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Abstract

In contrast to traditional Markov random field (MRF)
models, we develop a Steerable Random Field (SRF) in
which the field potentials are defined in terms of filter re-
sponses that are steered to the local image structure. In
particular, we use the structure tensor to obtain deriva-
tive responses that are either aligned with, or orthogonal
to, the predominant local image structure, and analyze the
statistics of these steered filter responses in natural images.
Clique potentials are defined over steered filter responses
using a Gaussian scale mixture model and are learned from
training data. The SRF model connects random field mod-
els with anisotropic regularization and provides a statistical
motivation for the latter. We demonstrate that steering the
random field to the local image structure improves image
denoising and inpainting performance compared with tra-
ditional pairwise MRFs.

1. Introduction
Random field (RF) models have a long history in com-

puter vision, particularly in problems of low-level vision
such as image restoration [4, 13], stereo reconstruction, and
optical flow estimation. In these applications, Markov ran-
dom fields (MRFs) perform spatial (or spatio-temporal) reg-
ularization by imposing prior knowledge on the types of ad-
missible images, depth maps, flow fields, etc. Discrimina-
tively trained MRFs (i.e., conditional random fields (CRFs))
have also been used to directly model the posterior distribu-
tion in a number of vision problems, e.g., [6, 10]. In gen-
eral, MRF models are receiving renewed attention due to
improvements in learning and inference algorithms over the
last few years.

In most cases, however, MRFs have been limited in three
different regards: (1) They have used very simple neigh-
borhood structures. Most models in low-level vision are
based on pairwise graphs, where the potential functions
are formulated in terms of pixel differences (image deriva-
tives) between neighboring pixels; (2) In many cases, po-
tentials have remained hand-defined and hand-tuned. Con-
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(a) Horizontal derivative, kur-
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(b) Vertical derivative, kurtosis
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(c) Orthogonal derivative, kur-
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(d) Aligned derivative, kurtosis
κ = 16.2

Figure 1. Marginal filter response statistics (log scale) of stan-
dard derivatives (top row) and steered derivatives (bottom row).
The histograms are shown in solid blue; a fit with a Gaussian is
shown in dashed red. Note the difference between the orthogonal
and the aligned case of the steered derivatives.

sequently, many MRFs do not necessarily reflect the statis-
tical properties of the data; (3) MRF models have typically
not been spatially adaptive, i.e., their potentials do not de-
pend on the spatial location within the image. The first two
shortcomings have been addressed by a number of recent
approaches [12, 18, 29]. In this paper we go beyond pre-
vious work by addressing the third limitation as well, and
develop a spatially adaptive random field model.

In particular, we develop a Steerable Random Field
(SRF), where the potentials are adapted to the local image
structure. We build on the idea of defining MRF clique po-
tentials in terms of linear filter responses [18, 29], which
allows us to connect MRFs with the literature on steerable
filters [3]. Instead of using a fixed set of filters, such as
derivative filters in the pairwise case, or some other fixed
set of filters in the high-order case [18, 29], we steer the



Figure 2. Example image and steered derivatives. The derivative response orthogonal to the local structure is shown in the middle, the
response aligned with the image structure on the right.

filters to the local structure of the input image. Specifically,
we steer horizontal and vertical image derivatives to the
predominant orientation of the image structure, and obtain
derivatives that are orthogonal to, and aligned with, the ori-
entation1. Image derivatives are computed using extended
(2 × 3 and 3 × 2) filters. Consequently, the SRF is a high-
order random field based on extended cliques (cf . [18, 29]).

The local orientation is computed using the structure ten-
sor approach [8], which has a long history in continuous-
space anisotropic regularization methods (see, e.g., [27]).
In this paper we combine and connect ideas from MRFs,
steerable filters, and anisotropic diffusion. Specifically, we
introduce the idea of steering into the domain of spatially
discrete random field models. Doing so has several advan-
tages: First, we can use the empirical statistics of the steered
filter responses to motivate particular models. And second,
we can learn SRF models from training data, which gives
steerable (or anisotropic) regularization a statistical founda-
tion, and allows us to avoid parameter tuning by hand.

