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Abstract. Similarity and correspondence are two fundamental archetype
problems in shape analysis, encountered in numerous application in com-
puter vision and pattern recognition. Many methods for shape similar-
ity and correspondence boil down to the minimum-distortion correspon-
dence problem, in which two shapes are endowed with certain structure,
and one attempts to find the matching with smallest structure distortion
between them. Defining structures invariant to some class of shape trans-
formations results in an invariant minimum-distortion correspondence or
similarity. In this paper, we model shapes using local and global struc-
tures, formulate the invariant correspondence problem as binary graph
labeling, and show how different choice of structure results in invariance
under various classes of deformations.

1 Introduction

Recent works in computer vision and shape analysis [1–4] have shown that differ-
ent approaches to shape similarity and correspondence can be considered as in-
stances of the minimum distortion correspondence problem, in which two shapes
are endowed with certain structure, and one attempts to find the best (least
distorting) matching between these structures. Examples of such structures in-
clude multiscale heat kernel signatures [5–7], local photometric properties [8, 9],
eigenfunctions of the Laplace-Beltrami operator [10–13], triplets of points [14,
15], and geodesic [2, 3, 16], diffusion [17], and commute time [10, 18] distances.
By defining a structure invariant under certain class of transformations (e.g.
non-rigid deformations), one obtains correspondence invariant under that class
(in the above example, deformation invariant matching). The Gromov-Hausdorff
distance [19] is an important particular case of the minimum distortion corre-
spondence problem, in which the matched structures are metric spaces, invariant
to isometries of the metric structures.

Some settings of the minimum distortion correspondence problem can be re-
formulated as labeling problems [20], such that the objective function can be
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optimized efficiently using the recently developed discrete optimization algo-
rithms. For example, the dual-decomposition strategy [21], introduced by [22]
to perform pairwise Markov random field (MRF) inferences, provides a power-
ful technique to solve such labeling problems. Based on such a strategy, Tor-
resani et al. proposed a pairwise graph matching algorithm [20] to compute
correspondence between images using a criterion combining local features and
Euclidean distances between nearby features. Such an approach showed better
performance than feature-only based methods in deformable 2D object tracking.
The increased performance attributed to the use of inter-feature distances as a
geometric consistency constraint. However, Euclidean distances are not defor-
mation invariant and can be applied only locally, thus limiting the usefulness of
such a constraint.

Main contribution. In this paper, we study the minimum distortion cor-
respondence problem in the context of non-rigid shape analysis. We formulate
invariant correspondence as a minimizer of a distortion criterion based on struc-
tures invariant to some classes of transformations. In particular, we use local
and global structures invariant to important classes of transformations such as
non-rigid deformations, changes in topology, and scaling. By such an axiomatic
construction of invariant structures, we obtain invariant correspondence. In par-
ticular, we show scale invariant shape matching using only singleton and pair-
wise interactions without higher-order terms. Compared to Torresani et al. [20],
our use of global structures in non-rigid shapes provides a better regulariza-
tion to the problem and is better motivated geometrically. Yet, it also increases
the computational complexity of the optimization. To address this problem, we
use hierarchical matching, in which candidate correspondences are restricted to
neighborhoods of matching points from coarser levels.

While the described axiomatic approach is suitable for modeling geometric
shape transformations such as bendings, it is not applicable to intra-class shape
variations (e.g. different appearances of a human shape). To cope with this case,
we show a probabilistic extension of our framework, in which local and global
structures are replaced with respective multidimensional distributions, account-
ing for shape variability.

Related work. Feature-based shape matching methods for non-rigid shapes
were used in numerous recent works [8, 5, 12]. Tree-based [23] and branch-and-
bound techniques [24] were used to find the matches between the feature points.
Elad and Kimmel [16] used multidimensional scaling (MDS) to represent shapes
in a low-dimensional Euclidean space and compare them as rigid objects. The
use of an intermediate embedding space was eliminated in [2] using the Gromov-
Hausdorff formalism [19]. Bronstein et al. [3] proposed an MDS-like algorithm
referred to as generalized MDS (GMDS) for the computation of the Gromov-
Hausdorff distance and deformation invariant correspondence between shapes.
This framework was extended in [17] using diffusion geometry instead of the
geodesic one. In [25], Mémoli extended [2, 3] by modeling shapes as metric-
measure spaces. He introduced the Gromov-Wasserstein distance based on mea-
sure coupling between two metric-measure spaces, and formulated it as a quadratic
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assignment problem (QAP). Thorstensen and Keriven [9] extended the GMDS
framework to textured shapes introducing photometric stress as a local match-
ing term in addition to geodesic distance distortion. Dubrovina and Kimmel [13]
generalized this approach for the matching of textureless shapes using Laplace-
Beltrami eigenfunctions as local geometric descriptors. Mateus et al. [11] showed
a non-rigid shape correspondence approach with inexact graph matching based
on spectral embedding. In the image domain, Torresani et al. [20] used graph
labeling problem to match 2D images.

