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Abstract. We describe an approach for grouping trajectories extracted
from a video that preserves motion discontinuities due, for instance, to
occlusions, but not color or intensity boundaries. Our method takes as
input trajectories with variable length and onset time, and outputs a
membership function as well as an indicator function denoting the ex-
emplar trajectory of each group. This can be used for several applications
such as compression, segmentation, and background removal.

1 Introduction

We are interested in establishing temporal correspondence in video, for the pur-
pose of later analysis, for instance object or event detection, fine-scale localiza-
tion, and recognition. In general, we seek a mid-level representation that would
facilitate, or at least not jeopardize, semantic analysis, that is the attribution of
identities and relations among locations or motions within a video.

Ideally, for every location in the domain of the image, we are interested in
establishing its trajectory, or flow, in the time interval during which it is visible.
Due to occlusions, we have to book-keep points that appear and disappear, and
store the trajectory of each visible pixel, along with its color. Even if we neglect
the color variability along a trajectory, it is easy to see that such a representation
would soon have a complexity far greater than the original data. Therefore, to
reduce complexity, we seek to group different trajectories. Since any grouping
or segmentation procedure necessarily entails a loss of information, we seek to
perform it in a way that causes as little damage as possible.

How do we measure damage? Ideally, by the loss in performance in the seman-
tic analysis task downstream. This loss should be as small as possible. However,
since we do not know the “ideal” performance, we can test directly for semantic
consistency: If a certain set of locations is known to belong to an object or event
at a certain time, we want the subsequent trajectories to also belong to the same
object or event for all the time during which they are visible.

Since we do not have an end-to-end system available, our design criterion
is to group together trajectories respecting motion discontinuities and occlusion
boundaries, but not intensity/color boundaries. In analogy to superpixels that
aim to preserve the latter, we call our scheme to preserve the former superfloxels.
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Related Work The most common preprocessing operation performed on videos
for the purpose of analysis is segmentation based on motion discontinuities, for
the most part based on few temporally adjacent frames [1–3]. Trajectory-based
methods have started to take hold more recently [4–10]. Naturally, the longer
the temporal window, the richer the temporal context that can be incorporated
in the later processing. This improves robustness and enables analysis of subtle
cues for instance in traffic model learning [11] and anomaly detection [12].

There are, however, challenges associated with trajectory grouping. First,
trajectories often cover only a portion of the frames in the video sequence, due to
occlusions, image noise, etc. As a result, trajectories have different lengths and
their comparison is not straightforward. Second, like any grouping procedure,
there is no “right” number of clusters, and one has to accommodate different
model complexities in the analysis. Finally, it is important but challenging to
preserve occlusion boundaries so that clusters do not cross such boundaries.

Most existing trajectory-based methods ignore one or more of these issues.
For example, [4, 5] assume that the number of clusters is known and tra- jecto-
ries are projected into different linear motion subspaces of low dimension using
an affine camera model. Moreover, [4] requires complete trajectories, a tall or-
der. Other approaches have been proposed to deal with incomplete trajectories,
such as subspace separation [5, 6], extrapolation of incomplete trajectories [13],
the adoption of Markov Random Field (MRF) formulation [10] as well as ex-
plicit clustering formulations [7–9]. Since the intrinsic complexity of the grouping
method determines the scale of the problem it can handle, only sparse cases (i.e,
tens to hundreds of trajectories) were considered in those factorization-based
methods [4–6], while non-factorization-based methods [7–10] have been demon-
strated with thousands of trajectories.

Among the non-factorization methods, [8] used spectral clustering and a post-
processing procedure to deal with object segmentation. On the other hand, [9]
used motion saliency to remove background trajectories and obtain the fore-
ground map. A greedy search then partitioned the foreground trajectories based
on their motion affinity and topology constraints. Despite promising results, the
performance of such an approach relies heavily on the accuracy of the foreground
map estimation and the greedy search process provides no optimality guarantee
for the clustering. Finally, none except [10] explicitly accounts for occlusions.
In the MRF-based formulation in [10], occlusions are modeled based on incom-
plete trajectories and “T-Junctions”. However, discovering “T-Junctions” is still
a challenging problem, that relies on local temporal information. Additionally,
this method requires the number of clusters to be provided.

