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On the Variability of Manual Spike Sorting
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Abstract—The analysis of action potentials, or “spikes,” is
central to systems neuroscience research. Spikes are typically
identified from raw waveforms manually for off-line analysis
or automatically by human-configured algorithms for on-line
applications. The variability of manual spike “sorting” is studied
and its implications for neural prostheses discussed. Waveforms
were recorded using a micro-electrode array and were used to
construct a statistically similar synthetic dataset. Results showed
wide variability in the number of neurons and spikes detected in
real data. Additionally, average error rates of 23% false positive
and 30% false negative were found for synthetic data.

Index Terms—Decoding, electrode array, motor cortex, neural
prosthesis, spike sorting.

I. INTRODUCTION

ACOMMON assumption in systems neuroscience is
that the brain encodes information in the firing rate of

neurons (i.e., the number of action potentials, or “spikes,”
over a temporal interval). Consequently, finding the spiking
activity in electrophysiological recordings of the brain is seen
as a first step in the decoding of neural activity. This often
requires making assumptions about the consistency, shape,
and individuality of spike waveforms. Analysis of recordings
requires first detecting waveforms thought to be action po-
tentials, distinguishing waveforms of true spikes from those
that are actually noise and then, in the case where the activity
of multiple cells is recorded by a single electrode, classifying
which cell, or unit, produced which waveform. The post-de-
tection process is referred to as spike “sorting” and produces
a number of “spike trains” corresponding to the temporal
sequence of action potentials (see Lewicki [1] for a review). For
off-line analysis, these spike trains are typically obtained using
manual, or semi-automatic, classification methods while, for
on-line decoding, simple thresholding and template matching
techniques are employed. In both cases, the quality of the
resulting spike trains is dependent on researcher judgment and
experience. The variability of human spike sorting performance
has been previously noted for recordings from tetrodes and
single electrodes [2]. Here, we studied this variability for
motor-cortical data recorded using chronically-implanted
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micro-electrode arrays which are increasingly being used for
neural prosthetic applications.

Neural prostheses pose special problems with respect to spike
sorting. These devices decode the activity of neurons and use
this information to generate control signals for the manipula-
tion of the external world. A variety of recording technologies
are employed in neural prosthetic applications and, more widely,
for the study of neural coding. Tetrodes [3], [4], microwires [5],
[6], and micro-arrays [7] have all been exploited to derive con-
trol signals. Current implantable prostheses exploit hundreds of
electrodes which produce large volumes of data that must be
sorted in real-time to achieve continuous neural device control.
Regardless of the recording technology, these implanted devices
are currently fixed in position and high-quality prosthetic con-
trol requires that as much information as possible be recovered
from each electrode. Each electrode may have mixed signals
coming from multiple neurons, the recorded waveforms may
vary markedly in their signal to noise ratio, and this signal to
noise ratio may vary over time. These facts make the task of
manual or automatic sorting challenging.

In all cases, spike sorting involves converting the raw elec-
trophysiological data into a representation of the neural spiking
process. This involves the following five inter-related tasks.

1) Waveforms of potential spikes must be detected and
recorded.

2) The waveforms from each electrode (channel) must be
sorted into a set thought to be actual “spikes” and a set
thought to be “noise.”

3) The number of generating neurons (units) must be deter-
mined for every channel, since a given channel might con-
tain the activity of zero or more cells.

4) Each of the spikes on those channels must be attributed
to the neuron that generated it.

5) A timestamp must be assigned to mark the occurrence of
each spike.

Although detection is itself a potentially large source of error,
we did not address it in this study. While various detection
methods exist [8], this study used simple thresholding.

There are also a variety of automated spike sorting methods
[1], [2], [4], [9]–[14], yet most off-line research in systems neu-
roscience has used spike trains that were manually (or semi-au-
tomatically) sorted with the aid of various commercial prod-
ucts. On-line applications require automatic sorting but often
this involves a manual stage of analysis to establish thresholds
or model waveform shapes.

Spike trains often form the basis for both the analysis of
neural encoding and the development of decoding algorithms.
A variety of decoding methods have been proposed for neural
prosthetic applications [5]–[7], [15] and many of these methods
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exploit a rate code in which the discrete spike train data is con-
verted to a rate function by binning or averaging over some tem-
poral window. Misclassification of spikes at the sorting stage
can corrupt the resulting rate code in a variety of ways with un-
known consequences for decoding performance. Similarly, de-
coding methods based on point processes [16], [17] exploit the
spike trains directly along with a temporal model of the spiking
processes. The fundamental assumptions of these methods re-
garding the statistics of the spiking process may also be violated
by sorting mistakes.