2 Problem formulation

Our shape model is an extension of themetric model used in [2, 3, 16]. We assume
that the shapes are endowed with local and global structure, and try to find such
a correspondence between the shapes that best preserves these structures. The
structures are defined having in mind certain invariance properties required in
the particular problem, as discussed in Section 3. Given a shape X, modeled as
a connected surface (possibly with boundary) embedded into R3 (or R2 in case
of planar shapes), its local structure is modeled by a vector field fX : X → Rm

referred to as a local descriptor. The global structure of the shape is modeled as
a metric dX : X × X → R, defined as a positive-definite subadditive function
between pairs of points on X.

Given two shapes X and Y with the local descriptors fX and fY and met-
rics dX and dY , respectively, we define a bijective correspondence between X
and Y as C ⊂ X × Y satisfying ∀x ∈ X ∃!y ∈ Y such that (x, y) ∈ C and
∀y ∈ Y ∃!x ∈ X such that (x, y) ∈ C. A good correspondence should match
similar descriptors between corresponding points and similar metrics between
corresponding pairs of points. This can be quantified using first- and second-
order distortion terms, dis(C) = ∥f(C)∥ and dis(C × C) = ∥d(C × C)∥, measuring
the quality of correspondence of local and global structures, respectively. (here,
f(C) is a |C|× 1 vector with elements ∥fX(x)− fY (y)∥ for all (x, y) ∈ C; d(C ×C)
is a |C|2× 1 vector with elements |dX(x, x′)−dY (y, y

′)| for all (x, y), (x′, y′) ∈ C;
and ∥ · ∥ is some norm). In particular,

dis2(C) =
∑

(x,y)∈C

∥fX(x)− fY (y)∥2;

dis2(C × C) =
∑

(x,y),(x′,y′)∈C

(dX(x, x′)− dY (y, y
′))2.

The optimal correspondence is found by minimizing a combination of first-
and second-order distortion terms,

min
C

dis(C) + βdis(C × C), β ≥ 0. (1)

The minimizer of problem (1) is theminimum distortion correspondence between
X and Y . The minimum of problem (1) can be interpreted as the similarity of
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X and Y . 5 A particular theoretically important case is a minimum-distortion
correspondence with an L∞ second-order distortion term, referred to as the
Gromov-Hausdorff distance [19]:

dGH(X,Y ) =
1

2
min
C

max
(x,y),(x′,y′)∈C

|dX(x, x′)− dY (y, y
′)|.

3 Invariance

The choice of the local and global structures (fX , fY and dX , dY ) defines the in-
variance properties of the correspondence. Assume that the shape Y = τ(X) is
obtained fromX by means of some transformation τ from a class T . If fX◦τ = fY
and dX ◦ (τ × τ) = dY for all τ ∈ T , our structures are invariant under the class
of transformations T . As a result, correspondence obtained by the solution of
problem (1) is also invariant under T . Important invariance classes can be ad-
dressed by appropriate definition of the descriptors and the metric. In particular,
we are interested in inelastic deformations (bendings), changing the embedding
of the shape without changing its intrinsic structure; topological transformations,
resulting in local changes in the connectivity of the shape, appearing as holes or
“gluing” two points on the surface; and scaling.

3.1 Choice of the metric

Geodesic metric. One of the most straightforward definitions of a metric on
a surface is the geodesic metric, measuring the length of a shortest path between
points x and x′,

dX(x, x′) = min
γ∈Γ (x,x′)

ℓ(γ),

where Γ (x, x′) denotes the set of all admissible paths between x and x′, γ is
some admissible path, and ℓ(γ) is its length. The geodesic metric is intrinsic,
dependent only on local distance structure of the shape, and is thus invariant
to inelastic deformations [2, 3, 16]. A notable drawback of the geodesic distance
is its sensitivity to topological transformations. Connectivity changes alter the
admissible paths Γ (e.g., gluing the fingers of the hand creates new paths that
have not existed before), and, since the geodesic distance takes the minimum
over all path lengths, sometimes the change in the geodesic metric can be very
significant.

