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2Equipe GALEN, INRIA Saclay - Ile-de-France, Orsay, France

3Department of Computer Science, Stony Brook University, NY, USA
4Computational Biomedicine Lab, University of Houston, TX, USA

Abstract

In this paper, we propose a novel one-shot optimiza-
tion approach to simultaneously determine both the opti-
mal 3D landmark model and the corresponding 2D projec-
tions without explicit estimation of the camera viewpoint,
which is also able to deal with misdetections as well as par-
tial occlusions. To this end, a 3D shape manifold is built
upon fourth-order interactions of landmarks from a train-
ing set where pose-invariant statistics are obtained in this
space. The 3D-2D consistency is also encoded in such high-
order interactions, which eliminate the necessity of view-
point estimation. Furthermore, the modeling of visibility
improves further the performance of the method by han-
dling missing correspondences and occlusions. The infer-
ence is addressed through a MAP formulation which is nat-
urally transformed into a higher-order MRF optimization
problem and is solved using a dual-decomposition-based
method. Promising results on standard face benchmarks
demonstrate the potential of our approach.

1. Introduction

3D model inference from 2D images is one of the most
challenging problems in computer vision. This is due to the
fact that both camera estimation and 3D model optimiza-
tion have to be addressed within a single framework. In the
most general case, the camera parameters are unknown, the
3D model itself usually inherits high complexity (high de-
grees of freedom even for non-articulated objects), while at
the same time image features can be ambiguous, occluded
and noisy. There are numerous applications involving the
above scenario, such as traf�c monitoring with 3D model
based tracking [18], hand tracking [9], facial analysis [4]
and medical imaging [17]. Such an inference process usu-
ally involves three steps: the �rst aims to determine a com-

pact representation of the 3D model, the second to associate
such a representation with the 2D image observation, and
the last to recover the optimal parameters of the model.

Modeling variations of the 3D model requires a statisti-
cal parametric representation of the object of interest. Such
representations in most cases are pose-variant,i.e., all train-
ing examples are registered to a same referential frame
where statistics are then built from the training data. One
can cite active shape [8] and active appearance [7] models
(ASMs and AAMs), which offer a good compromise be-
tween computational complexity and model expressiveness
potential. Other representations adopt more complex sta-
tistical models that can vary from Mixtures of Gaussians
(MoG) to non-parametric density functions [3]. In such
a context, one has to address the curse of dimensionality
(the dimensionality of the manifold to be learned versus the
number of training samples).

Once the representation has been built, the next steps
consist of de�ning an image likelihood and combining it
with a 3D model prior towards optimal estimation of the 3D
model. Since the image likelihood is related to both the 3D
model con�guration and the camera parameters, the model
estimation is often achieved through an alternating search
or EM-style approach [14]. Given an initial 3D-2D corre-
spondence map, the camera parameters are �rst estimated
and then used to de�ne the �tting error between the model
and the image. This error is to be optimized by gradient-
driven methods and iterative search processes so as to esti-
mate both the correspondences and the optimal model con-
�guration. Despite the promising performance of such a
scheme, the fact that explicit estimation of the camera view-
point parameters is required in the process is a major draw-
back, since coordinate-descent approaches are prone to be
trapped in local minima and provide no guarantee on the
optimality of the estimations.

Graphical models have become a dominant approach in
computer vision and have been employed to address a num-



ber of vision problems (e.g., [5, 19, 20]), which is mainly
due to their strength in terms of the quality of the optimum.
The use of higher-order models has raised more and more
attention (e.g., [15, 12, 22]), along with the development of
ef�cient optimization methods. Higher-order interactions
can naturally introduce invariance to certain class of trans-
formations like translation/rotation/scale, while at thesame
time they can deal with vision tasks of important complex-
ity. The objective of our paper is to take bene�t of their
strength and propose a uni�ed formulation to estimate 3D
models from 2D images without alternating search.

