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Original Image Input Scene Matches Output
Figure 1: Given an input image with a missing region, we use matching scenes from a large collection of photographs to complete the image.

Abstract
What can you do with a million images? In this paper we present a
new image completion algorithm powered by a huge database of
photographs gathered from the Web. The algorithm patches up
holes in images by finding similar image regions in the database
that are not only seamless but also semantically valid. Our chief
insight is that while the space of images is effectively infinite, the
space of semantically differentiable scenes is actually not that large.
For many image completion tasks we are able to find similar scenes
which contain image fragments that will convincingly complete the
image. Our algorithm is entirely data-driven, requiring no anno-
tations or labelling by the user. Unlike existing image completion
methods, our algorithm can generate a diverse set of results for each
input image and we allow users to select among them. We demon-
strate the superiority of our algorithm over existing image comple-
tion approaches.

Keywords: Image Completion, Image Database, Image Com-
positing, Inpainting, Hole Filling

1 Introduction
Every once in a while, we all wish we could erase something from
our old photographs. A garbage truck right in the middle of a
charming Italian piazza, an ex-boyfriend in a family photo, a politi-
cal ally in a group portrait who has fallen out of favor [King 1997].
Other times, there is simply missing data in some areas of the im-
age. An aged corner of an old photograph, a hole in an image-based
3D reconstruction due to occlusion, a dead bug on the camera lens.
Image completion (also called inpainting or hole-filling) is the task
of filling in or replacing an image region with new image data such
that the modification can not be detected.

Project Web Page: http://graphics.cs.cmu.edu/projects/scene-completion/
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There are two fundamentally different strategies for image com-
pletion. The first aims to reconstruct, as accurately as possible,
the data that should have been there, but somehow got occluded
or corrupted. Methods attempting an accurate reconstruction have
to use some other source of data in addition to the input image,
such as video (using various background stabilization techniques,
e.g. [Irani et al. 1995]) or multiple photographs of the same physi-
cal scene [Agarwala et al. 2004; Snavely et al. 2006].

The alternative is to try finding a plausible way to fill in the miss-
ing pixels, hallucinating data that could have been there. This is a
much less easily quantifiable endeavor, relying instead on the stud-
ies of human visual perception. The most successful existing meth-
ods [Criminisi et al. 2003; Drori et al. 2003; Wexler et al. 2004;
Wilczkowiak et al. 2005; Komodakis 2006] operate by extending
adjacent textures and contours into the unknown region. This idea
is derived from example-based texture synthesis [Efros and Leung
1999; Efros and Freeman 2001; Kwatra et al. 2003; Kwatra et al.
2005], sometimes with additional constraints to explicitly preserve
Gestalt cues such as good continuation [Wertheimer 1938], either
automatically [Criminisi et al. 2003] or by hand [Sun et al. 2005].
Importantly, all of the existing image completion methods operate
by filling in the unknown region with content from the known parts
of the input source image.

Searching the source image for usable texture makes a lot of
sense. The source image often has textures at just the right scale,
orientation, and illumination as needed to seamlessly fill in the un-
known region. Some methods [Drori et al. 2003; Wilczkowiak et al.
2005] search additional scales and orientations to gain additional
source texture samples. However, viewing image completion as
constrained texture synthesis limits the type of completion tasks
that can be tackled. The assumption present in all of these meth-
ods is that all the necessary image data to fill in an unknown re-
gion is located somewhere else in that same image. We believe
this assumption is flawed and that the source image simply doesn’t
provide enough data except for trivial image completion tasks.

Typical demonstrations of previously published algorithms are
object removal tasks such as removing people, signs, horses, or cars
from relatively simple backgrounds. The results tend to be fairly
sterile images because the algorithms are only reusing visual con-
tent that appeared somewhere else in the same image. For situations
in which the incomplete region is not bounded by texture regions,
or when there is too little useful texture, existing algorithms have
trouble completing scenes (Figure 2).
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
that there are no longer any overlapping blocks so each cell
is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
despite the complex, cluttered backgrounds that are com-
mon in our training set — the detector cues mainly on the
contrast of silhouette contours against the background, not
on internal edges or on silhouette contours against the fore-
ground. Patterned clothing and pose variations may make
internal regions unreliable as cues, or foreground-to-contour
transitions may be confused by smooth shading and shad-
owing effects. Similarly, fig. 6(c,g) illustrate that gradients
inside the person (especially vertical ones) typically count as
negative cues, presumably because this suppresses false pos-

itives in which long vertical lines trigger vertical head and
leg cells.

6.5 Detector Window and Context
Our 64×128 detection window includes about 16 pixels

of margin around the person on all four sides. Fig. 4(e)
shows that this border provides a significant amount of con-
text that helps detection. Decreasing it from 16 to 8 pixels
(48×112 detection window) decreases performance by 4%
at 10−4 FPPW. Keeping a 64×128 window but increasing
the person size within it (again decreasing the border) causes
a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.

6.7 Discussion
Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
shape contexts lose out significantly here.

Secondly, strong local contrast normalization is essen-
tial for good results, and traditional centre-surround style
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2005], sometimes with additional constraints to explicitly preserve
Gestalt cues such as good continuation [Wertheimer 1938], either
automatically [Criminisi et al. 2003] or by hand [Sun et al. 2005].
Importantly, all of the existing image completion methods operate
by filling in the unknown region with content from the known parts
of the input source image.

Searching the source image for usable texture makes a lot of
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orientation, and illumination as needed to seamlessly fill in the un-
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this assumption is flawed and that the source image simply doesn’t
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centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

results are insensitive to ε’s value over a large range.

