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Abstract

Extracting anthropometric or tailoring measurements
from 3D human body scans is important for applications
such as virtual try-on, custom clothing, and online sizing.
Existing commercial solutions identify anatomical land-
marks on high-resolution 3D scans and then compute dis-
tances or circumferences on the scan. Landmark detection
is sensitive to acquisition noise (e.g. holes) and these meth-
ods require subjects to adopt a specific pose. In contrast, we
propose a solution we call model-based anthropometry. We
fit a deformable 3D body model to scan data in one or more
poses; this model-based fitting is robust to scan noise. This
brings the scan into registration with a database of regis-
tered body scans. Then, we extract features from the regis-
tered model (rather than from the scan); these include, limb
lengths, circumferences, and statistical features of global
shape. Finally, we learn a mapping from these features to
measurements using regularized linear regression. We per-
form an extensive evaluation using the CAESAR dataset and
demonstrate that the accuracy of our method outperforms
state-of-the-art methods.

1. Introduction

Measuring the human body from 3D data is gaining in-
creasing importance in applications such as virtual try-on
and online shopping. Extracting tailoring measurements di-
rectly from 3D scans of people could accelerate the tedious
and time consuming process of custom tailoring. That, in
turn, offers the potential of personalized sizing in online
shopping and a decreased return-rate for web purchases.
These applications are currently of interest due to the emer-
gence of low-cost scanning devices such as the Microsoft
Kinect [2]. The promise of such methods is that they will
be even more accurate than humans at measuring the body.

Here we develop a method for model-based anthropom-
etry that accurately predicts measurements; the approach is

Figure 1: Registered meshes of a person in two poses af-
ter fitting a human body model [4, 12]. Measurement pre-
diction is based on local and global shape features. Local
shape features comprise circumferences on the mesh sur-
face (shown as curves) and limb lengths (shown as straight
lines). Global shape features (not shown here) describe
statistics of shape in a database of registered 3D meshes.
For visualization clarity, the 3D meshes are displayed as
point clouds.

summarized in Fig. 1. Model-based anthropometry has sev-
eral components: 1) a statistical model of body shape vari-
ation across a population of 3D bodies; 2) a deformable 3D
body model and a method to fit it reliably to a scan; 3) a
method to extract a variety of local and global features from
the model; and 4) a method to predict 1D measurements
from the features. A significant novelty of our approach is
that it allows us to integrate information from multiple scans
of a person in different poses. We show that this approach
is more accurate than existing methods.

Exactly how accurate are current methods and are they
accurate enough for custom tailoring applications? While
there have been large studies of the accuracy of human an-
thropometers [9], there have been no large published stud-
ies of automatic methods for deriving measurements from
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scans. This is despite the fact that there are relatively large
collections of laser body scans with associated hand mea-
surement data [18]. For the first time, we perform an exten-
sive evaluation of existing commercial and research systems
using the CAESAR dataset [18].

Previous work on extracting anthropometric measure-
ments from 3D human scans is based on either measuring
directly on the raw scan or using a database of registered
scans to correlate human shape variation with measure-
ments. In the first case, measurements are extracted by lo-
cating anthropometric landmarks on the scan’s surface; this
simulates and automates the process of acquiring measure-
ments as performed by a tailor. Measurements typically cor-
respond to straight lines (heights) starting and/or ending on
landmarks as well as circumferences along planar slices of
the scan based on landmark locations. These approaches are
sensitive to acquisition noise and missing data on the scan’s
surface that distort the shape of the captured body. They
also require high-resolution (e.g. laser scans), making such
approaches impractical with today’s low-resolution home
scanning systems based on Kinect. Additionally, this need
for accurate localization of anthropometric landmarks in 3D
typically limits such systems to scans captured in a single
canonical pose. We show that different poses are optimal
for different measurements and our model-based approach
is able to integrate information from multiple poses. Fi-
nally, existing commercial solutions are limited in the kinds
of measurements they make (linear and circumferential),
whereas our model-based approach can regress body shape
to any measurement (e.g. weight or even age).