Additionally we study the marginal statistics of steered
filter responses (Fig. 1) and find that while both are heavy-
tailed, the derivative orthogonal to the image structure has
a much broader histogram than the aligned derivative. The
SRF potentials model these steered filter responses using a
Gaussian scale mixture (GSM) [25], which is able to cap-
ture their heavy-tailed characteristics.

We illustrate the SRF model in image restoration appli-
cations, but note that, as with any MRF, it applies much
more generally, such as to stereo and image motion. In par-
ticular, we show that SRFs substantially outperform pair-
wise MRF models in image denoising and inpainting. One
particular advantage of SRF models is that, by focusing the
model on oriented image structure, they lead to a better
restoration of image edges.

2. Previous Work
While steered derivatives [3] have been used in a vari-

ety of contexts including image restoration [27] and im-

1This steering can be based on the output of the model (images, depth
maps, flow fields, etc.) or on the input. SRFs that are steered to the input are
conditional models (CRFs) that directly model the posterior distribution of
the output given the input image.

age coding [28], the statistics of steered derivative re-
sponses in generic scenes are not widely studied. Siden-
bladh and Black [21] explored the “object specific” statis-
tics of steered filter responses at locations in the image cor-
responding to the limbs of people. In generic scenes, Kon-
ishi et al. [9] studied the statistics of gradient responses and
eigenvalues on, and off, image edges. Finally, Scharr et al.
[20] modeled the statistics of the eigenvalues of the struc-
ture tensor in natural scenes and used these marginal statis-
tics in a diffusion denoising method. In a comprehensive
study of image contours, Elder and Goldenberg [2] consid-
ered many image properties related to edge continuity, but
not specifically steered filter responses.

The proposed SRF is quite closely related to anisotropic
[27] as well as classical edge-preserving [1] regularization
techniques. In anisotropic diffusion, smoothing depends on
the local orientation of the image structure. While the orien-
tation is computed using the structure tensor, as in the SRF
model, the amount of smoothing depends on the eigenval-
ues of the structure tensor or on the gradient magnitude,
whereas in the SRF the amount of smoothing depends on
steered image derivatives. [20] shows that these eigenvalues
are smoothed versions of the (squared) steered derivatives.
This is an important difference, because an energy function
based on eigenvalues introduces a smoothing term in the
corresponding diffusion algorithm, which leads to inferior
results [20]. Moreover, the model from [20] is based on
learning marginals of the eigenvalues, while the SRF uses
full discriminative learning. Standard anisotropic diffusion
is motivated in algorithmic terms and not through an en-
ergy function, and cannot directly be interpreted as being an
approximate inference technique for a probabilistic model.
Steerable Random Fields, on the other hand, are derived as a
generic probabilistic model of images (or some other dense
scene representation), which admits a wide range of uses
beyond diffusion-based smoothing.

Related to SRFs is the work by Lyu and Simoncelli
[14], which performs image denoising by modeling oriented
wavelet responses using an MRF. In contrast to what is pro-
posed here, they use a fixed set of orientations and do not
explicitly adapt the potentials to the local structure orien-
tation. Hammond and Simoncelli [5] model wavelet re-



sponses in an orientation adaptive way, but do not propose
a spatial model such as an MRF. Another aspect that relates
both these works to ours is their use of Gaussian scale mix-
tures to capture heavy-tailed image statistics.

Levin et al. [12] perform image inpainting in the gradi-
ent domain, which allows them to regularize the image by
penalizing changes in the gradient magnitude and the gra-
dient orientation. In contrast to the SRF, they formulate a
pairwise MRF in this gradient magnitude and orientation
domain. For inpainting applications they learn the model
from the local image statistics, whereas we define a generic
model trained on a large database.

3. Steered Filter Responses and Their Statistics

The statistics of horizontal and vertical image deriva-
tives in natural scenes have been extensively studied (see,
e.g., [22]). These derivatives are found to have heavy-
tailed marginal statistics that arise from the fact that, while
neighboring pixels often have similar intensities, significant
discontinuities arise quite frequently. Heavy-tailed distri-
butions are characterized by large values of the kurtosis
κ = E[(x−μ)4]/E[(x−μ)2]2. Fig. 1(a),(b) shows marginal
log-histograms of horizontal and vertical image derivatives.
The histograms were computed from a set of 25 natural
images taken from the Berkeley segmentation dataset [15]
(only the luminance was considered). Simple first order
derivative filters ((1,−1) and (1,−1)T) were used. The his-
tograms have much tighter peaks and heavier tails than a
Gaussian with the same mean and variance.

