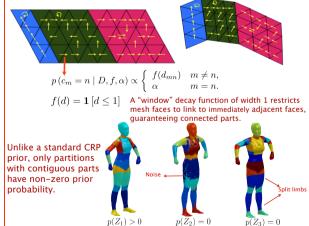
From Deformations to Parts: Motion-based Segmentation of 3D Objects

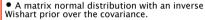
Soumya Ghosh¹, Erik B. Sudderth¹, Matthew Loper² and Michael J. Black²

Department of Computer Science, Brown University, 2 Perceiving Systems Department, Max Planck Institute for Intelligent Systems.

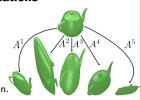
Segmentation of Articulated 3D Objects


Goal: To discover distinctly moving parts of an articulated object from aligned 3D meshes capturing various object poses.

- Modeling: We propose a model that.
- + Discovers a potentially unbounded number of parts,
- + Guarantees spatially connected segmentation,
- + Seamlessly deals with object instances having varying 3D shapes,
- + Is robust to moderate alignment noise.
- Results: State-of-the-art prediction of 3D body deformations.

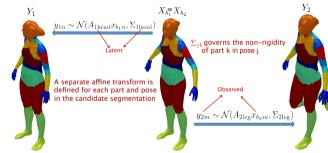

Distributions over Mesh Partitions

Distance dependent Chinese restaurant process

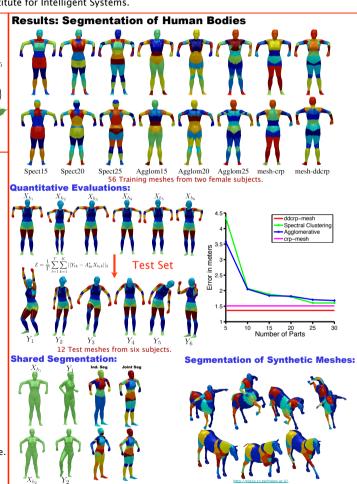


Distributions over Affine Transformations

$$\begin{split} \Sigma &\sim \mathcal{IW}(n_0,S_0)\\ A \mid \Sigma &\sim \mathcal{MN}(M,\Sigma,K)\\ \text{where } A \in \mathbb{R}^{3\times 4} \text{is an affine transformation.} \end{split}$$


- The mean is set to the identity transformation.
- \bullet S_0 is set to match the scale of the translational parameters with that of the mesh coordinates.

 $A^1 \dots A^5 \sim \mathcal{MNTW}(.)$ Samples from distribution over Affine transformations.


Model and Inference

- For each mesh face n, sample an associated link $c_n \sim \mathrm{ddCRP}(\alpha, f, D)$
- \bullet For each pose j and each part k , sample an affine transformation A_{jk} and residual noise covariance Σ_{jk} from the MNIW distribution.
- ullet Sample the observed location of each pose triangle relative to its corresponding reference triangle, $y_{jn} \sim \mathcal{N}(A_{j_{z_n}} x_{b_{jn}}, \Sigma_{jz_n})$

Inference

- Collapsed Gibbs sampler that analytically marginalizes latent affine transformations and noise variables.
- Likelihood evaluation independently marginalizes affine and noise variables for each pose: computation scales linearly with number of poses, parallelizable.
- Large moves in the space of candidate partitions through split and merge.