Beyond the problem of decoding for prostheses, the anal-
ysis of spike trains and precise spike timing in neural coding
often relies on hand-sorted data. An understanding of the vari-
ability among sorters and the absolute error rates in the resulting
spike trains is critical for understanding and evaluating models
of neural coding. Toward that end we studied the performance
of expert human spike sorters on natural and synthetic datasets.

Significant variability among human sorters has previously
been shown for recordings from tetrodes and single electrodes
[2], where error rates were computed by comparing sorted extra-
cellular recordings to intra-cellular “ground truth.” For neural
prosthetic applications, simultaneous intra-cellular recordings
are typically not practical. In particular, chronically implanted
micro-electrode arrays (such as the Utah intracortical array [18]
used in the recordings for the experiment) effectively prohibit
both individual electrode placement and simultaneous intra-cel-
lular recording. In addition, in single-unit recording, electrodes
are moved to achieve well isolated signals and this is not pos-
sible with current array technology. The use of such array’s for
prosthetic applications is increasing as the technology matures
and, consequently, understanding the nature of the signals from
such devices is important for the development of automated
spike sorting algorithms. In lieu of intra-cellular recordings, we
constructed a set of synthetic channels for which we knew the
ground truth. These synthetic channels were constructed from a
statistical model of the true data making them similar enough to
real channels that it was difficult for human subjects to distin-
guish them from real data.

Both the real and synthetic channels were manually sorted by
five subjects with commonly used commercial software [19].
The subjects used various techniques such as principal compo-
nent analysis and manual cluster cutting [1]. We found large dis-
crepancies in both the number of units identified and the spikes
assigned to each by different subjects. The magnitude of these
discrepancies was statistically similar for the real and synthetic
data. We calculated a false positive (FP) rate of 23% and a false
negative (FN) rate of 30% for the synthetic data and postulate
that these rates are similar for real data. The results suggest
that neural prosthetic control algorithms could benefit from the
development of new statistical techniques for automated spike
sorting that account for the inherent ambiguity of the spiking
process in the measured waveforms.

II. METHODS

To quantitatively assess the subjective variability of sorted
spike trains, we asked five expert subjects to sort a set of wave-
forms recorded from the arm area of primary motor cortex in

two different monkeys. Using this data we computed the subjec-
tive variability of the spike trains produced by different people.
With real data of this type however, there is no principled way
to establish “ground truth” and consequently no way to quan-
titatively measure the error in human sorting performance. To
address this, we generated a set of synthetic channels and asked
the same subjects to sort them. The synthetic channels were de-
signed to be indistinguishable from the real and allowed us to
establish quantitative error rates with realistic waveforms. De-
tails of the methods are described below.

A. Recording

In two monkeys, following task training, Bionic Technologies
LLC (BTL) 100-electrode silicon arrays [18] were implanted in
the arm area of primary motor cortex (MI).

The BTL arrays consisted of 100 platinized tip silicon probes
(200–500 k at 1 kHz; [20]), arranged in a square grid (4 mm
4 mm, electrode separation 400 m on-center). The electrodes
were 1 mm in length, corresponding in MI to recordings near
the layer III/V boundary. All procedures were in accordance
with Brown University Institutional Animal Care and Use Com-
mittee-approved protocols and the Guide for the Care and Use of
Laboratory Animals (NIH publication no. 85-23, revised 1985).
Signals were amplified and sampled at 40 kHz/channel using
a commercial recording system [19]. All events that crossed a
manually set threshold were digitized (12-bit voltage resolution)
and stored on disk. Waveforms and their corresponding times-
tamps (relative to the start of the recording session) were saved
for each electrode on the array.

The recording setup was similar to that used in [7] for the
on-line neural control of two-dimensional (2-D) cursor motion.
In this neural prosthetic task, the animals were trained to move
a two-joint manipulandum on a 2-D plane to control the mo-
tion of a feedback cursor on a computer screen. The simulta-
neous recording of hand kinematics and neural activity allows
the study of motor cortical encoding of hand motion [21] and
the training of decoding methods [7], [22], [23]

B. Real Data Selection

The arrays in the two animals produced 192 channels of data.
To simplify the sorting task we selected a 20 channel subset from
the full dataset.

To select those channels, we first asked a single expert sorter
to sort all 192 channels. This expert is one of the authors of this
paper. From this large set of channels we manually selected a
20 channel subset representative of the whole.