The main contribution of this paper is a probabilistic in-
ference approach that does not require explicit viewpoint
estimation, while being able to jointly optimize the pose pa-
rameters and the corresponding landmarks selection as well
as explicitly handling missing correspondences and occlu-
sions via a visibility modeling. To this end, we formulate
the problem as a maximum a posteriori (MAP) estimation
task which involves 3D pose parameters, associated 2D cor-
respondences and visibility states. We derive a posterior
probability as the product of an image likelihood, a visibil-
ity prior, a 3D geometric prior and a projection consistency
prior constraining the 2D and 3D con�gurations. In order
to circumvent the need of viewpoint estimation, we adopt a
high-order decomposition of the 3D model that enables to
determine the projection error between a given 3D con�g-
uration and the corresponding 2D landmark positions in a
distributed manner. Furthermore, an explicit visibility mod-
eling is also introduced to cope with misdetections and out-
liers. The MAP inference is then naturally transformed into
a higher-order MRF optimization problem and all the latent
variables are inferred using a one-shot optimization over a
factor graph [3] through dual-decomposition [2, 16, 20, 22].
The proposed formulation has been validated in the context
of 3D facial pose estimation from 2D images. Promising re-
sults on standard face benchmarks demonstrate the potential
of our method.

The remainder of this paper is organized as follows. In
Sec. 2, we present the probabilistic formulation for the joint
estimation of the 3D pose, its visibility states and the 2D
correspondences. The individual likelihoods with respectto
geometry, 3D-to-2D consistency, visibility, and image sup-
port are presented in Sec. 3 while the corresponding higher-
order graphical model is discussed in Sec. 4. Experimental
results compose Sec. 5, while discussion and future work
conclude the paper in Sec. 6.

2. Probabilistic 3D-2D Inference Framework

We consider a point-distribution shape model composed
of a setV of landmarks located on the surface of the 3D
object of interest. Let latent variableX i = ( X (3)

i ; X (2)
i )

denote the 3D and 2D positions of a landmarki (i 2 V ).
More speci�cally, X (3)

i and X (2)
i , 3-dimensional and 2-

dimensional vectors respectively, denote the 3D position of
landmarki in the model space and the 2D position in the
observed imageI . Each variableX i takes a valuex i from
its possible con�guration setX i = X (3)

i �X (2)
i , whereX (3)

i

andX (2)
i denote the 3D and 2D position candidate sets, re-

spectively. Due to the fact that landmarks may be invisible,
we also introduce a visibility variableOi for landmarki
[19]. Oi = 1 when the landmark is visible in the 2D image
space, andOi = 0 otherwise.

Given the observed imageI , the estimation of the 3D-2D
positions and the visibility of the landmarks is formulated
as a maximization of the posterior probability of(X ; O) =
((X i ) i 2V ; (Oi ) i 2V ) over their domainsX =

Q
i 2V X i and

O = f 0; 1gjVj :

(x ; o)opt = arg max
(x ;o)2X �O

p(x; ojI ) (1)

The posterior probabilityp(x; ojI ) is:

p(x ; ojI ) = p(x ; o; I )=p(I )

/ p(x ; o; I )

= p(I jx ; o) � p(x ; o)

= p(I jx (2) ; x (3) ; o) � p(x (2) jx (3) ; o) � p(ojx (3) ) � p(x (3) )

= p(I jx (2) ; o)
| {z }
Image Likelihood

� p(x (2) jx (3) ; o)
| {z }

Projection Prior

� p(o)
| {z }

Visibility Prior

� p(x (3) )
| {z }

3D Model Prior

(2)

wherep(I jx (2) ; o) encodes the likelihood of the observed
image given the 2D position con�gurationsx (2) and the vis-
ibility stateso of the landmarks,p(x (2) jx (3) ; o) encodes the
projection prior from the 3D con�gurationx (3) to the 2D
con�guration of the landmarks,p(o) denotes the visibility
prior on the landmarks, andp(x (3) ) denotes the prior on the
3D con�gurations of the landmarks.

Note that this probabilistic formulation can be directly
applied to the estimation of 3D (or 2D) con�guration of the
landmarks given 2D (or 3D) con�guration, simply by in-
stantiating the variables whose con�gurations are known.

3. De�nitions of the Probability Terms

In this section, we de�ne all the probability terms which
are involved in the posterior probabilityp(x; ojI ) (Eq. 2).

3.1. Image Likelihood

The image likelihoodp(I jx (2) ; o) measures the occur-
rence probability of the observed imageI , given the 2D po-
sition con�gurationsx (2) and the visibility stateso of the
landmarks. If we assume, without loss of generality, that
the landmarks are independent in terms of appearance, then
we can de�nep(I jx (2) ; o) as follows:

p(I jx (2) ; o) /
Y

i 2V

p(I jx (2)
i ; oi ) (3)



Regardingp(I jx (2)
i ; oi ), there are two cases:

1. WhenOi = 1 , the landmark's position is informative
andp(I jx (2)

i ; oi ) denotes the likelihood of the observed
image given that landmarki is located at positionx (2)

i ,
which can be de�ned using the output of a classi�er
such as Randomized Forest [6].