Diffusion metric. A more robust definition of an intrinsic metric based on
heat diffusion properties has been recently popularized by Lafon et al. [27]. Heat

5 The minimizer of problem (1) is not necessarily unique, i.e., there may be two differ-
ent correspondences C ≠ C′ with dis(C) = dis(C′). Such situations are typical when
the shapes have intrinsic symmetries. Intrinsic symmetry is manifested by the exis-
tence of a self-isometry of X with respect to the metric dX , i.e., an automorphism
g : X → X satisfying dX = dX ◦ (g × g) [24, 26].
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diffusion on manifolds is governed by the heat equation
(
∆X + ∂

∂t

)
u = 0, where

u is the heat distribution and ∆X is the positive semi-definite Laplace-Beltrami
operator (LBO), which can be roughly thought of as a generalization of the
Laplacian to non-Euclidean domains. The heat kernel hX,t(x, z) is the solution of
the heat equation with a point heat source at point x at time t = 0. For compact
manifolds, the Laplace-Beltrami operator has discrete eigendecomposition of the
form ∆Xϕi = λiϕi, where λ0 = 0, λ1, ... ≥ 0 are eigenvalues and ϕ0, ϕ1, ... are
eigenfunctions. Using the eigenbasis of ∆X , the heat kernel can be presented as

hX,t(x, z) =

∞∑
i=0

e−λitϕi(x)ϕi(z). (2)

A family of metrics

dX,t(x, y) = ∥hX,t(x, ·)− hX,t(y, ·)∥L2(X) =

∞∑
i=1

e−2λit(ϕi(x)− ϕi(y))
2, (3)

parameterized by the time scale t, is referred to as diffusion metrics. Diffusion
metric is inversely related to the connectivity of points x and y by paths of length
t. Unlike the geodesic distance which measures the length of the shortest path,
the diffusion metric has an averaging effect over all paths connecting two points.
As a result, diffusion metric is less sensitive to topology and connectivity changes
[17]. With an appropriate selection of the time scale t, the effect of topological
noise can be reduced.

Commute-time metric. At the same time, the need to select the scale
parameter is a disadvantage, as it depends on the shape scale. Moreover, the
diffusion metric is not scale invariant, since scale change affects the eigenvalues
λi and eigenfunctions ϕi. A different metric,

δX(x, y) =
∞∑
i=1

1

λi
(ϕi(x)− ϕi(y))

2, (4)

called the commute time (or resistance [28]) distance, is similar in its spirit to the
diffusion metric, while being scale-invariant. The commute time metric measures
the connectivity of points by paths of any length and is related to the expected
time it takes a random walk initiating at point x go through point y and return
to x.

3.2 Choice of the descriptor

Similarly to our motivation in the selection of the metric, the choice of the
local descriptor is also dictated by the desired invariance properties. Due to
their locality, many types of descriptors are usually less susceptible to changes
as a result of non-rigid deformations. However, some descriptors have explicit
invariance properties by construction.
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Structure Bending Topology Scale

Local histogram [24] Yes No No
LBO eigenfunctions [12, 13] Yes No Yes
HKS [5] Yes Approx No
SI-HKS [7] Yes Approx Yes

Geodesic metric [2, 3] Yes No No
Diffusion metric [17] Yes Approx No
Commute-time metric [18] Yes Approx Yes

Table 1. Invariance properties of local (top rows) and global (bottom rows) structures.

Heat kernel signature. Sun et al. [5] introduced intrinsic descriptors based
on multi-scale heat kernels, referred to as heat kernel signatures (HKS). The HKS
is constructed at every point of the shape by considering the values of the heat
kernel diagonal at multiple time scales, fX(x) = (hX,t1(x, x), . . . , hX,tn(x, x)),
where t1, . . . , tn are some time scale. The HKS is invariant to inelastic deforma-
tions and was also shown to be insensitive to topological transformations [6].