C. Synthetic Data Generation

We also constructed 5 synthetic channels such as the one
shown in Fig. 1(c) for which we knew the ground truth. Unlike
the natural data which could contain multiple units on a single
channel, all of the synthetic channels were generated having a
single unit for simplicity. The synthetic channels contained both
the activity of this single unit and of a realistic noise process.

The synthetic single unit activity was drawn from a Gaussian
generative model. To construct such generative models for the
synthetic channels we randomly chose 5 out of the 20 natural
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Fig. 1. Generation of synthetic channels: (a): synthetic waveforms sampled from a trained Gaussian model, (b): noise sampled from other channels, and (c): noise
and synthetic spikes combined.

channels. For each channel we selected one of the sorted units
identified by the expert [Fig. 1(a)] and collected the wave-
forms corresponding to the spikes of that unit into a matrix

where indicates the channel and the wave-
form is represented by , where is
the number of time samples in the data corresponding to each
waveform. In our case , but in other cases this might vary
according to the recording equipment and setup.

For each channel we computed the mean waveform

and the covariance

This mean and covariance define a multidimensional Gaussian
model of the unit’s waveforms.

To generate synthetic waveforms we repeatedly sampled
from this distribution in the following manner. Let

be the Cholesky factorization of the covariance matrix where
is a lower triangular matrix [24], and let

where , are zero mean and identically distributed
normal random variables [i.e., ]. Then, notice that
the expected value of is

and the variance of is

So multiplying the Cholesky factorization of the covariance ma-
trix by a set of such vectors

produces a set of synthetic waveforms with the same distribu-
tion as the training set [Fig. 1(a)]. This can be used to generate
an arbitrary number of waveforms by generating new random

Fig. 2. Interspike interval histograms, one for a synthetic channel (solid) and
the other for the real channel (dashed) from which it was trained.

vectors . To ensure that there were no visible high-frequency
artifacts in the synthetic waveforms, each one was low-pass fil-
tered using an empirically determined Gaussian kernel.

It is common to use a plot of the inter-spike intervals (ISI)
when performing spike sorting; violations of the absolute re-
fractory period indicate misclassification. Consequently, we as-
signed timestamps to the synthetic waveforms by sequentially
drawing inter-spike intervals from an exact, empirically calcu-
lated, distribution rather than fitting and sampling from a canon-
ical distribution such as the Poisson or exponential. Fig. 2 shows
the ISI histogram for a synthetic channel and the ISI histogram
for the real channel from which it was generated.

Each of the 5 synthetic channels also included noise. We
generated noise by drawing waveforms randomly from every
channel except the one used to train the generative model
[Fig. 1(b)]. This process excluded the waveforms that had been
classified as spikes in the initial sorting of the 20 channels.

Finally, for realism, the synthetic channels had to exhibit
the same recording artifacts the real channels exhibited.
Waveforms were captured when they passed through a voltage
threshold, and, in the real channels all the captured waveforms
were aligned on the threshold crossing. To replicate this easily
observed artifact we aligned both the synthetically generated
waveforms and the sampled noise waveforms using an appro-
priate threshold that produced channels that visually matched
the real channels.
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Fig. 3. Classification of the same waveforms by two different subjects on a real dataset. Left: Waveforms. Subject D (top) classified the data as containing a
single unit while subject E (bottom) found three units. While only a small faction of the actual waveforms are shown here to simplify the figure, the subjects had
access to the full set of waveforms. Right: Two-second segment from the channels (left) shown as spike trains. Vertical bars indicate detected waveforms and the
color corresponds to the classification by the subjects (left). Bar height indicates the maximal amplitude of the corresponding waveform.

D. Human Sorting Procedure

The five subjects were graduate students, research assistants,
or postdoctoral researchers from the same laboratory; they had
significant experience in sorting neural recordings. Some of the
authors of this paper were also subjects in this study. The sub-
jects sorted the 25 channels using Plexon’s offline spike sorter
[19], labeling units and waveforms as they would for their own
research. This software provides users with various tools to sort
all the waveforms of a particular recording one channel at a time.
This is most often achieved by manual cluster selection and re-
finement in a graphical display constructed by projecting the
waveforms onto their first two principal components (see [1]
for a review of related techniques). The subjects were given as
much time as they liked to sort the data.