2. WhenOi = 0 , the landmark's position is not informa-
tive andp(I jx (2)

i ; oi ) denotes a uniform distribution,
thus we assume thatp(I jx (2)

i ; oi ) = p̂ (constant).

3.2. Projection Prior

The projection priorp(x (2) jx (3) ; o) measures the occur-
rence possibility of the 2D positionsx (2) of the landmarks
when the 3D positionsx (3) and the visibility stateso are
given, which is modeled using Gibbs distribution:

p(x (2) jx (3) ; o) / expf�
f (x ; o)

T
g (4)

whereT is temperature, and the energy functionf (x ; o) en-
codes inconsistency between the 3D and 2D con�gurations
of the landmarks taking the visibility states into account (the
smallerf (x ; o) is, the better is the correspondence between
x (3) andx (2) ).

Without loss of generality, we use the weak-perspective
camera con�guration [1] to model the projection from 3D
points to 2D points1. Let us �rst consider a triplett 2 T =
f t jt � V andjt j = 3g of landmarks that are all visible.
Their 3D-2D positionsx t determine at most two projection
mappingsP (s)

x t (s 2 f 1; 2g) [1, 11] corresponding to two
re�ective symmetric camera con�gurations. Then for any
additional visible pointi , we can measure the errorex t (x i )
between its 2D positionx (2)

i and the value obtained by pro-
jecting its 3D positionx (3)

i , i.e.:

ex t (x i ) = min
s2f 1;2g



 P (s)

x t
(x (3)

i ) � x (2)
i



 (5)

wherek�k denotes the Euclidean norm, and between the two
feasible projections we consider the most prominent one
with respect to the considered 2D con�guration [1]. On the
contrary, if one or more of these four points are invisible,
we set a constant energŷE as the projection errorex t (x i ),
which can be understood as an upper bound of the aver-
age projection error which is allowed between four points.
Therefore, we de�ne the error functionex t ;o t (x i ; oi ) by tak-
ing the visibility states into account as:

ex t ;o t (x i ; oi ) = wt �
�

ex t (x i ) if oj = 1 , 8j 2 t [ f ig
Ê otherwise

(6)
1In the proposed framework, the weak-perspective camera model can

be easily replaced by other camera models such as the perspective model.

wherewt is a con�dence weight for the error measure ob-
tained under the mapping determined by the positions of
the points in cliquet , which will be presented later in
this section. And then, the 3D-2D consistency between a
quadrupletc of landmarks consists of the sum of the errors
which are determined by taking all possible combinations of
triplets within the quadruplet and evaluating the projection
error on the remaining point:

e(x c ; oc ) =
X

t � c

ex t ;o t (xcnt ; ocnt ) (7)

Finally, we de�ne the energy functionf (x ; o) as the sum of
e(x c ; oc ) over all the quadruplet,i.e.:

f (x ; o) =
X

c2C

e(x c ; oc ) (8)

whereC = f cjc � V andjcj = 4g denotes the set of all
quadruplets.

Last, we should note that we can further combine other
cues in this projection prior, such as regional texture simi-
larity.

Robust Con�dence Weight

Since the projection matrix estimation is unstable when
considering triplets of 3D points that are nearly collinear
[1], we introduce a con�dence weightwt to modulate the
error contribution of each triplet of points. For a triangle
� x (3)

t
consisting of a triplett of points with 3D positions

x (3)
t , we de�ne the non-collinear coef�cient NC(x (3)

t ) us-
ing the square root of its area Area(� x (3)

t
) and its perimeter

Perim(� x (3)
t

) as follows:

NC(x (3)
t ) =

2 � 3
3
4 � Area

1
2 (� x (3)

t
)

Perim(� x (3)
t

)
(9)

We can observe that NC(x (3)
t ) = 1 for an equilateral trian-

gle and NC(x (3)
t ) = 0 when the three points are collinear.

Then we learn the con�dence weightwt by averaging the
non-collinear coef�cients for each triplett over the training
data:

wt =
1

M

MX

m =1

NC(x (3)
t ;m ) (10)

whereM denotes the number of training samples.