Our model-based approach addresses the problems of
previous methods. First, given a database of registered
3D scans of humans, together with their measurements, we
build a statistical model of shape variation in the popula-
tion. Features corresponding to 3D shape variation between
individuals in the database are correlated with their mea-
surements. Then, given a 3D scan of a new subject, we
register the model with the scan by deforming the model
to match the scan data. Shape features are easily computed
from the model and measurements are then predicted from
these shape features. A model-based approach could also
be used to predict measurements from low-resolution scans
[22]. Most previous efforts on correlating measurements
with human shape variation assume the human body shape
is represented by a single pose ([22] is an exception in that
they use several poses). Moreover, previous evaluations are
limited either in the set of measurements considered [11] or
the number of subjects used [22, 23].

Our contributions are the following: 1) We introduce a
set of surface-based shape features that are predictive of
standard anthropometric measurements. 2) We optimize
over a wide range of features to find the ones most predic-
tive of measurements. 3) We introduce model-based anthro-

pometry for predicting anthropometric measurements from
various poses and demonstrate more accurate measurement
prediction than the state-of-the-art. 4) We present a com-
prehensive comparative study between our model-based ap-
proach and state-of-the-art commercial and research efforts
for measurement prediction. We consider a wide range of
standard anthropometric measurements and a large number
of subjects using the CAESAR dataset. This evaluation pro-
vides a solid foundation for evaluation of commercial and
research work in this area.

2. Previous Work
There are several studies comparing the performance of

commercial 3D scanning systems relative to hand measure-
ments [6, 16, 17]. In particular, [16, 17] provide an evalua-
tion of commercial 3D scanning systems in terms of predict-
ing anthropometric measurements on or around the torso.
The measurements are extracted from rigid torso dressforms
created to represent variability in the Army population as re-
ported by [9]. Rigid mannequins, however, do not exhibit
the things that make real bodies a challenge to measure:
pose/posture variation, breathing, soft tissue deformation,
body fat hiding anatomical structures, and general ambigu-
ity about where to measure.

Rather than evaluate automated systems, previous work
has focused on the accuracy of humans at measuring the
body. Human anthropometers remain the gold standard
for measurement but there is variability between measur-
ers and by the same measurer over time. The ANSUR
study was designed to measure the accuracy of such human
measurements [9]. Without ground truth, ANSUR focused
on the variability of measurement and used this variabil-
ity to define a allowed error for each measurement. The
ANSUR allowed error is likely unrealistically low and we
show that current commercial systems produce errors that
significantly exceed the ANSUR standards.

The main study of automated scan measurement analy-
sis is that of Bradtmiller and Gross [6]. Compared to the
abovementioned studies, they report a broader set of au-
tomatically extracted measurements from real human sub-
jects. They found that these measurements were generally
sufficient for garment fitting, but the prediction error was
larger than the ANSUR allowable error.

To evaluate measurement prediction, we use the CAE-
SAR dataset [18], which represents the largest publicly
available dataset of 3D body scans with associated mea-
surements; here we use the US dataset of approximately
1000 men and 1000 women in both sitting and standing
poses. While in wide use, to our knowledge the accu-
racy of measurement prediction from CAESAR scans has
not been evaluated, and nobody has attempted to predict
measurements from sitting poses. Robinette and Daanen
[19] measured the variance of estimates extracted semi-



Figure 2: The training stage of our method. We start with a database of 3D scans in multiple poses (standing, sitting) with
corresponding anthropometric measurements [18]. Initially, we register the scans using prior knowledge about human body
shape. Then, we extract shape features. We consider local features, such as body circumferences and limb lengths, as well
as global features, such as statistics on edge lengths and triangle deformations of the registered meshes. Finally, we learn
optimal features for predicting each measurement.

automatically from CAESAR but did not evaluate the error
with respect to manual measurements.

