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Abstract. Low-dose CT-like imaging systems offer numerous perspec-
tives in terms of clinical application, in particular for osteoarticular dis-
eases. In this paper, we address the challenging problem of 3D femur
modeling and estimation from bi-planar views. Our contributions are
threefold. First, we propose a non-uniform hierarchical decomposition of
the shape prior of increasing clinical-relevant precision which is achieved
through curvature driven unsupervised clustering acting on the geodesic
distances between vertices. Second, we introduce a graphical-model rep-
resentation of the femur which can be learned from a small number of
training examples and involves third-order and fourth-order priors, while
being similarity and mirror-symmetry invariant and providing means of
measuring regional and boundary supports in the bi-planar views. Last
but not least, we adopt an efficient dual-decomposition optimization ap-
proach for efficient inference of the 3D femur configuration from bi-planar
views. Promising results demonstrate the potential of our method.

1 Introduction

Low-dose X-ray imaging has gained significant attention during the recent years,
due to the increase of image quality and the decrease of the radiation exposure.
Even though such images do not scale to computer tomography in terms of pre-
cision and resolution, they can be a valuable diagnostic tool for a number of
diseases and in particular for osteopathies [10] like those related to spine [5],
femur [9], etc. In this paper, we are interested in 3D proximal femur reconstruc-
tion focusing on highly accurate 3D modeling, in particular, for the femoral head
part. In fact, patient specific 3D planning of the femoral head, inherits important
diagnostic interest in related surgical interventions such as total hip replacement
and intertrochanteric osteotomy [3].

Bone extraction and segmentation from bi-planar X-ray images is a challeng-
ing task due to the poor image quality, the fact that one has to compensate

⋆ This work is supported by the European Research Council Starting Grant DIOCLES
(ERC-STG-259112) and the MEDICEN Competitive Cluster sterEOS+ grant.



2 C. Wang et al.

the partial support (because of the 3D-to-2D projection), etc. In such a context,
conventional stereo-vision techniques [5] that recover 3D measurements from 2D
projections do fail to provide clinically interesting results either because of the
lack of correct correspondences between the two views or due to the sparsity of
the obtained measurements. Thus, prior knowledge is usually considered, where
statistical models of proximal femur is learned from a set of training examples
[4]. Point-distribution models and in particular active shape models (ASMs)
[1] have become a main stream and were also used for femur segmentation [4].
Pre-processing such as segmentation of femur contours [8] can facilitate the 3D
femur pose estimation since the task is transformed into searching for a geo-
metric mapping between the 3D model and the corresponding 2D multi-view
silhouettes. Other methods act directly on the projection space and try to opti-
mize global and local pose by measuring a projection energy, which can depend
on key points [10], contours [9] or regional statistics [11]. However, these methods
inherit various limitations. They need registration for all training examples to a
common pose and subsequently for the testing image. Furthermore, important
training set has to be considered towards capturing the variability of the femur,
due to the global representation of shape models. Last, the inference can also
be quite problematic due to the use of gradient-driven methods or the need of
pre-segmentation, which is very challenging because of low signal-to-noise ratio.

In this paper, we propose a novel approach for femur estimation. Our contri-
butions are threefold. First, we propose a non-uniform hierarchical decomposi-
tion of the shape prior of increasing clinical-relevant precision which is achieved
through curvature driven unsupervised clustering acting on the geodesic dis-
tances between vertices. Second, we introduce a higher-order graphical-model
representation of the femur which can be learned from a small number of training
examples and involves third-order and fourth-order priors, while being similar-
ity and mirror-symmetry invariant and providing means of measuring regional
and boundary supports in the bi-planar views. Last but not least, we adopt an
efficient dual-decomposition optimization approach for efficient inference of the
3D femur configuration from bi-planar views, leading to promising results.

The reminder of the paper is organized as follows: we present our hierarchical
shape representation with the corresponding prior in Sec. 2, and a decomposed
observation model in Sec. 3. They are combined within a probabilistic formula-
tion which is then transformed into a higher-order MRF towards femur estima-
tion in Sec. 4. Experimental results compose Sec. 5, while discussion and future
work conclude the paper in Sec. 6.

2 Hierarchical Multi-Resolution Probabilistic Modeling

In the literature, a surface is usually modeled as a mesh with uniform resolution.
However, some anatomical regions (e.g ., femoral head) are of higher clinical
relevance than adjacent parts. Hence, we propose to construct a hierarchical
multi-resolution representation (Fig. 1(a)) of the femur with different clinical-
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relevant precisions, so that computational effort can be focused on the parts that
are meant to be reconstructed with high fidelity.