Speci�cation of the Projection Error

Regarding the computation ofex t (x i ), we use the ef�cient
method proposed in [1] to compute directly the projection
of a 3D point under the projection determined by a triplet



of corresponding 3D-2D points without calculating the pro-
jection mapping. We refer readers to [1] for more details.

Collinear triplets of points lead to degenerate con�gura-
tions from which we cannot obtain a solution for the pro-
jection mapping. In this case, the corresponding error term
ex t (x i ) in Eq. 5 is not well-de�ned. To deal with this,
we consider two different scenarios: (i) When we have a
prior knowledge that the 3D positions of a triplett of points
have to be collinear, we simply ignore the corresponding
error measure by de�ningex t (x i ) = 0 (this is consistent
with the con�dence weight de�ned in Eq. 10,i.e., wt = 0
leads to zero contribution tof (x)); (ii) Otherwise, we de-
�ne ex t (x i ) = + 1 if x (3)

t are collinear so that the �nal
solution ofx (3)

t cannot be exactly collinear. By doing so,
the termex t (x i ) is well-de�ned for all the cases. For the
sake of clarity, hereafter, we assume that the de�nition of
ex t (x i ) in Eq. 5 implicitly includes the de�nition in the de-
generate case.

3.3. Visibility Prior

We introduce the visibility variableO to achieve a more
precise modeling of the 3D-2D estimation, due to the fact
that a landmark can be invisible. The notion of “invisibility”
encodes occlusions and self-occlusions in the 3D space, as
well as misdetection due to insuf�cient image support or
classi�cation failure.

The inference process is performed by considering, for
each landmarki , a number of 2D positions which lead to
the highest probabilitiesp(I jx (2)

i ) towards composing the
set of plausible solutions forX (2)

i , expecting that at least
one candidate is (or close to) the true position. However,
because of erroneous detection or occlusions, it is possible
that all the candidates are far from the ground truth. In such
a context, we de�ne the notion of “visibility” as whether
the true 2D correspondence of the landmark is captured by
the candidate set. More speci�cally,Oi = 1 means that at
least one candidate inX (2)

i is close to the ground truth, and
Oi = 0 stands for the opposite case.

The prior probabilityp(o) is de�ned as follows:

p(o) =
Y

i 2V

p(oi ) (11)

wherep(oi ) denotes the prior probability of the visibility of
each individual landmarki and is modeled as a Bernoulli
distribution Bern(oi j� i ) with parameter� i = Pr( Oi = 1) .
In practice, it is usually reasonable to assume the same pa-
rameter� > 0:5 for all the landmarks [20].

3.4. 3D Model Prior

The training data are used to learn a 3D shape model. No
assumption on registration between surfaces is being made.

However, we assume that correspondences have been deter-
mined for the landmarks among the samples of the training
set. The key concern of shape modeling is how to capture
the inherent variability of the class of objects from a reason-
able small training set using a compact representation that
can be easily adopted towards an ef�cient inference. We
adopt the pose-invariant prior in [22] which is based on the
relative lengths of a triplet of points, and extend it in a more
general formulation where the cliques can be of any higher
order. Such a prior does not require the estimation of the
global pose in the training and testing stages and eliminates
the bias caused by such estimations.

Let us consider a clique2 c (c � V and jcj � 3) of
landmarks, we enumerate all the pairsPc = f (i; j )ji; j 2

c andi < j g of points. Letdij =


 x (3)

i � x (3)
j



 denote the

Euclidean distance between pointsi andj ((i; j ) 2 P c ). We
obtain the relative distancêdij by normalizing the distance
dij over the sum of the distances between the pairs of points
involved in cliquec, i.e.,

d̂ij = dij =
X

( i;j )2P c

dij (12)

Since for cliquec, any relative distancêdij is a linear
combination of the others (i.e.,

P
( i;j )2P c

d̂ij = 1 ), we
store all the relative distances, except one in a vector
d̂c = ( d̂ij )( i;j )2 �P c

, where �Pc contains the pairs that are

involved in the vector̂dc . Then, the statistics on̂dc are
learned from the training data. We can model its distri-
bution pc (d̂c ) using standard probabilistic models such as
MoGs and Parzen-Windows. Finally, we de�ne the prior
probability of the 3D con�guration as:

p(x (3) ) /
Y

c2C

pc (d̂c (x (3)
c )) (13)

whereC denotes the set of all cliques, andd̂c (x3
c ) denotes

the mapping from the 3D positionx3
c of the cliquec to the

relative distance vector̂dc .