The model-based anthropometry approach we introduce
relies on human shape features extracted from a database
of registered 3D human bodies. There are a wide range of
3D shape descriptors for assessing similarity or matching
3D shapes in applications such as content-based 3D shape
retrieval. Examples include spin images, spherical harmon-
ics, mesh HoG, heat kernel signatures; these are summa-
rized in the following overview papers [7, 13, 21]. These
generic 3D shape descriptors are useful for classification but
are less useful for detailed analysis of shape within a class.
Given objects of a specific category, a common way to char-
acterize variation in shape is using dimensionality reduc-
tion techniques. Employing Principal Component Analysis
(PCA) [14] to describe 3D human body shape has shown
encouraging results on generating and describing 3D hu-
man bodies [4]. Weiss et al. [22] use PCA coefficients to
predict anthropometric measurements of 3D human models
from Kinect data by combining information from multiple
poses. More recent work takes standard PCA basis vec-
tors and rotates these to better predict body measurements
[11]. Alternatively Guan et al. [10] constrain body shape
variations related to a particular measurement and exclude
these from the orthogonal subspace. The work in [5] corre-
lates body shape variation with measurements by perform-

ing PCA on the joint space of bodies and measurements.
We derive global features of shape variation using PCA and
augment them with features such as circumferences around
limbs and limb lengths to represent local shape details.

Although we are interested in extracting measurements
from 3D scans of humans, there has also been work on mea-
suring synthetically generated 3D human bodies. Wuhrer et
al. [23] present a hybrid of the above mentioned paradigms
by measuring, in a consistent way, paths along the surface
of 3D human meshes with the same topology. However, the
goal of the authors is mainly to synthesize 3D human bod-
ies that conform to a set of input measurements. In addi-
tion, [8] reports measurement prediction on 3D bodies gen-
erated from photos of real humans and measurements on
these photos; they evaluate, however, a very limited set of
four measurements.

3. Measurements from 3D scans

Our approach for measurement prediction consists of a
training and a testing stage. In the training stage, we reg-
ister a set of high-resolution 3D human scans to a com-
mon 3D template mesh, learn a statistical model of shape
deformations in the training set, extract shape features for
each registered scan, and learn the optimal shape features
for measurement prediction. Figure 2 provides an illustra-



tion of the training stage. In the testing stage, given a new
high-resolution 3D scan, we register it with a common tem-
plate mesh using the learned statistical shape model, derive
shape features and use them for predicting standard anthro-
pometric measurements.

3.1. Registration

Registration refers to the fitting of a template body mesh
to a scan. This brings the scan into alignment with a
database of pre-aligned meshes and our statistical body
shape model. We only briefly summarize the mesh regis-
tration process as it is not the main contribution and has
been described elsewhere [12].

The registration procedure serves two goals: (a) it pro-
vides a hole-free mesh that accurately captures the shape in
the scan; and (b) it provides correspondences between 3D
meshes, which facilitates statistical analysis.

Figure 3 shows an example of holes in the armpit area of
a 3D scan. In this scenario, a generic surface reconstruction
approach, such as [15], creates an unrealistic human shape
by lowering the height of the reconstructed armpit. Our ap-
proach, which takes into account prior knowledge about the
human shape and articulation gets much closer to the true
shape of the scanned human subject.

Our registration energy and procedures are similar to
those in [12]; as in that work, a BlendSCAPE body model is
used (whose form was heavily influenced by SCAPE [4]).
As in [12], the data term encourages the template to match
the scan and the prior term encourages deformations that
are consistent with a learned statistical body shape model.
The shape space of our model was trained from approxi-
mately 800 aligned CAESAR scans. While the registration
process used 73 landmarks (part of CAESAR) for initial-
ization, we observed that a Gaussian prior on body pose
parameters worked equally well.

While not necessary, here we assume the subject is
scanned in both standing and sitting poses, which means
that the registration procedure produces two registered
meshes per subject. Registered meshes across subjects are
in correspondence by construction.