To obtain the steered derivatives, we first need to esti-
mate the orientation of the local image structure. For this
we rely on the structure tensor [8]:

S = Gρ∗∇I ·∇IT = Gρ∗
[

(∂5×5
x I)2 ∂5×5

x I·∂5×5
y I

∂5×5
x I·∂5×5

y I (∂5×5
y I)2

]
. (1)

Here ∂5×5
x I denotes the horizontal derivative of image I

computed with the filter D5×5
x (see below), ∂5×5

y the ver-
tical derivative, and Gρ a Gaussian smoothing kernel with
standard deviation ρ. To obtain reliable estimates of the lo-
cal image orientation, we use optimized 5 × 5 derivative
filters [19]:

D5×5
x =(0.0234, 0.2415, 0.4700, 0.2415, 0.0234)T· (2)

(0.0838, 0.3323, 0,−0.3323,−0.0838)

D5×5
y =(D5×5

x )T. (3)

After estimating the structure tensor, we perform an eigen-
decomposition and obtain the eigenvectors (cos θ, sin θ)T

orthogonal to, and (− sin θ, cos θ)T aligned with the local
orientation. If a strong edge is present, the local orientation
is the orientation of the edge. The derivative orthogonal to
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Figure 3. Joint filter response log-histograms. (left) Standard
derivatives. (right) Steered derivatives.

the local orientation, ∂O, and the aligned derivative, ∂A, are
now given as

∂O = cos θ · ∂x + sin θ · ∂y (4)
∂A = − sin θ · ∂x + cos θ · ∂y. (5)

Here, ∂x and ∂y are the horizontal and vertical image
derivatives, which are computed using 2 × 3 and 3 × 2
filters (see below). Fig. 2 shows an example image along
with its steered derivatives. We can see that the derivative
orthogonal to the local orientation shows continuous edge-
like structures, while the aligned derivative has much less
spatial structure.

The empirical steered derivative histograms are shown
in Fig. 1(c),(d). The log-histogram of the derivative orthog-
onal to the local (e.g., edge) orientation has much broader
tails than the aligned derivative; this indicates that, as ex-
pected, large intensity changes occur more frequently or-
thogonal to the edge orientation. While both log-histograms
are heavy-tailed, the kurtosis of the aligned derivative is
much higher.

These findings lead to two observations. First, the
steered marginal statistics provide a statistical motivation
for anisotropic diffusion methods. Standard anisotropic dif-
fusion performs relatively strong linear smoothing along
edges, and nonlinear smoothing that allows for large in-
tensity jumps orthogonal to the edges. The tight marginal
histogram of the aligned derivative suggests that we should
indeed perform stronger smoothing aligned with edges than
orthogonal to them. Second, and in contrast to what is done
in standard anisotropic diffusion, the non-Gaussian charac-
ter of the histograms indicates that we should employ non-
linear smoothing even aligned with the edges.

Finally, we can compare the joint log-histogram of
steered derivatives in Fig. 3(b) to that of standard deriva-
tives in Fig. 3(a). The log-histogram of horizontal and verti-
cal derivatives exhibits polygonal isocontours as previously
noted in the study of natural images [22], but the joint log-
histogram of the steered responses has much more elliptical
contour lines.



4. Steerable Random Field Model
In the Steerable Random Field, we exploit statistical

properties of steered derivatives to define a random field
model of natural images. The model can be trained in two
different ways, which we will discuss below: (1) by fit-
ting the marginal distributions of the steered derivatives to
model a prior over images; (2) using a discriminative variant
of contrastive divergence [7] to model a posterior. Suppose
that our goal is to recover an artifact-free, true, or “hidden”
image H from a corrupted or “noisy” observation, the in-
put I. In a Bayesian approach we typically represent the
posterior distribution as p(H|I) ∝ p(I|H) · p(H), where
the likelihood p(I|H) describes the observation process that
took the true image H and corrupted it to obtain the obser-
vation image I. The prior p(H) models the a-priori proba-
bility density of having a particular underlying true image
H among all possible images. Very often, such priors are
formulated as Markov random fields.

