleton potentials, one referring

to the pixel nodes and the other referring to the object nodes.

They mostly encode the intensity evidence coming from the

image and object motion priors from one frame to the next.

Pixel node singleton term: The latent random variable Xi

(i ∈ Vp) is composed of the associated object’s index and

the depth, i.e., xi = (li, zi). We define the configuration

space of pixel node i as: Xi = (Vo × D) ∪ {(0, D)} (see

section 2 for the definitions of these symbols). Note that if

a pixel is labeled as “background” (i.e., li = 0), its depth

is deterministic (i.e., zi = D). Like [1, 2], we use single-

ton potential φi(xi) (i ∈ Vp) to encode the data likelihood,

which imposes penalties for assigning li to pixel i and is

defined as:

φi(xi) = − log Pr(Ii|Hli) (7)

where Ii denotes the intensity/color (e.g., RGB value) of

pixel i, and Hk (k ∈ Vs) denotes the intensity/color dis-

tribution for object/background k. We can model the color

distribution for each object/background using existing ap-

proaches such as a Gaussian mixture, a kernel-based ap-

proximation (e.g., Parzen windows) of the distribution, etc.

Object node singleton term: The latent random variable

Xk (k ∈ Vo) is composed of the motion parameters of the

shape model (e.g., position, rotation, scale, other deforma-

tion parameters) and the depth, i.e., xk = (θk, dk). We use

Xk = Θk × D to denote the configuration space of object

node k, where Θk denotes the motion parameter space. The

singleton potential function for object node k encodes the

prior preference on xk and can be defined as:

φ
(t)
k (x

(t)
k ) = α1 ·

∥
∥
∥θ

(t)
k − θ̂

(t)
k

∥
∥
∥

2

+ α2 ·
∥
∥
∥d

(t)
k

∥
∥
∥ (8)

where α1 > 0 and α2 > 0 are the weights for the corre-

sponding terms, θ̂
(t)
k is the predicted configuration of θk for

the instant t, and ‖·‖ denotes the Euclidean norm.

The first term is defined to model the temporal con-

straint. Actually, it can be neglected when the image evi-

dence is quite informative for estimating the motion of ob-

jects. We explicitly define it in the theoretical framework

in order to keep the general preciseness of the model. For

example, when an object is completely occluded by another

object during a period, there is not enough visual informa-

tion to determine the motion of this object and this prior

term can be used to determine the motion. The choice of

the predictor for θ̂
(t)
k is independent from this framework

and one can choose an off-the-shelf predictor.

The second term is used to avoid an arbitrary choice of

depth in case of depth ambiguities by favoring the depth

variable to be the smallest possible one because, without

this term, different depths may produce the same MRF’s

energy. One obvious example is the case of an object having

no occlusion with any other object, since it can take any

possible depth. However, the neglect of this term will not

impact the performance of the method.

3.2. Pairwise Potential

The pairwise potential between an object and a pixel is

used to model the shape prior and the visibility constraint

in the MRF. For an edge (k, i) (k ∈ Vo and i ∈ Vp), the

pairwise potential ψk,i(xk, xi) is defined as:

ψk,i(xk, xi) = ψ
(1)
k,i (xk, xi) + ψ

(2)
k,i (xk, xi) + ψ

(3)
k,i (xk, xi)

(9)

where ψ
(1)
k,i , ψ

(2)
k,i and ψ

(3)
k,i are the penalties respectively

corresponding to the cases C1k = false, C2k = false and

C3k = false (see formula 5 for C1k, C2k and C3k):






ψ
(1)
ki (xk, xi) = γ1 · [¬C1k]

ψ
(2)
ki (xk, xi) = γ2 · dist(i,Mk(θk)) · [¬C2k]

ψ
(3)
ki (xk, xi) = γ3 · dist(i,M

c
k(θk)) · [¬C3k]

(10)

where γ1 > 0, γ2 > 0 and γ3 > 0 are the weights for the

corresponding penalties, Mc
k(θk) denotes the complement

of Mk(θk), Iverson Bracket [·] is defined as: for a statement

S, [S] = 1 if S is true and 0 otherwise, and dist(i,M)
denotes the distance function which is defined as the mini-

mum Euclidean distance between the geometric shape cor-

responding to M and the considered pixel’s position:

dist(i,M) = min
j∈M

‖loc(i) − loc(j)‖ (11)



where loc(i) denotes the spatial coordinates of pixel i in the

image.