3.2. Feature Extraction

We extract global and local features of shape variation
from a set of registered 3D scans. Let Mia = (Via, Eia),
i = 1, . . . , N , a = 1, 2 denote the registered scan of the
i-th human subject in pose a where N is the total number
of human subjects in our dataset. a = 1 corresponds to the
standing pose and a = 2 to the sitting pose. Each registered
3D scan is represented as a mesh with vertices Via and edges
Eia.

Triangle deformations from a template mesh provide a
common representation of 3D shape [4, 20]. Previous au-
thors have shown the triangle deformations carry informa-

(a) Scan (b) [15] (c) Our registra-
tion

(d) Registration
and Scan

Figure 3: Model-based alignment effectively deals with
holes. (a) A 3D scan showing a hole in the armpit area.
Generic surface reconstruction approaches, such as (b) [15],
create “webbing” effects and unrealistic human shapes. Our
model-based approach (c) is robust to holes and captures the
body shape. Subfigure (d) shows on overlay of our registra-
tion outcome on the initial 3D scan. Scan and registered
mesh interleave with high frequency which indicates that
the two surfaces are very close to each other.

tion about measurements [11, 22]. In particular, the coeffi-
cients of a low-D PCA representation can be used to predict
linear measurements. Here we go further and consider de-
formations from three scenarios: 1) from a standing pose
only; 2) from a seated pose only; and 3) using deformations
from both poses.

Triangle deformations, however, are non-linearly related
to geodesic distances on the body, and geodesics are similar
to many standard tailoring measurements. Consequently we
also consider the length of mesh edges, which are directly
related to 3D length and circumference measurements, as
the foundation for additional shape features.

Given triangle deformations and edge lengths of tem-
plate meshes registered with the training dataset, we com-
pute low dimensional representations for each using PCA.
Given a new registered test mesh, it is projected onto these
low-D spaces, yielding a set of coefficients that characterize
the shape; in both cases we use 300 principal components.
Let tia, a = 1, . . . , 3 and dia, a = 1, 2 denote respectively
the coefficients of the triangle deformations and the edge
lengths for the meshes of the i-th test mesh across different
poses. Here we have extended our notation of a to account
for standing and sitting poses together (a = 3). Consid-
ering both poses together is possible because the triangle
deformations are taken with respect to the intrinsic shape of
the human subject. According to [4], the intrinsic shape is
abstracted from effects due to pose, such as muscle bulging,
etc.

Low-dimensional representations of the body necessar-
ily remove fine shape details. Additionally these global
linear shape models capture correlations in the population
and an individual may differ from this. We address this
by adding extra local features that we observe on the sur-



face of the registered bodies. We hypothesize that these
features may be more directly related to tailoring mea-
surements. More specifically, we consider circumferences
around limbs and the trunk as well as limb lengths. A cir-
cumference feature is calculated as a piecewise linear path
over the edges of the mesh. Limb lengths are defined as
Euclidean distances between neighboring joint locations,
where joint locations are defined as a linear combination of
pre-defined mesh vertices. Let cia, lia respectively be the
features corresponding to circumferences and limb lengths
associated with the i-th mesh in pose a, a = 1, 2.

Summarizing, we consider nine types of fea-
tures, global and local, per body with oi =
{ti1, ti2, ti3,di1,di2, ci1, ci2, li1, li2} being the fea-
tures of the i-th body in the dataset.

3.3. Feature Type Selection per Measurement

To find the most predictive feature types for each mea-
surement, we learn the relationship between shape features
and each measurement using Elastic Net linear regression
[24]. For computational efficiency, we examine only unary
and pairwise combinations of feature types.

Let S denote the set of unary and pairwise combinations
of the feature types described above. Let also z = {zqi},
q = 1, . . . , Q, i = 1, . . . , N be the set of anthropometric
measurements for all human bodies in the dataset where Q
is the total number of measurements. We select the optimal
combination of feature types sq for the q-th measurement as

sq = argmin
s∈S

N∑
i=1

|fs(os
i )− zqi| (1)

where fs is an Elastic Net regression function for predict-
ing measurements trained on the subset of features s. os

i

denotes the feature values of the i-th human subject from
the subset of features s.