Centre-surround normalization. We also investigated an
alternative centre-surround style cell normalization scheme,
in which the image is tiled with a grid of cells and for
each cell the total energy in the cell and its surrounding re-
gion (summed over orientations and pooled using Gaussian
weighting) is used to normalize the cell. However as fig. 4(c)
(“window norm”) shows, this decreases performance relative
to the corresponding block based scheme (by 2% at 10−4

FPPW, for pooling with σ=1 cell widths). One reason is
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is coded only once in the final descriptor. Including several
normalizations for each cell based on different pooling scales
σ provides no perceptible change in performance, so it seems
that it is the existence of several pooling regions with differ-
ent spatial offsets relative to the cell that is important here,
not the pooling scale.

To clarify this point, consider the R-HOG detector with
overlapping blocks. The coefficients of the trained linear
SVM give a measure of how much weight each cell of each
block can have in the final discrimination decision. Close ex-
amination of fig. 6(b,f) shows that the most important cells
are the ones that typically contain major human contours (es-
pecially the head and shoulders and the feet), normalized
w.r.t. blocks lying outside the contour. In other words —
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transitions may be confused by smooth shading and shad-
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itives in which long vertical lines trigger vertical head and
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at 10−4 FPPW. Keeping a 64×128 window but increasing
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a similar loss of performance, even though the resolution of
the person is actually increased.

6.6 Classifier
By default we use a soft (C=0.01) linear SVM trained

with SVMLight [10] (slightly modified to reduce memory
usage for problems with large dense descriptor vectors). Us-
ing a Gaussian kernel SVM increases performance by about
3% at 10−4 FPPW at the cost of a much higher run time.
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Overall, there are several notable findings in this work.

The fact that HOG greatly out-performs wavelets and that
any significant degree of smoothing before calculating gra-
dients damages the HOG results emphasizes that much of
the available image information is from abrupt edges at fine
scales, and that blurring this in the hope of reducing the sen-
sitivity to spatial position is a mistake. Instead, gradients
should be calculated at the finest available scale in the cur-
rent pyramid layer, rectified or used for orientation voting,
and only then blurred spatially. Given this, relatively coarse
spatial quantization suffices (6–8 pixel wide cells / one limb
width). On the other hand, at least for human detection, it
pays to sample orientation rather finely: both wavelets and
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Error on Middlebury over time 
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We need a challenging new dataset 



KITTI Vision Benchmark 

Geiger et al., CVPR 2012. 

HCI Robust Vision Challenge 

Meister et al., Optical Engineering, 2012. 

UCL Ground Truth Optical Flow Dataset 

Mac Aodha et al., PAMI, 2012. 
Liu et al., CVPR 2008. 

Pro: real data 
Con: rigid scenes 

Pro: real, very hallenging 
Con: no ground truth 

Pro: fully controllable, extensible 
Con: small, limited complexity 

Pro: real data 
Con: approximate ground truth 

Human-Assisted Motion Annotation 



Introducing: MPI-Sintel 

35 sequences, 1628 frames, 1593 flow fields 



Sintel: a Blender Open Movie 
Created in order to test and 
promote the Blender 
animation suite 

Free and Open: 
•  All graphics data released 

under CC license 
•  Rendering software open 

source 



Is synthetic data good enough? 



Is synthetic data good enough? 
Idea: compare synthetic data to “lookalikes” 



Lookalikes 



Image statistics: 

– Luminance histograms 
– Power spectra 
– Derivative histograms 



Image derivative log-histograms 

Lookalikes 
Sintel 
Middlebury 



What about motion statistics?  
•  Image statistics are only half the problem 

•  Do Sintel motions resemble natural 
motions? 
– Harder since we do not have ground truth flow 

for the lookalike sequences 

•  Approach: compare statistics of estimated 
flow on Sintel and lookalikes.  



Flow statistics  

(estimated flow): 
– Histograms of horiz. and vertical components 
– Speed histograms 
– Derivative histograms 



Speed histograms 

Lookalikes 
Sintel 
Sintel (groundtruth) 
Middlebury 



Realism story isn’t over 

•  Obviously Sintel is not photorealistic 
•  However, it does pass some sanity checks 

Future work: 
 1. Use photo-realistic graphics data 
 2. General problem of evaluating realism 

Meister and Kondermann, Conference on Electronic Media Technology (CEMT), 2011. 



CG data is not just “good enough”… 

… it has major advantages 



Render passes 



high flow gradient       object boundaries 
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Unmatched regions 



Results 



http://sintel.is.tue.mpg.de 



MDP-Flow2 estimated flow 

MDP-Flow2 EPE 



Groundtruth 

MDP-Flow2 EPE 



Groundtruth 

MDP-Flow2 EPE 

Middlebury avg EPE:   0.245 px 
Sintel avg EPE:    8.445 px 



Evaluation Take-aways 
•  Much larger errors than Middlebury (~35x) 

•  Unmatched regions are really hard 
~45px error (vs. ~5px in matched regions) 

•  High speeds (>40 ppf) much worse than low 
speeds (<10 ppf) 
~50px error vs. ~1.5px error 

•  Final pass harder than the Clean pass 
(15-40% greater error) 



Lessons learned 
•  We thought this would be easy – it wasn’t 

•  Movies just need to look good enough 

•  Full control of graphics data and rendering 
pipeline was necessary to create image 
sequences with accurate optical flow 

See our poster at the Workshop on Unsolved 
Problems in Optical Flow and Stereo Estimation 

Tomorrow at 2pm 
Location: Adua 1F, Affari 



Grand challenges for optical flow 

1.  Unmatched regions 
•  Will encourage new methods that integrate 

information over time and incorporate layering 

2.  High speeds (>40px per frame) 
•  Lookalikes exhibit these regions as well 

3.  Motion blur, defocus blur, atmospheric 
effects 

•  Real world effects cause problems for current 
methods 
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