We take a slightly different approach here and model
the posterior distribution directly, but still break it into two
components:

p(H|I; Ω) = 1
Z(I) exp {−E(H, I; Ω)}

= 1
Z(I)fL(I;H) · fS(H; I,Ω).

(6)

Here, fL(I;H) is a (unnormalized) distribution that mod-
els the observation process, fS(H; I,Ω) is a (unnormalized)
steerable image model, Ω are the model parameters, and
Z(I) is the so-called partition function that ensures that the
posterior is normalized. Since, in applying the model, we
will attempt to maximize the posterior w.r.t. H, we do not
require the partition function to be known during inference,
and hence ignore it for the most part. For now we simply as-
sume that we have a suitable observation model for the task
we are trying to solve; we will return to details on the obser-
vation model in Section 5. One important point to note here
is that in this architecture neither the observation model nor
the image model by themselves are good models of the pos-
terior distribution. Only their combination results in a good
Bayesian model, e.g., for image restoration.

Basic model. The steerable image model fS(H; I,Ω) in-
tuitively takes the role of the prior from above in that it as-
sesses how “natural” the true image H is. In contrast to
the standard approach, the image model is not truly a prior
distribution here, because it depends on the image observa-
tion I. The SRF thus has a conditional random field (CRF)
architecture (cf . [6, 10, 11, 23]). As in a standard MRF-
based formulation, we assume that the pixels are described
by nodes in a graph. Usually, the neighborhood structure of
the edges describes the factorization structure of the image
model. To simplify the discussion, we make the factoriza-
tion more explicit, and instead describe the model as a factor
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(a) Horizontal derivative
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(d) Aligned derivative

Figure 4. Fit of GSM model with 4 scales (dashed, red) to filter
response statistics (solid, blue). The GSM model learned with con-
trastive divergence is shown in case of the steerable model (dash-
dotted, black).

graph [24]. We assume that the true image H is subdivided
into overlapping patches of m × n pixels; H(j) denotes the
vector of all pixels in the jth patch. We write the steerable
image model as a product over all patches in the image

fS(H; I,Ω) =
∏
j

fS,j(H(j); I,Ω). (7)

If we disregard the dependence on I then each factor cor-
responds to a clique in a classical MRF prior of images.
But unlike a standard pairwise prior, which models each
factor using either horizontal or vertical image derivatives,
and unlike the Field of Experts (FoE) [18], which models
each factor using filter responses from a set of fixed filters,
the SRF models each factor using responses from adaptive,
steered filters. For that, let θj = θj(I) denote the orienta-
tion of the image structure at position j (i.e., the center of
the patch H(j)) as determined from the eigendecomposition
of the structure tensor of I. Then we write each factor of the
SRF model as

fS,j(H(j); I,Ω) =φO(cos θj · ∂xH + sin θj · ∂yH; Ω)·
φA(− sin θj · ∂xH + cos θj · ∂yH; Ω),

where φO(·) is a model of the derivative response orthogo-
nal to the structure orientation, and φA(·) models the deriva-
tive aligned with the structure. ∂xH and ∂yH denote the
horizontal and vertical image derivatives, which are evalu-
ated at position j and computed from the image patch H(j).

In order to model the potentials, we rely on a Gaussian
scale mixture (GSM) representation [25], which has been



used in various models of natural images, e.g. [14]. One
advantage of GSM models is that they are computationally
relatively easy to deal with, yet flexible enough to represent
heavy-tailed distributions such as the ones shown in Fig. 1.
In particular, we write the model for the orthogonal deriva-
tive as

φO(r; Ω) =
∑

k

ωO,k · N (
r; 0, σ2

O/sk

)
. (8)

In this formulation, ωO,k is the mixture weight for the kth

Gaussian component with mean 0, base variance σ2
O, and

scale sk. The model for the aligned derivative is equivalent
(but using ωA,k and σA). We assume that the base variance
and scales are fixed and only regard Ω = (ωO,k, ωA,k|k =
1, . . . ,K) as the set of parameters of the GSM model for
the steered derivatives.