3.4. Measurement Prediction

Measurement prediction is performed independently for
each measurement. Let osq be the values of the optimal
features for predicting the q-th measurement (Sec. 3.3) ex-
tracted after registering the input scan. The predicted mea-
surements for the human subject is the set {fsq (osq )}, q =
1, . . . , Q.

An alternative approach for predicting measurements
would be to predefine manually (i.e. by an anthropometer)
curves or lines on the reference template mesh for each mea-
surement. Measuring their length directly after the registra-
tion procedure would yield an estimate of the corresponding
measurement. However, given a reference mesh with a pre-
defined topology, it is not certain that there is a sequence
of edges or vertices that match exactly the measurement we
are interested in. We believe that using a learning frame-
work that correlates shape features with measurements will

(a) Chest Circumf. under Bust (b) Buttock Knee Length

Figure 4: Examples of feature selection in females and
males for the following measurements: (a) Chest Circum-
ference under Bust, (b) Buttock Knee Length. The higher
the importance of each feature, the darker its color. Features
are displayed on the average female or male shape from our
database posed in the T-pose. Optimal local features usu-
ally correspond to circumferences near the desired circum-
ference measurement or to a set of limb lengths related with
the desired height measurement.

introduce, to some degree, invariance to the topology of the
registered meshes. As a by-product, we are able to predict
attributes of human shape, such as weight, that cannot be
measured directly from a 3D scan, but could potentially be
useful in virtual try-on applications.

4. Results

4.1. Method Evaluation

We compare our method with the commercial software
Anthroscan [1] as well as with [11]. Anthroscan predicts
measurements directly from a 3D scan in the standing pose
(only). Hasler et al. [11] performs registration-based mea-
surement prediction. The data we use for training and test-
ing are registered high-resolution 3D scans and the 40 an-
thropometric measurements from the CAESAR dataset. We
use approximately 800 bodies per gender for training and
200 for testing (see [3]). The error metrics that we use are
the Mean Absolute Difference (MAD) between extracted
measurements and hand measurements in CAESAR, eqMAD,
for each measurement q as well as the Average Mean Abso-
lute Difference (AMAD), eAMAD, over all measurements:

eqMAD =
1

Ns

Ns∑
i=1

|fsq (os
i )− zqi| (2)

eAMAD =
1

Q

Q∑
i=1

eqMAD (3)



where Ns is the number of bodies in the test set.
Optimal groups of features per measurement are derived

using 20-fold cross validation in the training set of 800 bod-
ies. For the 11 common anthropometric measurements be-
tween Anthroscan and CAESAR, we compute a linear cor-
rection for each Anthroscan measurement using leave-one-
out cross validation. This effectively adapts the Anthroscan
measurements to the CAESAR measurements. We compare
with [11] by using their proposed features and Elastic Net
regression. Elastic Net regression compares favorably to
the linear prediction framework presented in [11]. We addi-
tionally compare our performance with the ANSUR inter-
observer error [9]. Recall that ANSUR reports the median
absolute deviation between measurements made by experts
rather than actual measurement errors.

Figure 5(a) shows aggregate statistics of the performance
of our method relative to [1] and [11]. More specifically, we
report the eAMAD both in terms of absolute values (millime-
ters) as well as expressed relative to the ANSUR allowable
error (AE). Our eAMAD is around 1 cm, which translates to
1.2 to 1.3 times the AE. The error using the features from
[11] is around 10% higher than our error. In 50% to 65%
of the cases our improved prediction accuracy is also statis-
tically significant. Statistical significance was assessed per
measurement using a paired t-test. Comparing our method
with the Anthroscan software for the measurements that are
common between CAESAR and Anthroscan, we see that
the eAMAD error for Anthroscan is 10-15% higher than the
error in our case. For the measurements that are common
between CAESAR and Anthroscan we come very close to
the allowable error. In 65% to 80% of the cases our im-
proved prediction accuracy is also statistically significant.