Scale-invariant heat kernel signature. The disadvantage of HKS is the
lack of scale invariance. In a follow-up work, Bronstein and Kokkinos [7] intro-
duced a scale-invariant modification of HKS, referred to as SI-HKS. The main
idea is to sample the time scales logarithmically (t = ατ ) such that shape scal-
ing corresponds to a scale-space shift. Such a shift is then undone by taking the
magnitude of the Fourier transform w.r.t. τ . The SI-HKS enjoys the invariance
properties of HKS, while in addition also being scale-invariant.

4 Correspondence as a graph labeling problem

Our minimum-distortion correspondence problem can be formulated as a binary
labeling problem with uniqueness constraints [20] in a graph with vertices defined
as pairs of points and edges defined as quadruplets. More formally, let V =
{(x, y) : x ∈ X, y ∈ Y } = X×Y be the set of pairs of points from X and Y , and
let E = {((x, y), (x′, y′)) ∈ V × V and (x, y) ̸= (x′, y′)}. Let L = {0, 1} further
denote the set of binary labels. We can represent a correspondence C ⊆ V as
binary labeling u ∈ LV of the graph (V, E), as follows: u(x, y) = 1 iff (x, y) ∈ C
and 0 otherwise. When using L2 distortions, the correspondence problem (1) can
be reformulated as:

min
u∈LV

∑
(x,y)∈V

ux,y(∥fX(x)− fY (y)∥ − γ) +

β
∑

((x,y),(x′,y′))∈E

ux,yux′,y′ |dX(x, x′)− dY (y, y
′)|2

s.t.
∑
y

ux,y ≤ 1 ∀x ∈ X;
∑
x

ux,y ≤ 1 ∀y ∈ Y. (5)

where γ > 0 is an occlusion term [20] to penalize unmatched points. We can
choose a sufficiently large γ to ensure the bijective correspondence and the equiv-
alence of the two problems.
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In general, optimization of this energy is NP-hard [29]. Here, we adopt the
graph matching algorithm [20] based on dual-decomposition to perform the op-
timization of (5). The key idea of this approach is, instead of minimizing di-
rectly the energy (5) of the original problem, to maximize a lower bound on it
by solving the dual to the linear programming (LP) relaxation of (5). Such ap-
proaches demonstrate good global convergence behavior [22]. We first decompose
the original problem, which is too complex to solve directly, into a series of sub-
problems, each of which is smaller and solvable. After getting the solution of the
sub-problems, we combine them using a projected-subgradient scheme to get the
solution of the original problem. In the numerical experiments, following [20], we
decomposed problem (5) into a linear subproblem, a maxflow subproblem and a
set of local subproblems.

4.1 Hierarchical matching

Assuming for simplicity |X| = |Y | = N , the number of vertices in the graph is
|V| = N2 and the number of edges, assuming full connectivity, is O(N4). The
complexity of problem (5) is O(|V|2|E|) multiplied by the number of iterations,
i.e., O(N8). This complexity can be reduced by adopting a hierarchical match-
ing strategy: after finding a coarse correspondence between a small number of
points, correspondence between nearby points only is looked for. This allows to
significantly reduce the graph size.

Let x1, x2, . . . denote a progressive sampling of the shape X, such that Xn =
{x1, . . . , xn} constitutes an rn-covering of X (i.e., dX(X,Xn) ≤ rn, where dX is
some metric on X). Such a sequence of points can be found using e.g. farthest
point sampling (FPS) strategy [30], in which x1 is selected arbitrarily and the
next point is selected as xk+1 = argmaxx∈X mini=1,...,k dX(x, xi). Same way,
Yn = {y1, . . . , yn} will denote an r′n-covering of Y .

At the first stage of hierarchical matching, correspondence is found between
XN1 and YN1 , where N1 is some small number (in our experiments, it varied
between 4 and 10), solving the labeling problem (5) on the full graph (V1 =
XN1 × YN1 , E1 = {((x, y), (x′, y′)) ∈ V1 × V1 and (x, y) ̸= (x′, y′)}. The solution
provides a coarse correspondence C1 ⊂ XN1 × YN1 .