4. Higher-order MRF Formulation

The data likelihood, the 3D-2D consistency, the visibil-
ity prior and the 3D shape model, presented in Sec. 3, can be
naturally encoded within a higher-order MRF model where
latent variables are to be inferred through an energy mini-
mization. In this perspective, the negative logarithm of the
posterior probability (Eq. 2) is factorized into the potentials
of the MRF and constitutes the MRF energy.

To this end, we use a node to model a landmarki (i 2
V) with its latent 3D-2D positionX i and its visibility Oi .

2As presented in Sec. 4, we use 4-order cliques (quadruplets)in this
work, i.e., jcj = 4 . However, other higher-order cliquesc (jcj � 3) can
also be used in this shape model.



Actually, we can use a single random variable3 to encodeX i

andOi compactly by simply de�ning a special label “occ”
within 2D position candidate setX (2)

i such that:

x i =

(
(x (3)

i ; x (2)
i ) if Oi = 1

(x (3)
i ; occ) if Oi = 0

(14)

This compact representation is valid because the 2D posi-
tion x (2)

i is meaningless when the landmarki is occluded
(i.e., whenOi = 0 , the image likelihoodp(I jx (2) ; o) and
the projection priorp(x (2) jx (3) ; o) are constant with respect
to x (2)

i .).
In order to factorize the potential functions, we use a

fourth-order clique to model a quadrupletc of landmarks.
Due to the bijective mappings between nodes and land-
marks and between fourth-order cliques and quadruplets,
we reuseV andC to denote the node set and the clique set
which determine the topology of the MRF. The 3D and 2D
positions of the landmarks are estimated through the mini-
mization of the MRF energyE(x):

xopt = arg min
x 2X

E(x) (15)

Here, the energy of the MRF is de�ned as the negative loga-
rithm of the posterior probability in Eq. 2 (up to an additive
constant) and can be factorized into the following form:

E(x) =
X

i 2V

Ui (x i ) +
X

c2C

H c(x c ) (16)

wherex c denotes the con�guration(x i ) i 2 c of cliquec.

Singleton potential Ui (x i ) (i 2 V ) encodes the data like-
lihood (see section 3.1) and the visibility prior (see section
3.3). After taking the negative logarithm, we obtain its def-
inition as follows:

Ui (x i ) =

(
� logp(I jx (2)

i ) if x (2)
i 6= “occ”

� 1 if x (2)
i = “occ”

(17)

where� 1 is a constant coef�cient.

Higher-order clique potential H c (x c ) (c 2 C) is de�ned
as follows:

H c (x c ) = � 2 � H (1)
c (x c ) + � 3 � H (2)

c (x c ) (18)

where� 2 > 0 and � 3 > 0 are two balancing constants,
H (1)

c (x c ) encodes the 3D statistic geometry constraints im-
plied by the shape prior on the 3D con�guration of the land-
marks, andH (2)

c (x c ) encodes the 3D-2D projection prior:
(

H (1)
c (x c ) = � logpc (d̂c (x (3)

c ))
H (2)

c (x c ) = e(x c ; oc (x c ))
(19)

3In order to reduce the number of symbols used, we reuseX i to denote
this new random variable. Accordingly, we reusex i , X i and the other
related notations.
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Figure 1. (a) The distribution of landmarks; (b) The histogram pre-
senting the distribution of the number of missing 2D correspon-
dences in the �rst experiment.

whereoc (x c ) denotes the binary visibility values that are
recovered fromx c using Eq. 14, and the de�nitions of
e(x c ; oc ) andpc (� (x (3)

c )) have been presented in Sec. 3.2
and 3.4, respectively.

Dual-Decomposition MRF Inference: Regarding the in-
ference of the proposed higher-order MRF, we adopt the
dual-decomposition optimization framework [2, 16], which
is considered to be the state-of-the-art towards MAP-MRF
inference [16, 20] in particular when handling higher-order
MRFs [15, 22]. Based on this framework, we decompose
the original problem which is dif�cult to solve directly into
a set of sub-problems which can be solved very ef�ciently.
The solutions of the sub-problems are combined using pro-
jected subgradient method [16, 20] to achieve the solution
of the original problem. Regarding the decomposition, like
[22], we decompose the original graph into a set of fac-
tor trees which can be solved within polynomial time using
max-product belief propagation algorithm [3].