First, mesh sub-sampling from one level Vm to a coarser one Vm+1 ⊂
Vm is performed iteratively, starting from a given high-resolution mesh M0 =
(V0, E0,F0) (V denotes vertex set, E edge set and F face set), to create a non-
increasing sequence of vertex subsets V0 ⊃ · · · ⊃ VM , where each subset stands
for a level of detail in the multi-resolution hierarchy. We propose to formulate
such a sub-sampling problem as a clustering (Eq. 1) based on geodesic distances
and curvatures, aiming to obtain a subset Vm+1 of points uniformly distributed
on the surface while preserving preferentially regions of high curvature:

Vm+1 = argmin
V⊂Vm

[

∑

v∈Vm

min
v̂∈V

d(v, v̂) + α
∑

v̂∈V

exp(− curv(v̂))

]

(1)

where d(v, v̂) is the geodesic distance between v and v̂ on M0, α is a positive
weight and curv(v̂) is the curvature at v̂ on M0. The higher curv(v̂) is, the easier
v̂ will be promoted as cluster center. Hence, this formulation tends to promote
more cluster centers in the regions of high curvature. It can be efficiently solved
through linear programming techniques proposed in [7] and the obtained Vm+1

corresponds to the cluster centers and each v ∈ Vm is associated to the closest
center. One main particularity of this approach is that, as opposed to classical
approaches (e.g ., K-means), the number of clusters is controlled by the penalty
exp(− curv(v̂)) which is related to flatness of the surface.

Second, level of detail selection is performed to select vertices from the
sets (Vm)m=0,...,M so that different regions are represented at given resolutions.
We organize the vertices in a tree structure, since any vertex in Vm is associated
to one and only one vertex in Vm+1 in the hierarchical structure derived from
the previous step. Then starting from the coarsest resolution, one can select the
regions to be refined and iterate this process until reaching the required accuracy
for every part. Through this step we obtain a set of vertices VMR.

Last, connectivity computation is performed on VMR in order to achieve
the triangulated multi-resolution mesh. To this end, we compute the Delaunay
triangulation of VMR associated to the geodesic distance. By viewing the Delau-
nay triangulation as the dual of the Voronoi diagram of VMR, it boils down to
determining which pairs of Voronoi cells have a common boundary. In this way,
we obtain a set of edges EMR. Then the corresponding faces FMR are computed
to achieve the mesh, by searching for minimal cycles in the edge list.

The proposed approach provides an economic way to model the surface ac-
cording to the clinical relevance and a significantly better approximation of the
original mesh compared with the classic edge collapse techniques. Furthermore,
the vertices of the obtained mesh are among those of the original mesh, which
facilitates largely the model prior learning. Finally, let (V, E ,F) denote the ver-
tex set VMR, the edge set EMR and the face set FMR of the obtained mesh. Then
the surface is parametrized by the 3D positions u = (ui)i∈V of all the vertices.
Probabilistic Shape Modeling: The training data to learn statistical model
consist of the 3D positions of the vertices on the training surfaces. No assumption
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(a) (b)

Fig. 1. (a) Multi-resolution surface Model. (b) EOS System.

on registration between surfaces is being made, we only assume that correspon-
dences have been determined for the vertices among the training samples.

We adopt the pose-invariant prior in [12] and extend it in a more general
formulation. Such a prior does not require the estimation of global pose in the
training and testing stages, which eliminates the bias caused by such estima-
tions. Furthermore, this prior is mirror-symmetry-invariant, leading to one more
advantage in our problem: a common statistical model can be used for both the
left and right femurs. For a clique c (c ⊆ V and |c| ≥ 3) of vertices, we enu-
merate all the pairs Pc = {(i, j)|i, j ∈ c and i < j} of points and compute the

relative distance d̂ij = dij/
∑

(i,j)∈Pc

dij for a pair of points (i, j) ∈ Pc, where

dij = ‖ui − uj‖ denotes the Euclidean distance between points i and j. Since

for clique c, any relative distance d̂ij is a linear combination of the others (i.e.,
∑

(i,j)∈Pc
d̂ij = 1), we put all the relative distances except one (denoted as p̄)

in a vector d̂c = (d̂ij)(i,j)∈Pc\{p̄}. We model the distribution ψc(d̂c) of d̂c using
Gaussian Mixture Models (GMMs) which are learned from the training data.

In order to enforce the smoothness of the surface, for each quadruplet q of
vertices corresponding to a pair of adjacent facets, we introduce a smoothness
potential function encoding constraints on the change of the normal directions:

ψq(uq) = exp {−(1− <
→
n

(1)

q (uq),
→
n

(2)

q (uq) >)/β} (2)

where uq denotes the 3D positions of the four vertices contained in q, < ·, · >

denotes the scalar product, β is a positive constant, and
→
n

(1)

q ,
→
n

(2)

q denote the
unit normal vectors of the two facets.