Both as a sanity check, and as a simple way of learning
SRF models from data, we fit GSM models to the empiri-
cal marginals. Fig. 4 shows how both the standard and the
steered marginal derivative statistics are fit well by GSM
models with 4 scales. In each case the base variance σ2

O

was chosen to be the variance of the respective empirical
marginal, and scales s = (0.008, 0.04, 0.1, 1)T were used.
The mixture weights were fit using a simple expectation
maximization (EM) procedure.

Practical considerations. We may now be tempted to
define the model using factors on overlapping 3 × 3
patches, and to use standard derivative filters of the type
(1/2, 0,−1/2) (with possible smoothing in the orthogo-
nal direction). Doing so, however, leads to checkerboard-
like artifacts in image restoration, as has been observed in
[20]. The problem is that standard 3-tap derivative filters
effectively decouple directly neighboring pixels (because of
the 0 center coefficient) leading to artifacts. This could be
corrected using an additional smoothing term as suggested
in [20], but we would like to avoid that to be able to re-
cover crisp boundary structures. We could use (1,−1) type
derivative filters to avoid this problem, but then the x- and
y-derivatives are not computed at the same spatial location.

To solve this problem we define two kinds of filters, one
pair of 2×3 derivative filters, and one pair of 3×2 derivative
filters:

D2×3
x = 1

2

(
1 0 −1
1 0 −1

)
D2×3

y =
(

0 1 0
0 −1 0

)
(9)

D3×2
x = (D2×3

y )T D3×2
y = (D2×3

x )T. (10)

These filters have the advantage that they do not have a 0
center coefficient in one of the directions, but each pair es-
timates x- and y- derivatives at the same spatial location.
We can combine these filters in the SRF framework by hav-
ing two kinds of factors with their corresponding image
patches: One consists of all overlapping patches of 2×3 pix-
els; the other one of all overlapping 3× 2 patches. Depend-
ing on which patch-size H(j) has, the factor fS,j(H(j); I)

Figure 5. Factor graph representation of the SRF model (only
nodes of H shown). The red factor nodes and edges indicate the
3 × 2 factors; the blue ones the 2 × 3 factors. One factor each is
highlighted with solid bold edges.

uses the appropriate derivative filters. Fig. 5 shows the cor-
responding factor graph with both types of factors.

Learning. To estimate the model parameters (i.e., the
mixture weights) from data, we could either simply fit the
empirical marginals of the steered derivatives as above, or
we could use a more rigorous learning procedure, such as
maximum likelihood. In case of a pairwise MRF, fitting
marginals has a rigorous interpretation, because, as Wain-
wright and Jordan [24] showed, marginals of a pairwise
model are fixed points of the Bethe free energy (we rea-
sonably assume here that the intensity distribution of each
pixel is uniform). Hence we train the pairwise models used
for the comparisons in the next section in this way. The
SRF, on the other hand, is a high-order RF model, where
this interpretation can not easily be exploited.

Because of the conditional nature of the SRF model, we
train it in the context of a particular application represented
by a suitable likelihood model. More precisely, we try to
maximize the conditional log-likelihood of the training data
H = {H(1), . . . ,H(t)} given the “noisy” observation data
I = {I(1), . . . , I(t)} with respect to the model parameters
(mixture weights) Ω:

L(H|I; Ω) =
∑

l

log p(H(l)|I(l); Ω). (11)

Unfortunately maximizing the (conditional) likelihood in
loopy graphical models is difficult since the partition func-
tion cannot easily be computed. Learning thus needs to rely
on approximations, often using Markov chain Monte Carlo
(MCMC) methods [29], which tend to be very slow. An al-
ternative is the contrastive divergence (CD) algorithm [7],
which has already been applied to a number of random field
models in vision [6, 18]. We employ a discriminative vari-
ant for training CRF models (see [6] for details). The ad-
vantage of CD over (conditional) maximum likelihood is
that the Markov chain does not have to be run until conver-
gence, but only for a small number of steps. As suggested
in [18], we use a hybrid Monte Carlo sampler with 30 leaps,
l = 1 MCMC steps, and a learning rate of 0.01. We ran CD
for 2000 iterations after which the mixture parameters did



not change significantly. The derivation of the gradient of
the posterior energy w.r.t. the mixture weights is relatively
straightforward and is omitted due to space constraints.