At the (k + 1)st level, correspondence is found between XNk+1
and YNk+1

(the number of points is increased by a factor typically 2 ≤ q = Nk+1/Nk ≤
4), restricting the correspondence candidates for points within a certain radius
around x to points within a certain radius around y, where (x, y) ∈ Ck. This
way, the (k + 1)st level labeling problem is solved on the graph with vertices

Vk+1 =

{(xi, yi) ∈ XNk+1
× YNk+1

: ∃(x, y) ∈ Ck s.t. dX(x, xi) < ρrk, dY (y, yi) < ρr′k},

where ρ > 1, and Ek+1 = {((x, y), (x′, y′)) ∈ Vk+1 × Vk+1 and (x, y) ̸= (x′, y′)}.
For ρ ≈ 1, the size of the ρrk-neighborhood in XNk+1

of a point from XNk

contains O(q) points. Thus, |Vk+1| = O(q2Nk), and |Ek+1| = O(q4N2
k ) points, a

significant reduction compared to O(N2
k+1) vertices and O(N4

k+1) edges in a full
graph. As a result, the complexity of the optimization becomes O(N4).
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5 Probabilistic matching and shape prototypes

While invariance to geometric transformations such as bending can be accounted
by the selection of local (descriptor) and global (metric) structures, many types
of shape variability cannot be accounted for in this way. For example, variabil-
ity within the shape class (e.g. fat or thin man) results in different local and
global structures that cannot be modeled geometrically. At the same time, such
a variability can be modeled statistically. Instead of fX and dX , we now have
distributions fX ∼ FX and dX ∼ DX , e.g.,Gaussian mixture model for distances,

pxx′(d) =
K∑

k=1

πxx′k
1√

2πσxx′k

exp

{
− (d− µxx′k)

2

2σ2
xx′k

}
,

K∑
k=1

πxx′k = 1; ∀x ̸= x′ ∈ X,

and descriptors,

px(f) =
K∑

k=1

πxk

exp
{
−1

2 (f − µxk)
TΣ−1

xk (f − µxk)
}

(2π)m/2(detΣxk)1/2
,

K∑
i=1

πxk = 1; ∀x ∈ X,

where p denotes probability density. The distance distribution between points
x and x′ is parameterized by Dxx′ = {µxx′k, σ

2
xx′k, πxx′k}Kk=1; the distribution

of descriptors at each points x is parameterized by Fx = {µxk,Σxk, πxk}Ki=1,
where µxk are m × 1 vectors and Σxk are m × m matrices. We call X =
((Fx)x∈X , (Dxx′)x ̸=x′∈X) a shape prototype.

In this probabilistic setting, given a shape Y , we determine the correspon-
dence between Y and the prototype X by solving a problem similar to (5), with
the distortion terms replaced by negative log-likelihood functions,

min
u∈LV

−
∑

(x,y)∈V

ux,y(log px(fY (y)) + γ)−

β
∑

((x,y),(x′,y′))∈E

ux,yux′,y′ log pxx′(dY (y, y
′))

s.t.
∑
y

ux,y ≤ 1 ∀x ∈ X;
∑
x

ux,y ≤ 1 ∀y ∈ Y. (6)

6 Results

To assess the performance of the presented approach, we performed multiple ex-
periments of shape correspondence and similarity computation under a variety of
transformations. Shapes from the TOSCA [31] and Princeton [32] datasets were
used in our experiments. Textured shapes acquired with a multicamera system
were taken from the INRIA Grenoble dataset [8]. The shapes were represented
as triangular meshes with 2000-10000 vertices. Textures were given as RGB val-
ues for each vertex.Geodesic distances were computed using fast marching [33].
Diffusion and commute time metrics were computed using the spectral formu-
lae (3) and (4) taking the first 100 eigenvalues. The Laplace-Beltrami operator
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was approximated using cotangent weights [34]. The heat kernel was approxi-
mated using formula (2). Hierarchical matching was implemented in MATLAB
with discrete optimization module in C++. Typical running times for pairwise
shape matching in the following experiments were about 10− 20 sec.

Invariance and the choice of the metric/descriptor. In the first ex-
periment, matching was performed between eight points with equal weight given
to the local and global distortion terms in the optimization problem. Three com-
binations of first- and second-order structures were used: geodesic metric/HKS
descriptor, diffusion metric/HKS descriptor, and commute time metric/SI-HKS
descriptor. Figure 1 shows the result of correspondence computation between
shapes with different transformations for different choice of metric/descriptor.
All three methods are invariant to bendings (first row; note that correspondence
is defined up to an intrinsic symmetry). The combination geodesic metric/HKS
descriptor is sensitive to topology (a human with hands glued to legs, second
row) and scale. The combination diffusion metric/HKS descriptor is insensitive
to topology but sensitive to scale. Finally, commute time metric with SI-HKS
descriptor are invariant to all of the above.