Paper Contribution In this paper, we describe an over-segmentation algo-
rithm that clusters trajectories extracted from a video into superfloxel. Each
superfloxel is denoted by a trajectory that is representative of the cluster of
trajectories and serves as a mid-level representation of the video sequences. We
achieve this by ensuring that our clustering scheme respects motion and occlu-
sion boundaries and we influence the choice of the cluster centers using such cues.
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Our approach is not an object segmentation scheme but instead a generic pre-
processing framework that can be used for different applications such as activity
recognition, object segmentation, etc. Our framework does not require multiple
initializations or a predefined number of superfloxels. Instead, our method auto-
matically determines the number of superfloxels by balancing the inter-cluster
variation with the proposed prior terms on the cluster centers.

2 Formulation

Let I : D ⊂ R2 × Z+ → R+; (x, t) 7→ It(x) be a video sequence, defined on
a 2D image domain D and It denotes the image corresponding to frame t. We
extract from I a set of trajectories T = {Ti}Ni=1, where each trajectory Ti is
represented by xit ∈ D, where t ∈ [tis, t

i
e] ⊂ Z+ denotes the temporal extent of

the trajectory, starting at tis and ending at tie. Given these trajectories, we aim
to cluster them into K groups (superfloxels) through a membership function,
L : T → [1,K]; Ti 7→ li where K < N . To this end, the first step is to define a
notion of similarity between these trajectories on which we base our clustering.

2.1 Similarity between Trajectories

Given two trajectories Ti and Tj , we are interested in defining a measure of
similarity between them. There are several choices for defining such metrics
between trajectories such as the spatial distance or the velocity distance which
can be defined as follows:

dspatial(Ti, Tj)
2 =

∑
f∈O(Ti,Tj)

(xif − xjf )2, (1)

dvelocity(Ti, Tj)
2 =

∑
f,f+1∈O(Ti,Tj)

[(xif − xif+1)− (xjf − x
j
f+1)]2, (2)

where O(Ti, Tj) = [tis, t
i
e] ∩ [tjs, t

j
e] denotes the temporal overlap between Ti and

Tj . Since our goal is to obtain a mid-level representation of the video, we require
a grouping that is spatially compact and salient in its motion. Furthermore, we
do not want the length of the trajectories to influence the pairwise distances.
Considering all these requirements, we propose the following distance:

d(Ti, Tj) =
1

|O(Ti, Tj)|
dspatial(Ti, Tj)[1 + dvelocity(Ti, Tj)]. (3)

We add the constant 1 to the velocity distance to ensure that when two trajec-
tories are identical (motion wise), the spatial distance still acts as a weight. We
wish to point out that different variations of the velocity distance have been used
in the literature where the velocity difference is defined between the locations at
time t and t + t0 where t0 = 5 in [8] t0 = 3 in [9]. While this offset could make
the distance more robust, manually choosing its value is difficult in practice as
it depends on the frame-rate and the motion of objects in the scene.

The trade-off of using the above distance is that while we ensure spatial
compactness of our superfloxels, we discount the velocity difference at motion
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boundaries. Since motion boundaries provide strong cues for separating different
objects/parts, we would like our distance to respect them while considering the
similarity between two trajectories. Hence, we define the following distance that
serves as a penalty for crossing motion boundaries:

dmb(Ti, Tj) =
1

|O(Ti, Tj)|
∑

f∈O(Ti,Tj)

∫ 1

0

Bf (xif + λ(xif − xjf ))dλ, (4)

where B : D ⊂ R2×Z+ → {0, 1}; (x, t) 7→ Bt(x) is the motion boundary at time
t. This distance is added to Eq. 3 to yield our final similarity metric.