Figure 5(b) shows the performance of the above men-
tioned approaches for the subset of CAESAR measure-
ments that is common between CAESAR and Anthroscan
for the female test set. A detailed overview of performance
for females and males is found in the supplemental mate-
rial [3]. We observe that for most of the measurements, our
approach performs better than previous work and the errors
are close to the allowable error for each measurement. Most
of the differences between our measurement predictions and
predictions from previous work are statistically significant.
Measurement predictions with no statistical significance be-
tween our method and at least one of the other approaches
are denoted with small font size in Figure 5(b).

4.2. Prediction from Multiple Poses

Most of previous work has focused on predicting mea-
surements from a single standing pose. However, it is un-
clear which scanning pose is the optimal one or whether
different poses would give different prediction results. Mus-
cles bulge, soft tissue deforms, and joints vary in different
ways depending on the pose, which is why anthropometric

Standing Sitting Stand+Sit

Male 10.21 mm 10.8 mm 10.09 mm
(1.3 x AE) (1.38 x AE) (1.28 x AE)

Female 10.24 mm 11.44 mm 10.02 mm
(1.27 x AE) (1.37 x AE) (1.23 x AE)

Table 1: Effect of pose on measurement prediction. We
report the Average Mean Absolute Difference (AMAD) er-
ror over the 40 anthropometric measurements in CAESAR
[18]. AE denotes the allowable error based on ANSUR [9].
The error using the standing pose is lower than the error
using the sitting pose. Best results are obtained combining
both poses.

or tailoring measurements are typically acquired using mul-
tiple poses. Table 1 shows a comparison of measurement
predictions from two poses that were available in CAESAR.
The AMAD error over the 40 anthropometric measurements
that come with CAESAR is around 1 cm for each single
pose which translates to around 1.3 or 1.4 times the variance
of the measurements that expert anthropometers would re-
port based on ANSUR. The measurement prediction error
using the standing pose is lower than the error using the
sitting pose; this is expected given that most of the CAE-
SAR measurements were taken in the standing pose. Com-
bining the two poses by selecting automatically the pose
that gives the best prediction, using cross-validation on the
MAD error, results in lower measurement prediction error.
This confirms our hypothesis that combining information
from multiple poses is beneficial.

4.3. Features for Measurement Prediction

In Sec. 3.2 we proposed a set of global and local features
for measurement prediction. On one hand, we proposed
generative global features, coefficients of PCA components
that can be used to generate new bodies. On the other hand,
we proposed local features that resemble measurements. Do
we really need both and which set of features is more influ-
ential? To answer these questions we predict measurements
only from global and only from local features. The results
are summarized in Table 2. The AMAD error using only lo-
cal features is almost 10% higher than using global features.
This is interesting because it shows that global shape fea-
tures are good for predicting linear measurements. But, as
with multiple poses, we find that the combination of global
and local features yields the best results.

Figure 4 shows the most influential local features for a
representative sample of measurements. It is interesting to
see that the most influential local features for each measure-
ment are in areas of the body close to where a tailor would
choose to take the specific measurement. Importantly, these
features are automatically discovered. In Fig. 5(b), we see



[11] Our Method

Male 11.11 mm 0% 10.09 mm 51%(1.41 x AE) (1.28 x AE)

Female 11.25 mm 0% 10.02 mm 65%(1.42 x AE) (1.23 x AE)

[1] Our Method

Male 12.65 mm 9% 10.78 mm 64%(1.51 x AE) (1.15 x AE)

Female 11.11 mm 9% 10.28 mm 82%(1.24 x AE) (1.06 x AE)
(a) Average Mean Absolute Difference (AMAD) Error

Measurement [1] [11] Our method AE [9]