Non-conditional model. While we do not explore this
formulation rigorously here, it is straightforward to define
the SRF model as a pure prior model without conditioning
on the observation. In this case, steering is done using the
true, underlying image, and training is done in a fully gen-
erative way, for example using contrastive divergence.

5. Applications
To compare the Steerable Random Field model with tra-

ditional pairwise MRF models, we apply them to two differ-
ent image restoration tasks, image denoising and inpainting.

For denoising, we assume that the image observation I is
corrupted with additive i.i.d. Gaussian noise, as is standard
for denoising performance evaluations. We thus formulate
the observation model as fL(I;H) =

∏
j N (Hj ; Ij , σ

2
L).

For our experiments, we assume a fixed noise standard de-
viation of σL = 20. We obtain a full posterior model of
denoised images (cf . Eq. (6)) by combining this observa-
tion model with the SRF model (ρ = 1) from Eq. (7). We
then train the parameters of the SRF model discriminatively
using contrastive divergence.

The training data consists of a set of “clean” training im-
ages, H , and a set of noisy training images, I , which have
been obtained from H by adding Gaussian noise drawn
from the observation model. The clean image data consists
of 20000 image patches of 9 × 9 pixels, which have been
randomly cropped from the 25 natural images used in Sec-
tion 3. Note that the structure tensor was computed before
the images were cropped to avoid boundary artifacts.

Fig. 4(c),(d) shows the GSM response models deter-
mined by this procedure. Even though the shape of the
learned model differs quite a bit from the marginal distri-
bution, it performs much better than a GSM model fit di-
rectly to the marginals2. For comparison with a baseline
technique, we use a traditional pairwise MRF model, where
we formulate the potentials using Gaussian scale mixtures
as in Eq. (8). To clearly separate the contribution of the
steerable filters versus the high-order cliques, we also used
a high-order, non-steerable MRF based on 2 × 3 and 3 × 2
derivative filters (referred to as “Non-steerable MRF”). In
both cases, we use the EM algorithm and the scale parame-
ters described in Section 4.

To perform inference we rely on simple continuous lo-
cal optimization methods for both the SRF and the baseline
models. While inference in pairwise MRFs can be done
using belief propagation or graph cuts, doing so for high-
order RF models, such as the SRF, is considerably more

2Zhu et al. [29] also observed that the optimal clique potential functions
do not necessarily correspond to the marginal statistics.

(a) Image denoising σ = 20

Model / Algorithm PSNR in dB SSIM
Pairwise MRF 27.726 0.7672

Non-steerable MRF 27.707 0.7703
SRF 28.316 0.7878

SRF with ST update 28.299 0.7926
(b) Image inpainting

Model / Algorithm PSNR in dB SSIM
Pairwise MRF 30.786 0.940

SRF 31.578 0.944
SRF with ST update 32.208 0.949

Table 1. Average performance on 68 test images.

Figure 7. Inpainting masks used to create test set.

difficult [16]. To simplify matters, we use the posterior en-
ergy E(H, I; Ω) and maximize it w.r.t. H using a conjugate
gradient method [17]. The gradient expressions are rela-
tively straightforward to derive and omitted here for brevity.
As has been noted before (e.g., [18]), denoising quality can
typically be improved by appropriately weighting the rel-
ative strength of the observation model versus the regular-
ization term. In that vein, we use fS(H; I,Ω)α as the regu-
larization term for denoising (similarly for the pairwise and
non-steerable MRF); the optimal α value is determined by
denoising 10 training images with a set of candidate values
and choosing the best one. To determine the best α, and
also to measure denoising performance on the test set, we
use the peak signal-to-noise ratio (PSNR). In addition, we
also measure test performance using the perceptually-based
structural similarity index (SSIM) [26].