2.2 Clustering Formulation

In order to provide a useful reduction of data volume, we aim to group all the
trajectories into a number of clusters, each called a superfloxel. Furthermore,
we are interested in selecting an exemplar for each superfloxel such that it can
best represent the properties of its components. If we assume that we know K,
then in order to cluster the data points and obtain the cluster centers that are
denoted by C = {Ck}Kk=1 ⊂ T , we minimize the objective function

E(w, C) =
∑

Ti∈T \C

∑
Ck∈C

wikd(Ti, Ck), (5)

such that wik ∈ {0, 1} and
∑

k wik = 1. Each binary variable wik indicates
whether trajectory Ti is assigned to the cluster center Ck or not. Moreover, the
constraint

∑
k wik = 1 guarantees that each trajectory will be assigned to exactly

one cluster center. However, if we use the same function when K is unknown,
the trivial solution to the above minimization is K = |T |. In order to prevent
this, we introduce a prior on the choice of cluster centers:

E(w, C,K) =
∑

Ck∈T

∑
Ti∈T \Ck

wikd(Ti, Ck) +
∑

Ck∈T

wkkφ(Ck), (6)

where the binary variable wkk indicates whether trajectory Ck is a cluster center
or not, defining implicitly the subset C of the cluster centers and leading the
constraint on w that is wik ≤ wkk. The optimization problem of (6) is a Linear
Integer program [14, 15], which can be efficiently solved via Linear Program (LP)
relaxation. By relaxing the binary variables w to take non-negative values, the
above formulation can be cast as an LP as shown in [14]. More specifically, our
clustering formulation is expressed as the following LP:

min
w

∑
Ck∈T

∑
Ti∈T \Ck

wikd(Ti, Ck) +
∑

Ck∈T

wkkφ(Ck)

subject to:
∑
k

wik = 1, wik ≤ wkk, wik ≥ 0.
(7)

The advantages of such an approach are: 1) it is guaranteed to converge; 2) it
does not require initialization of the cluster centers or the number of cluster
centers; and 3) we can specify the prior on the selection of the cluster centers.
Our choice of prior φ(Ck) needs to reflect the fact that our clusters have low mo-
tion discrepancy and respect motion boundaries. A natural choice is to prevent
trajectories that are near the motion boundaries to be chosen as cluster centers.
We defer the discussion of the prior until Sect. 4.
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3 Applications

The superfloxelization presented above forms our mid-level representation of
the video sequence, based on which we can post-process the cluster trajectories
for different applications. However, in all the cases, we only need to deal with
the cluster centers of superfloxels. This has the following advantages: (1) the
computational complexity of the post processing stage is significantly reduced,
(2) we are robust to outliers that are present in the trajectories, by grouping the
trajectories. We validate our representation by outlining several applications.

Model selection Our algorithm automatically selects the number of superflox-
els. However, if the number of groups that are present in the video sequence is
known, it can be enforced easily by merging superfloxels to the desired number.
Given the cluster centers of the superfloxels, we calculate the same distance we
use for clustering (Eq. 3). We drop the motion boundary distance since the clus-
ter centers are spread throughout the image. Hence, calculating such a distance
is not meaningful in this case. We can then obtain a hierarchical tree represen-
tation of these cluster centers via a greedy merging scheme using single linkage.
At each step, the pair of superfloxel cluster centers (or group of superfloxels)
that have the least distance among them are merged. This process is repeated
until there is only one node in the tree (e.g, Fig. 2). Once two or more nodes
have been merged, the distance between the merged node and any other node is
calculated using single linkage: d(Ci, Cj) = minCu∈Ci,Cv∈Cj d(Cu, Cv). This tree
can be cut to obtain the required number of groups. Our experiments show that
this simple merging technique yields in good performance.

Background Removal For applications such as human activity recognition,
trajectory-based methods have shown promising performance [16]. Hence in this
case, the superfloxelization could be a useful preprocessing step in order to cap-
ture the different parts of the object as well as separate the foreground from the
background. Recently, [16] showed that by removing the background trajectories,
the performance of recognition algorithm increased on standard activity recog-
nition benchmarks. Although methods such as [17] address the issue of removing
the background from freely moving cameras, such methods used the entire set of
trajectories that are present in video to determine the background. Hence, such
methods are computationally expensive and do not provide a grouping of the
remaining trajectories.