Instead of giving an infinite penalty to any case where a

statement in formula 5 is false, we set ψ
(1)
ki to be constant,

ψ
(2)
ki and ψ

(3)
ki to be distance penalties. This is motivated by

the fact that, in general, shape models are not exact: when

we get closer to the center of shape, the degree of certainty

of being in the projection increases. Such a penalty yields

an elastic force and can guide both object tracking and im-

age segmentation.

Using the MRF model defined above, we can now simul-

taneously perform segmentation, ordering and multi-object

tracking, which is formulated as the inference of those la-

tent random variables through a minimization problem over

the MRF’s total energy:

x
opt = arg min

x

E(x) (12)

This MRF can be optimized using standard inference

methods. We adopt the sequential tree-reweighted message

passing (TRW-S) [12], since it offers a good compromise

between the quality of the obtained minimum, the ability to

model complex interactions between the MRF’s nodes and

reasonable computational complexity.

4. Experimental Results

In order to validate the proposed framework, we have

considered several video sequences of increasing difficul-

ties.

4.1. Experimental Setting

A weak geometric prior is considered, which is a bound-

ing box (except for Shell Game sequence, where the geo-

metric prior is the manually delineated contour of each ob-

ject in the first frame.). The motion parameters θk of each

object correspond to the position, scale and rotation angle

around the shape’s center of mass. The position space is

defined as the support (or: lattice) of the image. The rota-

tion angle space is defined as {r|r ∈ Z and 0 ≤ r < 360},

where Z is the set of all integers. The scale factor space is

defined as {s|s = 1.05n, n ∈ Z}. In practice, the search

space is in the vicinity of the previous motion parameter

vector, due to the fact that the motion between two succes-

sive frames is limited. This setting is combined with a linear

predictor where the estimated motion parameter vector for

the current frame is used to predict that of the next frame,

i.e., θ̂
(t)
k = θ

opt,(t−1)
k (k ∈ Vo).

For the visual appearance term, we distinguish the case

of static background from that of dynamic background. In

the first case, using the manual delineation of the objects

in the first frame, a Gaussian mixture is considered to-

wards modeling the color distribution of each object. The

background’s color, either is globally modeled as a Gaus-

sian mixture (Box and Shell Game sequences), or is mod-

eled using a pixelwise model (Pedestrian Sequence 1), i.e.,

each pixel’s color is modeled using a Gaussian distribu-

tion whose mean and variance are learned from a sequence

of background images [21]. The case of dynamic back-

ground (Pedestrian Sequences 2 and 3) is treated differently.

Given the manual segmentation of the first frame, a non-

parametric Parzen windows approximation is used to model

the color distribution of each object/background. The color

model for the background is updated for the next frame us-

ing the segmentation result of the current frame, while those

of the objects are kept constant.

There are two components still to be addressed, the mo-

tion parameter sampling and the parameter setting for the

weights of the MRF’s energy. We adopt a sparse sampling

strategy [6], where θ
(t)
k is sampled uniformly along each

main axis plus the two diagonal directions of the transla-

tion centered at the predicted value θ̂
(t)
k , plus θ̂

(t)
k itself to

get the motion parameter candidates. In order to mitigate

inaccuracy of the solution due to the fact that the sampling

is sparse, we iterate by re-sampling at each iteration around

the solution found in the previous iteration. According to

the roles of the energy terms, we set the parameters as fol-

lows: we adjust and fix γ2 by trial and error on the first few

frames. It is different from one sequence to another since

the color statistics and/or the color model may be different.

The rest are set as: γ1 = 50γ2 and α1 = α2 = γ3 = γ2.

4.2. Results

We show the results on two sequences with rigid ob-

jects and three sequences with deformable objects. The test

sequences involve varying degree of image quality (severe

noise has been added to some of them), varying complex-

ity both with respect to the objects and background visual

properties, varying degree of occlusions and last, but not

least both static and moving observers.

Box Sequence: In the original sequence, two boxes move

such that significant occlusions (even complete occlusions)

occur between them. Our algorithm has well tracked the

objects, segmented the image, and estimated the depths of

the objects. Furthermore, in order to test the robustness

to noise, we independently added Gaussian white noise of

mean 0 and variance 0.8 (the range of RGB value is [0, 1]
3
)

to each frame. Figure 3(a) shows the results for this very

degraded video.