5. Experimental Results

5.1. Experimental Settings

The performance of the proposed method was evalu-
ated on the publicly-available facial expression datasetsBU-
3DFE [24] andBU-4DFE[23]. The former consists of 3D
range data of 6 prototypical facial expressions of 100 dif-
ferent subjects (56 female and 44 male), and the latter is
composed of 3D dynamic facial expressions of 101 differ-
ent subjects (58 female and 43 male). The subjects included
in both datasets are of various ethnic/racial origins.

The considered model consists of13 landmarks (eyes,
nose, mouth and eyebrows as shown in Fig. 1(a)). In the
inference stage, its 3D initialization was done by randomly
picking one training example. Regarding the 3D positions
of the landmarks, the search was guided by a coarse-to-�ne
scheme and sparse sampling strategy in a similar way as
[13]. Upon convergence of the algorithm, we performed
Procrustes Analysis[10] to obtain the similarity transform



(a) (b)

�

�����

����

�����

����

�����

����

�����

�� �� ��

(c)

Figure 2. Results of the �rst experiment. (a) and (b): 3D model estimation results. In each sub-�gure, 3D face mesh is provided for
measuring visually the error between the resulting positions (in red) of landmarks and the ground truth (in blue). (c): Boxplots for the
distributions of dissimilarity measures for qualitatively evaluating the 3D model estimation. c.1: Results obtained by the proposed method;
c.2: Results obtained by the version without visibility modeling; c.3: Initialization of the model. On each box, the central mark in red is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually.

between the estimated 3D model and the ground truth, then
transformed the estimated one into the referential frame of
the ground truth. In terms of quantitative evaluation, a com-
mon goodness-of-�t criterion is the squared error standard-
ized by the scale of the object. Thus,Procrustes distance
[10] was used as the dissimilarity measureEd to evaluate
our method quantitatively, which can be computed as fol-
lows:

Ed =
X

i 2V



 _x (3)

i � x̂ (3)
i





2
=

X

i 2V



 x̂ (3)

i � Ĉ (3)




2
(20)

where _x (3)
i and x̂ (3)

i denote the resulting and ground
truth 3D positions of landmarki , respectively,Ĉ (3) =

1
jVj

P
i 2V x̂ (3)

i is the center of the ground truth model. The

smallerEd is, the closer the resulting model is to the ground
truth.

In all the experiments, the concept of leave-one-out
cross-validation was adopted towards the evaluation of the
method. In this context, we do the validation on a sam-
ple while using the remaining samples as training data, and
such a validation is done for all the samples contained in
a dataset using the same parameter settings. Regarding the
3D model prior (Eq. 13), we modeled the probability distri-
butionpc (d̂c (x (3)

c )) between a quadrupletc of points using
a two-component Gaussian Mixture.

5.2. Qualitative Results and Quantitative Analysis

First, we considered100samples of the neutral expres-
sion fromBU-3DFE, one from each subject. The 2D land-
mark correspondence space was associated with5 labels,
four corresponding to the 2D position candidates and the
last to the occlusion label “occ”. On top of the ground
truth correspondence, noise was added to generate erro-
neous 2D candidates as well. Furthermore, for 10% of

the landmarks (randomly sampled), the true correspondence
was removed and replaced with a random position in the
image plane, which produced between 0 and 5 missing 2D
correspondences for each test (see Fig. 1(b)). Figs. 2(a) and
(b) present 3D model esitmation results. Fig. 2(c).3 and
Fig. 2(c).1 (i.e., the boxes 3 and 1 in Fig. 2(c)) depict the
statistics of the dissimilarity measureEd (Eq. 20) for the
initialization and the resulting 3D model obtained by the
proposed method, respectively. The qualitative and quan-
titative evaluations demonstrate that our method leads to
well-estimated 3D models even when correspondences are
partially missing. Furthermore, in order to demonstrate the
impact of the visibility modeling, we have also evaluated
an alternative version (without visibility modeling) of the
proposed method where the “occ” label was removed from
the 2D candidate set of each node, and show the obtained
statistics ofEd in Fig. 2(c).2. Based on the comparison of
Fig. 2(c).1 and Fig. 2(c).2, we can conclude that the visi-
bility modeling indeed leads to signi�cantly better perfor-
mance.