Table 1 shows denoising results averaged over the same
68 test images used in [18]. The SRF substantially outper-
forms both the traditional pairwise and the high-order, non-
steerable MRF model, each in terms of PSNR and SSIM,
despite using the same number of filters. This clearly sug-
gests that the performance improvement from the SRF is
due to the use of steerable filters. We also tried updating the
structure tensor using the estimate of the noise free image
during inference (“ST update”), which results in no signifi-
cant difference in performance. Fig. 6 shows denoising re-
sults for one of the test images. The detail images reveal
that the SRF is much better at recovering continuous edge
structures while also preserving more detail (e.g., the lines
on the wall in the background). It is worth noting that, due
to the particular derivative filters, the results do not exhibit
checkerboard-like artifacts that have been a problem with
certain anisotropic diffusion schemes (e.g., [20]).



(a) (b) (c) (d)

Figure 6. Image denoising using a SRF. (a) Original image. (b) Gaussian noise added (σ = 20, PSNR = 22.49dB, SSIM = 0.528). (c)
Denoised with a pairwise MRF (PSNR = 27.60dB, SSIM = 0.810). (d) Denoised with a SRF (PSNR = 28.63dB, SSIM = 0.836, without
“ST update”). The bottom row shows a cropped version of the image above.

One disadvantage of discriminatively trained models is
that they need to be trained end-to-end for each application,
potentially even for each noise level, although compared to
generative models, they focus their modeling power on what
matters the most for the application at hand. To show that
the SRF model trained on one particular application nev-
ertheless generalizes to another application, we apply the
model with the parameters obtained by training on the im-
age denoising task to an image inpainting application. We
assume that the user has specified a mask M of pixels to be
filled in, and we use the same likelihood model used in [18].
Since we compute the structure tensor from the masked in-
put image, we use a larger structure tensor with ρ = 4,
which is sufficient to estimate the orientation in the areas of
missing pixels. As for denoising, we use conjugate gradient
optimization for inference. To evaluate the performance of
the SRF, we generate a synthetic set of inpainting tasks by
masking pixels from the same 68 test images used above.
Fig. 7 shows the 4 different masks used to generate the test
set. Table 1 summarizes the average performance on all test
images. The SRF model performs substantially better than
a pairwise MRF model. In this case, the performance can
be further improved by steering the structure tensor based
on the inpainted image (“ST update”). Fig. 8 shows one of
the test images, which illustrates how the steered derivatives
help smoothly complete image contours.

6. Summary and Future Work

In this paper we introduced the idea of using steerable
filters into the domain of spatially discrete random field

models of images and other dense scene representations. In
contrast to previous MRF models, which formulate clique
potentials based on fixed sets of filters, the proposed Steer-
able Random Field uses steered filter responses computed
using a structure tensor. Based on a study of the statistics of
steered filter responses, we formulated the potentials of this
SRF model using Gaussian scale mixtures, whose parame-
ters were learned from training data with a discriminative
version of contrastive divergence. The proposed model thus
unifies various ideas from RF modeling and anisotropic reg-
ularization with structure tensors, and puts the latter on a
statistical foundation.

We demonstrated how the SRF can be used in image
restoration applications with substantial performance gains
over pairwise MRFs and other non-steered models. In par-
ticular, edge-like structures are restored much more cleanly
using the SRF. We should note that the denoising results
are about 0.4dB worse than those reported with Fields of
Experts [18]. This is not a surprise given the fact that SRFs
use only 2 filters and smaller cliques; nor is this a major goal
of this work. The main goal here is to introduce spatially-
adaptive steering to MRF models; future work will have to
consider whether more complex models with many filters,
such as the FoE, can be steered as well.

By connecting algorithmic anisotropic diffusion tech-
niques with probabilistic MRF models, the SRF opens the
possibility of employing new learning and inference meth-
ods, such as belief propagation [16], in these problems.
Future work should consider applying such techniques to
SRFs.



(a) (b) (c) (d)

Figure 8. Image inpainting using a SRF. (a) Masked image (red regions are to be filled in). (b) Inpainting with a pairwise MRF
(PSNR = 37.83dB, SSIM = 0.980). (c) Inpainting with a SRF (PSNR = 41.08dB, SSIM = 0.983, without “ST update”). (d) Detail re-
sults. Top row: Original image, masked image. Bottom row: Inpainting with pairwise MRF, inpainting with SRF.
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