Shell Game Sequence: In order to test the robustness of

our algorithm to both temporally and spatially significant

occlusions, we have tested Shell Game sequence [8]. In

this video, there are three identical cups facing downwards

and two chips of different colors. The operator begins the

game by placing two cups such that each cup covers one of



the two chips, then he/she quickly shuffles the three cups

around and finally uncovering the chips. While being oc-

cluded, each chip keeps sliding with the cup that covers it.

This video is quite challenging mainly due to the long-term

complete occlusions of the two occluded chips (Fig. 3(b)).

Note that we previously assumed that the background

was always behind all the objects. However, one can also

imagine floating background, i.e., those objects which are

not to be tracked but may occlude the tracked objects (e.g.

the hands in the video). In our experiments, we dealt with

this by adding another possible depth “−1” for the back-

ground (i.e., add (0,−1) into Xi (i ∈ Vp)) and giving a

prior penalty to the case where a pixel is labeled as “back-

ground” and has depth “−1”.

Pedestrian Sequences: Sever occlusions have also been

considered in a real setting, with deformable objects, im-

age noise, changes of illumination and moving camera. We

have considered three sequences: (i) the first one consists

of a static background with five people, severe occlusions

between the objects and the maximum level of occlusions

being three (Fig. 3(c)); (ii) the second one consists of

a moving background with five people, severe noise and

changes of illumination (Fig. 3(d)); (iii) the last one con-

sists of a moving background with four people and signifi-

cant changes in texture (Fig. 3(e)).

For these pedestrian sequences, a rectangle is used to

model the shape of a person. Since, in the shape prior, the

torso is more reliable than the limbs due to limb motions, we

manually set an area inside the shape model (i.e., including

the majority of the torso), and it has the same motion as the

shape model. When computing ψ
(3)
ki (xk, xi) using formula

10, if pixel i is inside this area with the configuration θk,

we multiply ψ
(3)
ki (xk, xi) by a factor 10 to increase the con-

fidence to this area, and otherwise we divide ψ
(3)
ki (xk, xi)

by a factor 10 to decrease the confidence.

For these test sequences, despite of different difficulties,

our algorithm has successfully segmented, tracked and or-

dered by depth all the objects. The main limitation of the

method is the computational complexity. Running times

vary from a few seconds to several minutes per frame. It

is shown that, with presence of occlusions in the observed

image, TRW-S needs much more iterations to converge to a

satisfactory solution than the cases without occlusions.

4.3. Discussion

Algorithm Acceleration: Since the object motion is

bounded in a finite speed, given the motion configuration

at an instant t−1, there is no need to model the relationship

between an object and all the pixels for instant t. Based on

this observation, we propose an approach to simplifying the

MRF model in section 3. Once we get the estimation of the

motion parameters θ
opt,(t−1)
k (k ∈ Vo), we calculate the dis-

tance function Mk(θ
opt,(t−1)
k ) for object k. Using this dis-

tance function, we prune the connections between the ob-

ject k and those pixels i with dist(i,Mk(θ
opt,(t−1)
k )) > b

(where b is a tolerance coefficient). And for these pixels, the

label k is excluded from their configuration spaces. In this

way, the algorithm can be sped up by more than 15 times

on average, which was observed during experiments (with

b = 20).

Introducing Interactions between Pixels: As we said

previously, we can also introduce interactions/constraints

on the labels of the pixel nodes through conventional 4-

neighborhood or 8-neighborhood systems. To this end, we

add the edges between those neighbor pixels into the edge

set E . Thus, we can smooth the segmentation result by

defining the corresponding potential as:

ψ(xi, xj) =

{
η (η > 0) if li 6= lj
0 if li = lj

(i, j ∈ Vp, (i, j) ∈ E)

(13)

which favors neighbor pixels having the same label. We

can also define other forms of potentials (e.g., by consider-

ing the contrast). We have tested the cases both with and

without this smoothness term. It is shown that the inclusion

of this term does not improve the tracking performance but

can smooth and improve the segmentation to some extent.

However, the running-time significantly increases with the

use of this term and the choice of η complicates the param-

eter setting.