Given the cluster centers, we can exploit them to discard the background
superfloxels. In order to perform this, for each pair of frames we fit a motion
model based on the location of the points of the cluster centers in those frames
using RANSAC [18], which determines the trajectories that are inliers and out-
liers. Repeating this for the different pairs of frames gives us the trajectories
that are inliers and that are outliers. The background is then determined by the
superfloxels corresponding to the cluster centers that were considered as inliers.
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Fig. 1. Visualization of motion cues for a sample sequence. From left to right: original
image, the optical flow field and the distance transform on motion boundaries.

4 Implementation Details

The spatial distance and the velocity distance computations are straightforward
and can be done very efficiently. For the distance term in Eq. 4 that is defined
over a straight line connecting two points, we speed up the computation by using
an approximation to the straight line between two points (via Bresenham’s algo-
rithm [19]). Furthermore, calculating this distance over all pairs of points is not
very meaningful. For instance, if two points that lie far apart in the background,
the line between them could pass through motion boundaries corresponding to
multiple objects. Hence, we calculate the motion boundary penalty only in a
neighborhood around the motion boundaries. Using the distance transform [20]
on the motion boundaries, we can quickly determine this neighborhood. Let
dBf

(x) denote the distance transform under the motion boundaries Bf at a
given time instance f . We calculate dmb(Ti, Tj) if ∀f ∈ O(Ti, Tj) dBf

(xif ) ≤ 2τ

and dBf
(xjf ) ≤ 2τ . The parameter τ that determines the neighborhood around

the motion boundaries for which we calculate dmb (Fig. 1).
Notice from Fig. 1 that points close to the edge of the image tend to have

a high value. Hence, if we use our prior based on the distance transform, such
points will have a higher likelihood of being chosen as cluster centers. In order
to prevent this and to ensure that our prior is consistent with our distances
between trajectories, we define the prior on the clusters centers as follows:

φ(Ti) =

{
γ if ∃f ∈ [tis, t

i
e] s.t. dBf (xif ) < τ

0 otherwise.
(8)

This biases cluster centers to be chosen further from motion boundaries.

5 Experimental Results

We extracted trajectories using the Large Deformation Optical Flow (LDOF)
[21] and the Dense Point Tracker (DPT) [22]. We also experimented with the
Sparse Occlusion Optical Flow (SOOF) [23] and DPT to obtain the trajecto-
ries. This was motivated by the fact that [23] accounts explicitly for occlusions
while calculating the optical flow. Hence, trajectories that are near the occlusion
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Table 1. Comparison of Different Algorithms using Different Metrics.

Method Density Overall Average Over segmentation # of extracted
Error Error objects

[8] 3.316 4.861 25.870 0.692 26
[8] + SOOF 3.155 4.961 24.344 0.654 28

Our Method + LDOF 3.316 3.675 10.175 27.654 30
Our Method + SOOF 3.155 2.880 10.586 30.885 28

Background Merge + LDOF 3.316 7.284 21.971 7.269 27
Background Merge + SOOF 3.155 6.822 23.577 8.538 23

Table 2. Comparison of Different Algorithms using the Trimmed Mean of Metrics.

Method Density Overall Average Over segmentation # of extracted
Error Error objects

[9] 3.22 3.760 22.06 1.150 25
Our Method + LDOF 3.313 3.468 9.580 27.500 30
Our Method + SOOF 3.158 2.510 10.311 30.833 28

Background Merge + LDOF 3.313 5.711 21.174 6.950 27
Background Merge + SOOF 3.158 4.931 22.763 8.167 23

edges of the moving object can be better tracked. We tested our method on
the MOSEG Database [8] which contains 26 sequences of variable length. Each
sequence contains a few frames with ground truth annotation. Additionally, this
database comes with its own evaluation software for quantitative analysis. We
use the same experimental setup as [9], i.e we apply our algorithm to the first
50 frames of each sequence and if the sequence contains less than 50 frames we
use the entire video sequence. In all our experiments we set τ = γ = 20.