III. RESULTS

1) Realism of Synthetic Data: Prior to sorting, subjects at-
tempted to identify the synthetic channels. The 20 real and 5
synthetic channels were permuted randomly before presenta-
tion and the subjects were explicitly told that there were 5 syn-
thetic channels to be found. The subjects were allowed to use
any software tool at their disposal and were given unlimited
time to come to their conclusions. The expected number of syn-
thetic channels that would be correctly identified by picking 5
channels uniformly at random follows the hypergeometric dis-
tribution and is 1 0.82 (mean std.). Our subjects correctly
identified 1.3 1.53 which is better than chance but well below
correctly identifying all five. In fact, none of the subjects cor-
rectly identified all the synthetic channels.

While the Gaussian generative model for a
neuron spike shape distribution is a simplification, on average
the expert sorters did not differentiate synthetic channels from
real channels at rates much better than chance. This gives some

TABLE I
TOTALS FOR EACH SUBJECT, ALL REAL CHANNELS COMBINED. SPIKE COUNTS

INCLUDE ALL IDENTIFIED SPIKES; UNIT COUNTS INCLUDE ALL NEURONS

EACH SUBJECT FOUND

confidence that quantitative error rates for the synthetic data
may be indicative of the error rates for real data.

2) Performance on Real Data: Fig. 3 illustrates the subjec-
tive variability we observed with real data. The figure shows
the classification results for two subjects (D and E), where for
simplicity only a subset of the waveforms from one of the real
channels in the dataset is shown. The green waveforms indicate
some agreement between subjects on the presence of a wave-
form with a particular shape. The subjects disagree however on
the number of units present with subject E hypothesizing two
additional units in the data. These results are typical of what we
observed throughout the study.

Fig. 3 provides another view of the same dataset. Here, a
two-second segment of the data is viewed as a spike train. Each
vertical line corresponds to a spike while the color corresponds
to the classification in Fig. 3. Black lines correspond to wave-
forms that were treated as noise. Note the level of disagreement
in the classified spike trains. Even for the green spikes which
have similar waveforms, the two subjects included very different
numbers of spikes. We posit that differing views such as this
might lead to quite different models of encoding in terms of in-
terspike intervals or synchronous firing.

Table I shows the number of units and number of spikes
detected by each of the subjects. The subjects agreed on the
number of units in the real channels only 25% of the time, and
most of these consensus channels either contained no neural
activity or were extremely well isolated. The number of units
detected varied by roughly a factor of two (from a low of 18
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Fig. 4. Mean � std. dev. of the number of units identified by all subjects
per synthetic channel. Synthetic channels had only one synthetic unit which is
indicated by the black horizontal line.

to a high of 35) while the total number of spikes varied even
more, with subject E finding approximately four times as many
as subject B. Even when the subjects agreed on the number of
units in a given channel, quite often they disagreed about how
many spikes each generated.

3) Performance on Synthetic Data: For each synthetic
channel there was only one true unit present. Despite this all
subjects over segmented these channels as shown in Fig. 4.

Fig. 5 shows how the subjects performed on the task of seg-
menting the spikes from the noise. On average the subjects had
overall 23% FP and 30% FN error rates for the synthetic chan-
nels. The data illustrated in Fig. 5 also suggests that the sub-
jects employed individual sorting strategies; this phenomenon
was also observed by Harris et al. [2]. Despite large variability,
it seems that subjects A,B, and D used a sorting strategy that
consistently worked to minimize FPs while subjects C and E
chose one that worked to minimize FNs. It also suggests that
it might not be possible to overcome the trade-off between FPs
and FNs using the sorting tools employed. This might be due to
inherent similarities between spike shapes or between spike and
noise waveforms. It is also possible that the tools our subjects
employed restricted them from being able definitively segment
and classify the activities of individual neurons; for example,
the software only allows users to view 2-D projections onto the
principal components (cf. [2]).

Anecdotally, one of the individuals who served as a subject
in this study was the same person who served as the expert who
sorted the training channels. This person sorted the same chan-
nels twice, once to provide the training data and then once a
month later as a subject in this study. This individual deter-
mined that the real channels contained 12% more neurons the
second time around (25 28) yet classified 8% fewer of the
waveforms as neural activity (108 073 99 160 spikes). Al-
though this demonstrates the kind of subjective variability we
found, it also affects the analysis of our results for synthetic
data. While the reported subject-to-subject variability for syn-
thetic data would remain unaffected, the FN and FP rates we
reported for synthetic data could vary depending on the way the
training channels were initially sorted by our expert.