5. Conclusion and Future work

In this paper, we have proposed a novel approach for seg-

mentation, depth ordering and tracking with occlusion han-

dling. Our approach introduces a distributed way to deal

with visibility satisfaction where individual pixel modeling

contributes to the depth ordering of objects through con-

dition preservation constraints. The above constraints are

expressed as cost terms in an MRF and are integrated with

image support towards scene understanding. To the best

of our knowledge, this is the first approach that combines

low-level image support with high-level object representa-

tion along with proper occlusion handling in a single mod-

ular MRF where image data terms as well as priors can be

easily replaced with more advanced models. Promising ex-

perimental results demonstrate the potentials of the method.

Improving the object representation towards more accu-

rate tracking is one of the most promising directions of our

approach. Opposite to simple rectangle representations, we

can imagine more complex object representations that are

able to cope with important deformations such as point dis-

tribution models. Another possible direction is to use this

framework to deal with articulated objects such as hand



(a) Box Sequence

(b) Shell Game Sequence

(c) Pedestrian Sequence 1

(d) Pedestrian Sequence 2

(e) Pedestrian Sequence 3

Figure 3. Experimental Results. The first line of each sub-figure is the tracking result, where we draw the shape contours of the objects with

the estimated motion parameters. The second line is the segmentation result. The third line presents the estimated depths of the objects.

We use different colors to distinguish the objects.

pose estimation, where the rigorous handling of visibil-

ity/occlusion could greatly impact the quality of the ob-

tained results. Also, the use of higher order MRFs [13]

could introduce significant modeling flexibility and better

understanding of the scene. Last, but not least accelerat-

ing the convergence of the method is necessary to make the

method applicable to other scenarios using either more ef-

ficient optimization algorithms [14] or a GPU implementa-

tion.
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Appendix: Proof of Equivalence in Formula 4

Let A = A1 ∧ A2 ∧ A3, C =
∧

k∈Vs
(C1k ∧ C2k ∧ C3k)

and Oi = {k|i ∈ Mk(θk), k ∈ Vs}.

“⇒”: We first prove that for a pixel i (∀i ∈ Vp), “A is

true” then “C is true” using Reduction to the absurd:

1. Assuming that ∃k̃ ∈ Vs s.t. C1k̃ is false, then li = k̃
and zi 6= dk̃. But according to A1, A2, zi = dli = dk̃.

So the assumption is wrong, i.e., ∀k ∈ Vs, C1k is true.

2. Assuming that ∃k̃ ∈ Vs s.t. C2k̃ is false, then li = k̃
and i /∈ Mk̃(θk̃). But according to A1, li ∈ Oi then

k̃ ∈ Oi, i.e., i ∈ Mk̃(θk̃). So the assumption is wrong,

i.e., ∀k ∈ Vs, C2k is true.

3. Assuming that ∃k̃ ∈ Vs s.t. C3k̃ is false, then li 6= k̃,

zi ≥ dk̃ and i ∈ Mk̃(θk̃). So k̃ ∈ Oi. And according

to A1 and A2, dli = zi ≥ dk̃. But according to A1 and

A3, dli < dk′ (∀k′ ∈ Oi\{li}). So the assumption is

wrong, i.e., ∀k ∈ Vs, C3k is true.

“⇐”: Now we prove that for a pixel i (∀i ∈ Vp), “C is

true” then “A is true”:

C =(
∧

k∈Vs

C1k) ∧ (
∧

k∈Vs

C2k) ∧ (
∧

k∈Vs

C3k)

= (¬
∨

k∈Vs

(¬C1k))

︸ ︷︷ ︸

C1

∧ (¬
∨

k∈Vs

(¬C2k))

︸ ︷︷ ︸

C2

∧ (¬
∨

k∈Vs

(¬C3k))

︸ ︷︷ ︸

C3

(14)

C1 ⇔ 6 ∃k ∈ Vs, (li = k) ∧ (zi 6= dk)

⇒ dli = zi (15)

C2 ⇔ 6 ∃k ∈ Vs, (li = k) ∧ (i /∈ Mk(θk))

⇒ li ∈ Oi (16)

C3 ⇔ 6 ∃k ∈ Vs, (li 6= k) ∧ (zi ≥ dk) ∧ (i ∈ Mk(θk))

⇒ ∀k′ ∈ Oi\{li}, zi < dk′ (17)

1. (15) and (17) ⇒ ∀k′ ∈ Oi\{li}, dli < dk′ . And ac-

cording to (16), li ∈ Oi. So A1 and A3 are true.

2. (15) and A1 (has been proved to be true) ⇒ zi = dli =
darg mink∈Oi

dk
= mink∈Oi

dk, i.e., A2 is true.
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