Ankle Circumference 7.55 6.59 6.19 deformations, stand edges, stand 4
Arm Length Shoulder - Elbow 11.26 8.42 6.65 limbs, stand edges, stand 6
Arm Length Shoulder - Wrist 11.67 10.42 10.05 limbs, stand edges, stand
Arm Length Spine - Wrist 13.19 13.40 11.87 girths, stand limbs, stand
Chest Circumference 12.43 13.02 12.73 girths, stand edges, stand 15
Crotch Height 7.45 7.53 5.50 limbs, stand deformations, stand 10
Head Circumference 7.44 7.45 5.87 girths, sit limbs, stand 5
Hip Circ Max Height 17.05 18.96 18.59 girths, stand limbs, stand
Hip Circumference, Maximum 7.47 16.15 12.35 girths, stand edges, stand 12
Neck Base Circumference 21.13 16.96 15.79 limbs, sit 11
Stature 5.60 10.21 7.51 girths, stand limbs, stand 10

(b) Mean Absolute Difference (MAD) Error per Measurement in Females

Figure 5: Comparative evaluation. (a-left) Comparison with [11] on 40 CAESAR measurements for 200 test bodies of each
gender. (a-right) Comparison with Anthroscan on the measurements that Anthroscan and CAESAR have in common. In both
cases we report Average Mean Absolute Difference (AMAD) error between extracted and hand measurements. AE denotes
the allowable error based on the ANSUR study [9]. Percentages represent the fraction of measurements where the predictions
of the best performing method are statistically significant. (b) Mean Absolute Difference (MAD) between extracted and hand
measurements on females for the common measurements between CAESAR and Anthroscan (in mm). Bold is best. Results
that are not statistically significant are denoted with smaller font size. For our method, we additionally show the optimal
types of features (deformations, edges, girths, limbs) and pose (stand, sit) selected for each measurement.

Global Local Global+Local

Male 10.29 mm 11.47 mm 10.09 mm
(1.3 x AE) (1.46 x AE) (1.28 x AE)

Female 10.34 mm 10.98 mm 10.02 mm
(1.27 x AE) (1.40 x AE) (1.23 x AE)

Table 2: Effect of our global and local features on mea-
surement prediction. We report the Average Mean Absolute
Difference (AMAD) error over the 40 anthropometric mea-
surements in CAESAR [18]. The error using only local fea-
tures is almost 10% higher than using global features. AE
denotes the allowable error based on ANSUR [9].

the features selected by our approach for a subset of mea-
surements. More detailed results are presented in the sup-
plemental material [3]. For most of the measurements, op-
timal measurement prediction is achieved through a combi-
nation of global and local features.

5. Conclusions
In this paper we present an alignment-based approach

for extracting anthropometric measurements from high-

resolution 3D human body scans. Representing the 3D
scan using a reference mesh deformed based on a human
body model allows us to capture effectively the shape of the
scanned subject. Additionally, it provides correspondences
to a database of 3D humans scans (already in correspon-
dence) varying in intrinsic shape and pose. Shape features
derived consistently across the registered scan and all the
bodies in the database are fused using a regularized linear
learning framework that leads to more accurate measure-
ment prediction than state-of-art approaches. Our approach
generalizes easily to scans in arbitrary poses (as long as reg-
istration with a reference mesh can be performed). We per-
form an extensive evaluation and find that our method sig-
nificantly outperforms the state of the art.

The accuracy numbers reported here are critical for in-
dustrial applications in which clothing manufacturers must
know how accurate automated methods can be. Our accu-
racy is significantly better than existing methods, including
commercial solutions. The accuracy of current commercial
methods has never before been demonstrated. While our
errors are above the inter-observer errors in ANSUR, this
does not mean they are insufficient for real applications.
Inter-observer variance ignores observer bias and does not



directly quantify measurement accuracy.
Future work includes experimenting with 3D human

scans of lower resolution or partial 3D scans of humans.
Because our method can provide correspondences between
3D scans, it facilitates the use of a great variety of 3D shape
descriptors and learning methods. With that in mind, we are
interested in extending our approach to predict more intrin-
sic attributes of the human body, such as age, muscularity,
etc.
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