Quantitative Results We report the quantitative results for the different vari-
ations of our algorithm as well as that of the baseline [8]. We calculated different
metrics such as the overall error, the average error, the over-segmentation index
as well as the number of objects that are extracted. The overall error determines
if a trajectory is assigned to the correct label. If a cluster spans multiple objects,
then the points on one of the objects are considered as errors while determining
the overall error. The average error determines the mean error over each region
as opposed to the entire image area. The number of objects extracted are regions
that have less than 10% error in their clustering assignment. Finally, the over-
segmentation determines the number of groups that need to be merged to get
the ground truth annotation. The evaluation tool also calculates density which
is the measure of the percentage of points that are labeled in the video.

The quantitative results are shown in Table 1. Here we report the mean over
all the sequences in the database for the different variations of both the baseline
algorithm as well as our methods. From this table it can be seen that the baseline
using SOOF produces better results compared to using LDOF. Our method of
superfloxelization is better when compared to the baseline in all metrics.

The comparison with [9] is reported in Table 2. Notice that the numbers in
this table are different from that of Table 1, because [9] uses a trimmed mean as
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Fig. 2. The superfloxel tree structure obtained using the merging procedure (left) and
the superfloxel image locations with numbers indicating their indices (right).

measures (the top 10% and the bottom 10% of the values are thrown out before
computing the mean). Although we do not endorse this evaluation methodology,
for the sake of comparison we report the trimmed mean of our results as well.

Choosing the number of superfloxels We earlier outlined how we can build
a tree representation of the superfloxels. The tree structure for one video is shown
in Fig. 2. From this figure we can see that the tree structure captures the overall
structure of the scene. Note that this tree is only obtained using the cluster
centers of the superfloxels. This demonstrates that our cluster centers are good
representative candidates of the whole superfloxel. When K = 2, the cut of the
tree gives us node 3 which corresponds to the entire car as one cluster and the
rest of the nodes as the other cluster. We show other examples of choosing the
value of K in Fig. 3, which shows that as we increase K the different objects
that are present in the scene appear. Once the number of superfloxels that are
required becomes more than the number of objects, we start to observe over-
segmentation. The advantage of having the superfloxels is that we can now vary
K as we like without clustering the entire set of trajectories again.

Background removal We have outlined a method to remove the background
and show sample results in Fig. 4, which illustrates that our method is able
to successfully remove the background in these videos. For a video of 50 frames
that contains 16000 trajectories, the background removal after superfloxelization
takes about 2 seconds using an unoptimized Matlab implementation. A quan-
titative analysis was also performed; we determine the background superfloxels
and merge it as one group and then apply the quantitative evaluation used for
the original superfloxels. The quantitative results are presented in Table 1, which
show that while the overall error is increased by this process, the average error
and the number of objects is better than the baseline. We notice that using
the SOOF optical flow resulted in smaller number of extracted objects. Also,
the number of segments that are needed to be merged to obtain the objects is
much lower. In all our experiments, we used a homography as the motion model
between two frames.
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(a) Original Image (b) K=2 (c) K=3 (d) K=4

Fig. 3. Choosing the number of superfloxels using our tree representation: (a) Original
Image; (b, c, d) show the different superfloxels for varying values of K.

Fig. 4. Example of background removal. Top row shows the resulting superfloxels,
Bottom row shows the background removed using the cluster centers of the superfloxels.
Notice that in the last column, the leaf that is moving is not considered as background.

6 Conclusion

Superfloxels are agglomeration of trajectories in video that preserve motion dis-
continuities. They are designed to be a generic preprocessing step for video
analysis. We have shown some sample applications of our framework and its
performance. Our approach enables accommodating tracks of different lengths,
and produces as a result a collection of groups of tracks that can be further re-
fined in the presence of prior knowledge, for instance on the number of objects in
the scene or other prior models. Quantitative comparison on benchmark datasets
shows that our method outperforms other methods for trajectory clustering.
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