Finally, let T = {c|c ⊆ V and |c| = 3} denotes the set of triplets4, and
Q ⊂ {q|q ⊆ V and |q| = 4} denote the set of quadruplets corresponding to all
pairs of adjacent facets, then the prior probability of the 3D model is defined as:

p(u) ∝
∏

c∈T

ψc(d̂c(uc)) ·
∏

q∈Q

ψq(uq) (3)

4 We use 3-order cliques for the corresponding prior term, i.e., |c| = 3. However, other
higher-order cliques c (|c| ≥ 3) can also be used.
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3 Observation Model

Let I = (Ik)k∈K (where K = {1, . . . ,K}, K = 2 for the case of bi-planar views)
denote K observed images captured from different viewpoints with the corre-
sponding projection matrices Π = (Πk)k∈K. By exploiting the conditional inde-
pendency, the image likelihood p(I|u,Π) is decomposed into:

p(I|u,Π) =
∏

k∈K

p(Ik|u,Πk) (4)

We introduce a decomposed formulation for the likelihood p(Ik|u,Πk) of the
observed image k, which can be easily encoded in a higher-order MRF towards
efficient inference. p(Ik|u,Πk) is modeled as a Gibbs distribution, combining
both the region-based and boundary-based data supports:

p(Ik|u,Πk) ∝ exp{−
λER

k (Ik,u,Πk) + (1 − λ)EB
k (Ik,u,Πk)

Tk

} (5)

where Tk is temperature, and 0 < λ < 1 is a balancing weight coefficient.
Regional Term ER

k encodes the statistical intensity properties of the two
classes (femur and non-femur) and guides the projections of the surface to match
the silhouettes of the femur in the observed images. We define this term as a
sum of likelihoods on the projections of the front-facing facets:

ER
k (Ik,u,Πk) =

∑

f∈F

δf (uf ,Πk) ·

∫∫

Ω(uf ,Πk)

log
pbg(I(x, y))

pfg(I(x, y))
dxdy (6)

where f denotes a triangular facet, uf denotes the 3D coordinates of the three
vertices of f , the indicator function δf (uf ,Πk) is equal to 1 if the facet f is
front-facing w.r.t. the camera and 0 otherwise, Ωf (uf ,Πk) is the 2D region cor-
responding to the projection of f , pfg and pbg denote the distributions (modeled
using GMMs) of the intensity for the regions of the femur and the background.

Boundary Term EB
k encodes discontinuities along the boundaries. Recall

that Q denotes the set of quadruplets of vertices for the adjacent facets sharing
an edge e ∈ E . For each quadruplet q ∈ Q, we define a function δq(uq,Πk) which
is equal to 1 (i.e., the projection of e is a piece of boundary) when the facet closer
to the camera is front-facing and the other one is back-facing, and 0 otherwise.
We define the boundary term as a sum of the discontinuity measurement for all
these quadruplets:

EB
k (Ik,u,Πk) =

∑

q∈Q

δq(uq,Πk) ·

∫

Γ (uq,Πk)

< ∇Ik(x, y),
−−−−→
n(x, y) > ds (7)

where Γ (uq,Πk) denotes the projection of the edge shared by the two adja-

cent facets,
−−−−→
n(x, y) denotes the outward-pointing unit normal of Γ (uq,Πk),

∇Ik(x, y) = (∂Ik(x,y)
∂x

, ∂Ik(x,y)
∂y

) denotes the gradient of the intensity at (x, y).
Note that other boundary discontinuity measurements can also be used as the
integrand in Eq. 7.
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4 Probabilistic 3D Surface Estimation Framework

The 3D model prior p(u) (Sec. 2) and the image likelihood p(I|u,Π) (Sec. 3) can
be combined through a Bayesian framework, where the 3D surface estimation is
formulated as a maximization of the posterior probability of u:

uopt = argmax
u∈U

p(u|I,Π) (8)

And the posterior probability p(u|I,Π) is:

p(u|I, Π) =
p(u, I, Π)

p(I, Π)
∝ p(u, I, Π) = p(I|u, Π)p(u)p(Π) ∝ p(I|u, Π)p(u) (9)

Higher-order MRF Formulation: The probabilistic framework above can be
easily reformulated within a higher-order MRF so that we can employ efficient
MRF inference algorithms to achieve femur reconstruction. To this end, we use
a node to model a vertex i (i ∈ V) with its latent 3D position Ui, a third-order
clique c (c ∈ T ) to model a triplet of vertices, and a fourth-order clique q (q ∈ Q)
to model the quadruplets of vertices corresponding to the adjacent facets. The
3D model is estimated through minimizing the MRF energy E(u):

uopt = argmin
u∈U

E(u) (10)

where E(u) = − log p(u|I,Π) + constant, and can be factorized into:

E(u) =
∑

f∈F

HR
f (uf ) +

∑

q∈Q

(HB
q (uq) +HP

q (uq)) +
∑

c∈T

HP
c (uc) (11)

Regional-term potentials HR
f (uf ) (f ∈ F) encode the regional data term

ER
k (Ik,u,Πk) (Eq. 6). Boundary-term potentials HB

q (uq) (q ∈ Q) encode the

boundary term EB
k (Ik,u,Πk) (Eq. 7). Model Prior Potentials HP

c (uc) (c ∈ T )
and HP

q (uq) (q ∈ Q) encode the prior on the relative positions of points and the
prior on the smoothness, respectively (Eq. 3). Through the negative logarithmic
operation, we can obtain their definitions as follows:























HR
f (uf ) =

∑

k∈K λ
k
1 · δf (uf ,Πk) ·

∫∫

Ω(uf ,Πk)
log

pbg(I(x,y))
pfg(I(x,y))dxdy

HB
q (uq) =

∑

k∈K λ
k
2 · δq(uq,Πk) ·

∫

Γ (uq,Πk)
< ∇Ik(x, y),

−−−−→
n(x, y) > ds

HP
c (uc) = − logψc(d̂c(uc))

HP
q (uq) = λ3 · (1− <

→
n

(1)

q (uq),
→
n

(2)

q (uq) >)

(12)

where λk
1 , λk

2 and λ3 are positive constant weights5 for the corresponding terms.
Dual-Decomposition MRF Inference [6] was adopted to optimize the

proposed higher-order MRF. Like [12], we decompose the original graph into a
set of factor trees which can be solved within polynomial time using max-product
belief propagation. Their solutions are combined using projected subgradient
method [6] to achieve the solution of the original problem.

5 We use a single constant λ1 for λk

1 (∀k), and a single constant λ2 for λk

2 (∀k).



Pose-invariant 3D Proximal Femur Estimation 7

(a) (c)

0.7

0.8

0.9

1.1

1.2

0.915

0.92

0.925

0.93

0.935

0.94

0.945

DICE

1

Error: Mean

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Error: STD

(b) (d)

Fig. 2. Experimental Results. (a) Four 3D surface reconstruction results with point-
to-surface errors on femoral head. (b) Boxplots on the DICE, the mean and STD of
the point-to-surface errors (mm). On each box, the central mark in red is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points. (c) and (d) Results on in vivo data, where projected boundaries
of the estimated femurs in the bi-planar views are shown for each example.

5 Experimental Validation

We use the low-dose EOS imaging system (BiospaceMedTM) which is an al-
ternative system that captures simultaneously bi-planar X-ray images, coronal
and sagittal in an upright position (Fig. 1(b)). The training set consists of 20
CT patient volumes of the hip. Manual segmentations of them are provided to
extract femoral surfaces, which are used to learn the model prior. With the ob-
tained prior, we perform the femur reconstruction using the proposed method.
The search of the model parameters is done using the coarse-to-fine scheme and
the sparse sampling strategy as in [2].

The proposed method has been validated using both dry femurs and real
clinical data. The in vitro testing data consist of 14 pairs of EOS images, for
which the ground truth surfaces are provided by the gold standard CT method.
The bones are of real size for adults. Quantitative evaluation was conducted
by comparing the estimated surfaces to the ground truths, with respect to the
DICE coefficient and the distances from the 3D vertices of the estimated femur
to the ground truth surface (called point-to-surface error). Fig. 2(a) shows four
samples from the set of results, with point-to-surface error on femoral head.
Fig. 2(b) presents the statistics of the DICE coefficients, the mean and standard
deviation of the point-to-surface errors for the whole in vitro validation set.
Four in vivo examples were also tested, where both left and right femurs were
constructed from the EOS images. The qualitative results in Fig. 2(c-d) show
that the projections of the reconstructed surfaces fit well the femurs in the
observed images despite complex scene and low image quality.
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6 Conclusion

In this paper, we have proposed a novel approach to 3D femur estimation from bi-
planar X-ray views. The main innovations consist in the multi-resolution shape
representation, the ability to model pose/mirror-symmetry invariant prior and
the image likelihood through local interactions, and the higher-order MRF for-
mulation of the surface estimation which is solved by dual-decomposition opti-
mization. Promising results demonstrate the potential of the method.

Future work consists of introducing a joint model that couples femur with
the hipbone socket which could enhance the diagnostic potential of the method,
and combining distinctive (visual) anatomical landmarks with the existing for-
mulation towards increasing precision and the overall performance. Last, the
application of the method to other clinical settings also bears great promises.
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