Second, we employed the facial feature point detector
proposed in [21] to obtain the 2D position candidates for
101samples ofBU-4DFE, also one from each subject. Such
a detector is based on Gabor features and boosting classi-
�ers, and can well localize the considered landmarks from
observed 2D images (Figs. 3(a)-(f)), though errors may
still be present in some tests. We also performed a leave-
one-out cross-validation in this experiment. Figs. 3(a')-(f')
show six 3D model estimation results of different qualities
and Fig. 3(g) presents the statistics ofEd for the proposed
method and the version without visibility modeling. These
results further demonstrate the potential of the proposed
method to infer the 3D con�guration of the model from 2D
observed images with misdetections/occlusion handling.

Last but not least, we compared our method with an al-
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Figure 3. Results of the second experiment. (a)-(f): 2D landmark detection results [21]; (a')-(f'): The corresponding 3D model estimation
results. (g): Boxplots for the distributions of dissimilarity measures for qualitatively evaluating the 3D model estimation. g.1: Results
obtained by the proposed method; g.2: Results obtained by the version without visibility modeling; g.3: Initialization of the model.

ternative method (ASM+RANSAC) with a relaxed condi-
tion where we assumed that the ground truth 2D correspon-
dences were known. For each test, we �rst learned an ASM
[8] from the training data. Then, we used RANSAC [11]
to estimate the camera projection function based on the ini-
tialization of the shape model and the given ground truth
2D correspondences. Once the projection function was esti-
mated, we searched for the best shape con�guration by min-
imizing the errors between the projections of the 3D points
and their 2D correspondences. Furthermore, we evaluated
both methods using two different initializations: besides
the “random sample” initialization used throughout the ex-
periments, we also tested the “mean-shape” initialization
where we chose one example as the reference, registered
all the other training examples to it and computed the mean
shape as initialization. We performed leave-one-out cross-
validation on all the 2500 samples ofBU-3DFEdataset and
the quantitative evaluation is shown in Fig. 4. Figs. 4.1 and
4.4 show that our method performed equally well with the
two different initializations, which demonstrates robustness
with respect to the choice of initialization. The evalua-

tion of ASM+RANSAC is presented in Figs. 4.2 and 4.5.
We observe from Fig. 4 that the dissimilarity measure of
our method is approximately3 to 5 times lower compared
to ASM+RANSAC, which demonstrates that our method
performs signi�cantly better than ASM+RANSAC and is
highly robust with respect to the initialization.

In conclusion, the results of all the experiments demon-
strate that our method, despite the important variability of
pose and facial geometry, has well estimated the 3D con-
�guration of the model even with the existence of misdetec-
tions, and outperforms signi�cantly the alternative methods.

6. Conclusion

In this paper, we have introduced a novel approach for
3D landmark model inference from a monocular 2D view
that combines the estimation of the 3D pose, the visibil-
ity states and the 2D correspondences. The main inno-
vations of the method are the absence of camera parame-
ters estimation, the ability to model geometric consistency
through local priors, the explicit modeling of visibility and
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Figure 4. Comparison with ASM+RANSAC in terms of dissimi-
larity measures. 1. Our method with random-sample initialization;
2. ASM+RANSAC with random-sample initialization; 3. The
random-sample initialization; 4. Our method with mean-shape ini-
tialization; 5. ASM+RANSAC with mean-shape initialization; 6.
The mean-shape initialization.

the one-shot optimization to jointly infer all the variables.
We have evaluated our method on standard facial datasets
with promising results.

Future work concerns �rst the achievement of a bet-
ter model decomposition towards recovering the smallest
subset of higher-order interactions that can express the 3D
geometric manifold, which could drastically decrease the
computational complexity of the method. The use of more
advanced parameterizations of the manifold which go be-
yond simple 3D landmark positions (e.g., the entire surface
through some kind of local interpolation) would open new
application domains of our method like body pose estima-
tion or medical image analysis where 2D partial acquisition
of 3D objects is frequent. Last but not least, faster optimiza-
tion algorithms of higher-order MRFs, including potential
implementations of existing optimizers on GPUs, could be
bene�cial to our approach both in terms of the considered
application as well as in terms of modularity with respect to
other 3D pose estimation problems from 2D images.
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