Fig. 5. Mean� std. dev. FP and FN error rates over all synthetic channels per
subject. FPs occurred when a subject inappropriately counted noise waveforms
as having come from the single generating unit FNs occurred when a subject
miss-classified a true spike as noise.

IV. DISCUSSION

Micro-electrode arrays are an important recording tech-
nology for neural prosthetic applications. Additionally,
recordings from these and other related recording devices
are used to model and understand neural coding. Often these
analyses rely upon manually (or semi-automatically) sorted
spike trains and only rarely is the uncertainty of the underlying
data reported. We observed that expert human spike sorters
had widely varying performance on both real and synthetic
neural datasets. On real data, subjects differed not only in what
constituted a spike versus noise but even in the number of units
present in the data. To quantify this variability we developed a
realistic synthetic dataset where the “ground truth” was known.
On average, subjects identified noise as signal 25% of the
time while they treated the signal as noise 30% of the time.
Moreover, the data suggests that researcher intent plays a large
role in the interpretation of recorded data.

For on-line prosthetic applications, careful, manual, spike
sorting is not possible. Current techniques for on-line detection
are fairly crude and also involve human judgment. For example,
experimenter-determined thresholds are used to select wave-
forms with particular properties. This approach was used in the
work of Serruya et al. [7] for the real-time control of cursor
motion. All detected activity on a channel was binned every
70 ms and a linear filter was used to model the relationship
between this activity and hand position. Since experts sorters
often detect more than one unit per channel, treating this binned
data as single unit firing “rates” could introduce decoding
errors as each channel most likely contains multiple units.

It is interesting to note that Serruya et al. achieved good
neural control (from 42 channels) without precise on-line spike
sorting. This suggests that coarse electrical activity (that may
combine units) may be sufficient for neural control applica-
tions. Recent work in decoding from local field potentials also
suggests that this might be the case [3], [25]–[27]. In general,
however, such a situation violates the underlying assumptions
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of most decoding methods. For example, in population vector
methods [6], [28], [29], the combination of units with different
directional tuning properties will result in a “fictitious” cell
whose tuning properties may be very different from the true
cells. Similar issues may exist for other decoding methods.

A number of issues emerge for research on neural coding.
Theories of neural coding that are based on hand-sorted spikes
must be evaluated with respect to the variability of the spike
data. In particular, encoding models that rely on precise spike
timing, or synchrony, may be affected by the bias of the sorter.
For example, a conservative sorter (such as subject D), with a
low FP rate, could miss-classify enough true spikes to remove
any evidence of excess synchrony. Alternatively, a sorter with
a high-FP rate could add enough extraneous events to obscure
properties of the true firing. The actual effect of this on encoding
models deserves further study.

There are two possible solutions. The first would be to build
models and test theories using datasets sorted by multiple
people. Variability in the performance of the encoding or
decoding method could then be reported. Given the time
consuming nature of spike sorting this approach may be infea-
sible. An alternative is to employ an automated spike sorting
algorithm. In this case, encoding/decoding performance could
be evaluated with respect to a particular sorter with known
properties. If the sorting process were consistent, then observed
variability across training sets or methods could be more easily
evaluated.

A number of issues remain open. This was a fairly small study
with all subjects coming from the same laboratory. Given that
many groups use the same sorting software, we posit that similar
variability would be seen across laboratories, but this remains to
be tested.

This work suggests the importance of good, widely available,
automated spike sorting methods. The development of such
tools requires datasets for evaluation and comparison. The
variability of human sorters on the data presented here suggests
that it may be difficult to establish the accuracy of automated
techniques and in future work we plan to compare human
performance with a variety of automated methods (cf. [2] for
such a comparison in the case of tetrodes and intra-cellularly
recorded ground truth). For this analysis we can exploit one
of the main technical contributions of this paper which is the
generative waveform model. The synthetic waveforms were
shown to be similar to real data as judged by human experts
and this suggests that such synthetic data sets may be of value
for evaluating automated sorting algorithms.

V. CONCLUSION

We showed the variability of human spike sorters on wave-
forms recorded with a micro-electrode array. We also developed
a probabilistic model of waveforms that was used to synthesize
realistic datasets. Human performance on both real and syn-
thetic data varied widely and suggests that the intent, or “style,”
of the experimenter influences the resulting spike trains. The re-
sults suggest the need for both new ways of evaluating theories
of encoding and also algorithms for decoding that take into ac-
count spike train variability. The results also point to the need

for automated spike-sorting algorithms that provide consistency
across experiments.
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