Shape prototypes. In the second experiment, a shape prototype was cre-
ated based on 64 examples of a human shape, in which the length of the hands
and legs and the size of the head varied. Distance and descriptor distributions
were represented using Gaussian mixtures with 5 components. Figure 2 shows
a comparison of deterministic and probabilistic matching. Using deterministic
matching, the shape of a humanoid alien from the Princeton database is matched
to the human shape from TOSCA dataset incorrectly (second column from left),
because of different proportions of the head, legs, and hands. On the other hand,
matching to the human shape prototype using probabilistic matching produced
correct symmetric correspondence (third column). Figure 2 (columns four and
five) shows additional examples of shape prototype matching. These results show
that the probabilistic matching framework allows to address shape variability
that cannot be simply accommodated into the metric model by choosing the
metric.

7 Conclusions

We presented a generic framework for invariant matching between shapes, in
which matching is performed by minimizing the distortion of local and global
geometric structures under the correspondence. Using structures invariant to
pre-defined classes of transformations (or, using their statistical distributions if
such transformations cannot be modeled explicitly) allows obtaining invariant
matching between shapes. Our approach generalizes many previous works in the
field, in particular, methods based on metric distortion minimization [2, 3, 17]
and global and local features [9, 13, 20], allowing incorporating many existing
geometries and local descriptors [5, 7, 8]. In particular, it extends the Gromov-
Hausdorff framework [2, 3, 19]. Formulating the problem as graph labeling, we use
powerful optimization method recently developed for this class of problems which
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Geodesic / HKS Diffusion / HKS Commute time / SI-HKS

Fig. 1. Invariance to different types of transformations and the choice of the met-
ric/descriptor. Shown is matching between isometric deformations (first row), shapes
with different topology (second row), and shapes with different scale (third row), us-
ing geodesic metric and HKS descriptors (left), diffusion metric and HKS descriptors
(middle), and commute time metric and scale-invariant HKS descriptors (right).

Fig. 2. Matching of an alien shape to the human shape (first column from left) using
deterministic (second column) and probabilistic (third column) approaches. Columns
four and five: additional probabilistic matching examples.
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are known to have favorable convergence properties. Our approach is especially
appropriate for the challenging problems of finding similarity and correspondence
between non-rigid shapes.

Limitations and extensions. The problem of symmetric correspondences,
inherent to all approaches based on intrinsic structures, cannot be resolved with-
out resorting to some side information. There are a few potential cures to this
problem. First, providing some initial correspondence between the shapes could
be used to restrict the vertex set, ruling out symmetric correspondences. Second,
exploiting shape orientation could be used to find orientation-consistent matches.
Finally, higher-order distortions (in particular, third-order between triplets of
points) can be combined to resolve the symmetry problem [15].

References

1. Berg, A., Berg, T., Malik, J.: Shape matching and object recognition using low
distortion correspondences. In: Proc. CVPR. Volume 1. (2005)

2. Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry
invariant recognition of point cloud data. Foundations of Computational Mathe-
matics 5 (2005) 313–346

3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional
scaling: a framework for isometry-invariant partial surface matching. PNAS 103
(2006) 1168–1172

4. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for
geometry and texture manipulation. Trans. Visualization and Computer Graphics
13 (2007) 902–913

5. Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-
scale signature based on heat diffusion. In: Computer Graphics Forum. Volume 28.
(2009) 1383–1392

6. Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a
computer vision approach to invariant shape retrieval. Proc. NORDIA (2009)

7. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for shape
recognition. INRIA Technical Report 7161 (2009)

8. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and
Description with Applications to Mesh Matching. In: Proc. CVPR. (2009)

9. Thorstensen, N., Keriven, R.: Non-rigid Shape matching using Geometry and
Photometry. Proc. CVPR (2009)

10. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape
representation. In: Proc. SGP. (2007) 225–233

11. Mateus, D., Horaud, R.P., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape
matching using laplacian eigenfunctions and unsupervised point registration. Proc.
CVPR (2008)

12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and re-
trieval. Visual Computer 25 (2009) 667–675

13. Dubrovina, A., Kimmel, R.: Matching shapes by eigendecomposition of the
Laplace-Beltrami operator. In: Proc. 3DPVT. (2010)
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